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1 Introduction

Gait is a common locomotion strategy for legged ani-

mals where a repetitive sequence of leg movements results

in motion. Assuming the predictive coding theory, the agent

continually represents its beliefs about the gait state in a state

estimation [1]. In Internal Model (IM) principle, the state is

predicted from efference copy by a Forward Model (FM)

that can be further utilized for motor control [2]. However,

in gait dynamics, the sensory state depends on the sequence

of the previous motor commands, which makes the sensory-

motor dynamics challenging to model.

Physiological evidence shows that animal gaits are cor-

related with the Central Pattern Generator (CPG) activ-

ity [3] that is hypothesized to estimate the motion phase [4].

The CPG can then be considered a part of the FM that pre-

dicts the sensory state for each particular phase.

We propose a biomimetic controller combining the CPG

with the predictive coding theory. The state estimation is

updated by fusing sensory observation with the CPG-based

FM predictions. The estimated state is compared to the

given reference value, and the difference is backpropagated

through FM updating the gait; see Fig 1. We test the pro-

posed gait controller on a real hexapod walking robot Daisy

by HEBI Robotics, where the robot performs various motion

behaviors and navigates toward the goal location.

2 Method

Let the gait dynamics be described in C discrete mo-

tion phases. We denote ν
φ
m the motor command for the m-

th effector at the motion phase φ , and similarly γ
φ
n be the

value of the n-th sensory modality at the phase φ . We de-

fine motor embedding as a sequence of the motor commands

ν = (νφ )Cφ , where νφ = (ν
φ
m)

M
m . Similarly, we define sensory

embedding γ = (γφ )Cφ , where γφ = (γ
φ
n )

N
n . The agent updates

its belief about the gait ν̄ minimizing the difference between

sensory reference γ∗ and sensory estimate γ̄ .

We model the sensory estimate γ̄ as value maximizing

posterior sensory state probability given the sensory obser-

vation γ̂ and predicted motion consequence provided by the

FM F : (ν ,φ)→ γφ

γ̄φ
n = argmax

γ
φ
n

P(γφ
n |γ̂

φ
n ,F(ν̄ ,φ)n). (1)
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Figure 1: Schema of the proposed controller coupled with the

hexapod walking robot Daisy. The controller com-

mands the joint angles, while the sensor-motor loop

is closed by the tracking camera Intel RealSense T265

providing a relative localization of the robot.

The gait ν̄ is then the most probable motor embedding given

the sensory estimation being equal to the reference value

ν̄φ
m = argmax

ν
φ
m

P(νφ
m|γ̄ = γ∗). (2)

Assuming naive Bayes, uniform prior distribution, and

normal likelihood distribution, we reformulate the posteriors

in (1) and (2) into a log-likelihood form, from which we

derive the update rules

dγ̄
φ
n

dt
= γ̂

φ
n −γ̄

φ
n

Σγ̂|γ̄ + F(ν̄ ,φ)n−γ̄
φ
n

ΣF |γ̄ , (3)

dν̄
φ
m

dt
= ∑

C
ϕ ∑

N
n

γ
ϕ∗
n −γ̄

ϕ
n

Σγ∗|ν̄ ΣF |γ̄
∂F

∂ν
φ
m

, (4)

with likelihood variances Σγ|γ̄
,ΣF |γ̄ , and Σγ∗|ν̄ for observa-

tion, prediction, and reference, respectively.

The forward model F is an ensemble of C linear regres-

sors fφ : ν → γφ switched by a motion phase: F(ν ,φ) =
fφ (ν). For the presented early results of the proposed ap-

proach, the motion phase is tracked by a model of the

unperturbed CPG: Φ(t) = tT−1 that switches the phases

φ(t) = argmini ||iC
−1 −Φ(t)||; i = 1 . . .C with the period T .



3 Results

The ability of the studied control schema to model the

gait dynamics and its usability to locomote was empirically

examined on a real hexapod walking robot Daisy. During

the control, we expect that if the reference value is above

the observed value, we measure the growth of the observed

value; γ∗ − γ̂ ≈ dγ̂
dt

. The expectation is tested in the navi-

gation setup, where the sensory references γ∗ are generated

with respect to (w.r.t.) robot’s distance and orientation to the

goal location. If the observed sensory values change posi-

tively correlates with the reference-observation difference,

the robot should approach the goal location.

The six-legged robot is actuated by 18 controllable

joints, and the mounted T265 provides relative localization.

With six motion phases, C = 6, the motor embedding is a se-

quence of six joint angle commands ν̄ ∈ R6×18 that change

the position w.r.t. the robot’s default position, which is de-

picted in Fig. 1. The observed sensory modalities are planar

and turning velocities embedded into the sensory observa-

tion γ̂ ∈ R6×3. The sensory observations are fused with the

FM predictions into estimate γ̄ using the update rule (3). The

angle commands ν̄ are updated by (4), where both update

rules are calculated using the Euler method with the step

size set to 0.001.

The FM used in the proposed controller, shown in Fig. 1,

is trained in two iterations. The training dataset is built

by drawing 1400 random gaits from the normal distribution

ν
φ
m ∈ N (0,0.2) and recording the sensory observation. The

dataset is used to learn the initial FM F(1), and the robot is

tasked to move forward, resulting in an initial gait ν(1). In

the second motion babbling iteration, the random gaits are

drawn from ν
φ
m ∈N (ν

φ ,(1)
m ,0.2), and the second FM F(2) is

trained. The second iteration FM, F(2), was able to walk the

robot forward in all five experimental repetitions.

The controller with the trained FM is deployed with

either of two navigation methods: (i) Turning navigation,

which generates turning and forward velocity references to-

wards the goal location; and (ii) Planar navigation, which

generates forward and side velocity references towards the

goal location. The robot approached the goal location from

eleven initial positions and orientations shown in Fig. 2a and

exhibited motions sideways, forward, backward, and left-

right turning. The navigation setup generated sensory refer-

ences and observations from which we measured the posi-

tive correlation between the reference difference and obser-

vation change Fig. 2b.

4 Discussion and Conclusion

The measured results corroborate the expectation that

the proposed gait controller causally entangles the sensory

reference with the sensory observation. If true, the entan-

glement is propagated through a single FM implemented as

the CPG-switched linear regressors, providing complex mo-

(a) Navigation setups

(b) Sensory reference and observation

Figure 2: (a) Eleven experimental runs with different initial dis-

tances and directions to the goal located at coordinates

[0,0]. Four measured paths with the robot heading

are shown in the middle. All, except the run with

180◦ initial direction, runs were observed to reach the

goal vicinity of 0.6 m where the robot stayed. (b)

The top row shows examples of the sensory observa-

tion and reference measured during the experimental

runs. The bottom row shows the least-square linear fit

to 142098 measured data points with the coefficients

0.0085, 0.0056, and 0.0083 for forward, side, and turn-

ing velocity, respectively.

tion behaviors by controlling 18 joints of the hexapod walk-

ing robot. The trained controller adjusted the gait motion

and navigated the robot toward the requested target loca-

tion using forward, side motion, and turning. In our future

work, we plan to utilize the presented probabilistic formu-

lation by tracking the FM prediction confidence and com-

bining several other FMs. The proposed approach will al-

low the gait controller to scale incrementally and improve

its performance over multiple scenarios.

Acknowledgments

The presented work has been supported by the

Czech Science Foundation (GAČR) under research project
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