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Abstract

Inspection planning is a problem of finding a (closed) shortest path from which a robot “sees” the whole workspace. The
problem is closely related to the Traveling Salesman Problem (TSP) if the discrete sensing is performed only at the finite
number of sensing locations. For the continuous sensing, the problem can be formulated as the Watchman Route Problem
(WRP), which is known to be NP-hard for the polygonal representation of the robot workspace. Although several Self-
Organizing Map (SOM) approaches have been proposed for the TSP, they are strictly focused to the Euclidean TSP,
which is not the case of the inspection path planning in the polygonal domain. In this paper, a novel SOM adaptation
schema is proposed to address both variants of the inspection planning with discrete and continuous sensing in the
polygonal domain. The schema is compared with the state of the art SOM schema for the TSP in a set of multi-goal
path planning problems and WRPs. The proposed algorithms are less computationally intensive (in order of tens) and
provide better or competitive solutions.

Keywords: Inspection Planning, Multi-Goal Path Planning, Self-Organizing Map (SOM), Traveling Salesman Problem
(TSP), Watchman Route Problem (WRP), Polygonal Domain

1. Introduction

Inspection planning deals with finding a shortest inspec-
tion path such that all points of the workspace W are
“seen” from the path. The problem is studied in mobile
robotics in which a path for a mobile robot performing the
inspection is planned in a priori known map of the envi-
ronment. The map can be represented by the polygonal
domain, which makes the problem close to computational
geometry. A practical consideration of mobile robot sens-
ing capabilities leads to two types of sensing: discrete and
continuous. These sensing models are motivated by the
cost of sensing and the cost of motions. The continuous
sensing is suitable for problems where the cost of the sens-
ing is relatively cheap in comparison to the cost of the
motion. Contrary to the discrete sensing model, where
the cost of the sensing is dominant, and the cost of the
motion can be ignored. The combination of both costs is
a difficult problem and it remains largely unexplored [1].

The inspection planning problem formulations can be
found in computational geometry. The problem with con-
tinuous sensing can be formulated as the Watchman Route
Problem (WRP) [2]. The WRP is a problem of finding a
closed shortest path in the polygonal domainW such that
all points of W are visible from at least one point at the
path. Even though optimal algorithms for restricted class
of polygons have been proposed, the WRP is NP-hard for
W, and probably the first heuristic approach has been in-
troduced in [3].

A decoupled approach can be used to address the in-

spection planning with discrete sensing. The problem is
decomposed into the set cover problem and the consecu-
tive multi-goal path planning problem. For the polygonal
domain W, the set cover problem can be formulated as
the Art Gallery Problem (AGP). The AGP stands to find
a minimal number of guards to cover W. The guards rep-
resent sensing locations, and each guard covers a part of
the environment by its star-shaped visibility polygon. The
AGP is NP-hard even for a polygon without holes [4]. The
multi-goal path planning problem can be formulated as the
well-known Traveling Salesman Problem (TSP) if all paths
between sensing locations are known [5, 6].

The AGP and WRP are studied in the computational
geometry domain for an unrestricted model of visibility.
However, sensing (visibility) of real sensors (cameras or
range finders) is limited, e.g., in sensing range and fre-
quency. To distinguish the restricted visibility, authors
of [1] call the problem of finding sensing locations sen-
sor placement rather than the AGP. Similarly, the WRP
with restricted visibility range to a distance d is called d-
Watchman Route Problem (d -WRP) [7]. These variants
of the problems with the restricted visibility range also
belongs to the NP class; thus, approximate solutions are
more suitable for real application to get “good” solutions
with “reasonable” computational requirements.

The decoupled approach provides a feasible solution of
the inspection planning, and has been used in robotic
tasks [8, 9]. Sensing locations for restricted visibility range
can be found by different techniques [10]. The TSP can
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be solved by various approaches from the operational re-
search [11], or by soft computing techniques like ant colony
system [12], self-organizing map (SOM) approaches [13], or
immune system [14]. On the other hand, the WRP in W
has been addressed (to the best of our knowledge) only
by the heuristic approach presented in [3]. The algorithm
is based on a set of static guards that are used to deter-
mine the minimum spanning tree from the pairwise short-
est paths between guards. The tree is split to construct
a route that is shortened by vertex substitutions and re-
moving of redundant vertices. Even though the approach
is based on guards, solutions have been presented only
for an unrestricted visibility range. In [15], a SOM based
approach for the d-WRP has been presented; thus, SOM
provides solutions for both inspection planning variants.
However, the main difficulty of SOM application in the
polygonal domain is determination of the shortest paths
among obstacles, which is more computationally demand-
ing than a pure computation of the Euclidean distances
between neurons’ weights and an input vector.

In this paper, SOM is applied to the inspection plan-
ning problem with discrete and continuous sensing in the
polygonal domain. A new adaptation schema is proposed
and compared with an already available schema for the
TSP [16] in a set of problems created from a map of real
environments and several visibility ranges. The main con-
tribution of this paper is new adaptation schema for the
multi-goal path planning problem in the polygonal domain
that can be used to addressed the non-Euclidean TSP and
d-WRP, i.e., inspection planning with continuous sensing.

The rest of this paper is organized as follows. The next
section provides overview of the addressed problem. The
related work is presented in Section 3. The proposed adap-
tation schema for the multi-goal path planning problem is
presented in Section 4. Then, the schema is applied to the
inspection planning with continuous sensing in Section 5.
Experimental results of the proposed algorithms are pre-
sented in Section 6. Concluding discussion and remarks of
the future work are presented in Section 7. The list of the
used symbols is presented in Section 8.

2. Problem Statement

An environment to be inspected by a mobile robot is a
priori known, and a polygonal map of the environment is
available. The robot is equipped with an omnidirectional
sensor with a sensing range restricted to a distance d. The
notion of d-visibility is assumed as follows. Two points p
and q in a polygon P are called d-visible, if the line segment
joining them is contained in P , and if the segment length is
less or equal to d. The sensor coverage is modeled by a disk
with the radius d. A point robot is assumed, and a path
between two points in the polygonal domainW consists of
sequence of straight line segments joining the points and
vertices ofW, and all segments are entirely insideW. The
addressed variants of the inspection planning are following.

Discrete Sensing - The whole environment is covered
by performing a finite number of measurements with the
range d at sensing locations. A set of such sensing loca-
tions G is given, and all locations are reachable by the
mobile robot. The problem is to find a closed path (pos-
sibly a shortest one) connecting all sensing locations. The
problem is the multi-goal path planning problem that is
considered as the non-Euclidean TSP in the polygonal do-
main.

Continuous Sensing - Measurements can be taken along
a path in the continuous sensing problem variant, there-
fore, sensing locations are not explicitly prescribed. The
problem is to find a closed (possibly a shortest one) path
such that each point of the environment is d-visible from
some point of the path. The problem is formulated as the
d-WRP in the polygonal domain.

Even though the cost of the sensing and the cost of the
motion can be considered in the inspection planning, only
the length of the inspection path is used as the quality
metric in this paper. Mainly because a SOM approach
for the multi-goal path planning provides an approximate
solution of the related TSP, and a shorter path is a plus.
Besides, the decoupled approach can also be used for the
d-WRP. Having a prescribed set of sensing locations, even-
tually the smallest set, only the length of the path can be
minimized. Therefore, the length of the inspection path as
the only metric makes sense for both inspection variants.

3. Related Work

3.1. Reference Algorithm

To compare the solution quality of the examined algo-
rithms the following decoupled approach is used to find a
reference solution. A deterministic sensor placement algo-
rithm [17] is used to find a set of sensing locations. The
algorithm is based on a decomposition of W into a set of
convex polygons. First, Seidel’s algorithm [18] is used to
find the primal convex partition. Convex polygons of the
partition are eventually divided into convex sub-polygons
if a convex polygon cannot be covered from one point with
the d-visibility. The required computational time is pro-
portional to the number of found sensing locations [17].

The inspection path is found as the solution of the TSP
on a graph G(V,E), where V stands for sensing loca-
tions, and E is the set of edges with costs computed as
the length of the shortest path between the sensing lo-
cations. The paths are found by Dijkstra’s algorithm in
O(nne log(n+v)) on the visibility graph, which is found in
O((n + v)2) [19], where v denotes the number of polygon
vertices, n is the number of sensing locations, and ne is the
number of edges of the visibility graph. Without loss of
generality G(V,E) is assumed to be complete. An optimal
solution of the TSP is found by the concorde solver [20].

3.2. SOM Procedures for the TSP

The basic idea of SOM for the TSP is based on Ko-
honen’s two-layered unsupervised neural network in which
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the first layer represents coordinates of the presented goals
to the network. The second layer consists of neurons orga-
nized in a cycle (ring), and each neuron is connected with
the first layer. The weights of the connections represent co-
ordinates of the node, see Fig. 1. The adaptation schema
is an iterative two phases procedure. At each iteration,
goals are presented to the network in a random order, and
a winner node is found for each goal in the competitive
phase. The winner selection uses the Euclidean distance
of a node to the goal. The winner node and its neighbour-
ing nodes are adapted towards the goal in the cooperative
phase. The adaptation process is typically terminated if
winner nodes are sufficiently close to the goals.

m

 ν

 ν

i 1
g

g
i 2

m−1

1

2

j
j 1  

j 2  

(a)

 ν

goal  i
i 2

g

j 2   νj 1  

i 1
g[      ,     ]

[      ,     ]

nodes

ring of connected

j

(b)

Figure 1: Schema of the two-layered neural network and
associated geometric representation.

The TSP has been addressed by several SOM ap-
proaches during the last two decades. The pioneering
work of Angéniol et at. [21] and Fort [22] in 1988 has
been followed by particular improvements in the quality
of found solutions and required computational time. An
inhibition mechanism, which prevents nodes to win too
often, has been used in [16]. In [23], authors consider cre-
ation/deletion of nodes, and selection of winners based on
the shortest path to the segment joining two neighbouring
nodes. Several nodes initializations have been examined
in [24] and [25].

Probably the most complex algorithm is the Co-adaptive
net that is extensively evaluated in [13]. The authors of
the Co-adaptive net reported that their approach together
with [16] provide superior results in various instances of the
TSP from the TSPLIB [26]. However, the high number
of the Co-adaptive net parameters can be consider as a
drawback.

The algorithm proposed by Somhom et al. [16], denoted
as SME in this paper, is particularly interesting. It pro-
vides competitive quality of solutions to the Co-adaptive
net algorithm, but it is less complex, and it depends on a
less number of parameters. In this paper, the SME algo-
rithm is considered as the reference adaptation schema for
the initial application of SOM to the inspection planning
in W. The algorithm works as follows. Nodes are initial-
ized as a small ring around the center of the goals. The
winner node is selected according to ν? = argminν |g, ν|,

where |., .| denotes the Euclidean distance between the goal
g and the node ν for the Euclidean TSP. Each node can
be a winner only once in each adaptation step; thus, a
winner is inhibited after its selection. The inhibition is
cleaned at the begin of the next iteration, i.e., new presen-
tation of goals to the network. The adaptation rule moves
the winner node and its neighbouring nodes towards the
presenting goal g according to ν′j = νj + µf(σ, l)(g − νj),
where µ is the fractional learning rate. The neighbouring
function is f(σ, l) = exp(−l2/σ2) for l < δ, and f(σ, l) = 0
otherwise, where σ is the gain parameter, l is the dis-
tance in the number of nodes measured along the ring, δ
is the size of the winner node neighbourhood that is set to
δ = 0.2m, where m is the number of nodes set to m = 2n
for n goals. The initial value of σ is set proportionally to
the problem size σ0 = 0.06+12.41n, and it is decreased at
the end of each adaptation step according to σ = σ(1−α),
where α is the gain-decreasing rate. The values of learning
and decreasing rates are µ = 0.6 and α = 0.1 [27], respec-
tively. The adaptation is terminated if all winners are in
a distance less than ε = 0.001.

Regarding the number of parameters authors of [28]
proposed alternative adaptation rules to Kohonen’s expo-
nential evolution. To avoid initial values of the learning
and gain-decreasing rates, the authors proposed simpli-
fied adaptation rules based only on the number of per-
formed adaptation steps k. The learning rate is defined as
µ = 1/ 4

√
k, and the learning gain as σ = σ(1−0.01k). The

initial value of the gain is σ0 = 10. For small values of σ,
the value of the neighbouring function is very small; thus,
the neighbouring nodes are negligibly moved. To decrease
the computational burden, the authors recommended to
gradually decrease the neighbourhood of the winner node
after each adaptation step. The recommended initial value
of the neighbourhood is δ = 0.4m that is decreased accord-
ing to δ = 0.98δ at the end of each adaptation step.

3.3. Approximation of the Shortest Path in W
The main difficulty of SOM application to problems in

the polygonal domainW is a determination of the shortest
path among obstacles, which can be computationally in-
tensive. In [29], a simple, yet sufficient approximation has
been applied to the self-organizing adaptation procedure.
It is based on a convex partition of W. The partition
P is a set of disjoint convex cells P = {C1, C2, . . . , Ck}
such that the union of the cells is W. The cells are in-
duced by the diagonals of W, and each cell is formed from
a sequence of W vertices. During the adaptation, nodes
are inside W, and therefore, they are always inside some
cell. A collision free path for two points p1 and p2 that
are inside cells p1 ∈ C1 and p2 ∈ C2 can be found as a
path over the cells’ vertices v1 ∈ C1 and v2 ∈ C2. The
vertices are selected to minimize the length of the path
|p1, v1| + |S(v1, v2)| + |v2, p2|, where |., .| denotes the Eu-
clidean distance of two points, and |S(., .)| is the length of
the shortest path between two vertices. Such a path can be
further refined by consideration of direct visibility from the
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particular point to a vertex of the path. The used direct
visibility test is similar to the method [30], a convex par-
tition is used rather than a triangulation. An additional
improvement of the approximate path can be achieved if
vertices of obstacle edges that intersect the direct line seg-
ment from p1 to p2 are considered in the construction of
the primal path. An example of the primal path and its
refined variants is shown in Fig. 2.

(a) (b)

additional
vertices for
path refinement

(c)

Figure 2: Approximate path between two points; (a) rough
approximate path over cells’ vertices, (b) refined path, (c)
refined path with consideration of detected obstacle’s ver-
tices.

The used supporting structures are a convex partition
of W, and all shortest path between v vertices of W. A
convex partition can be found inO(v log v) [18]. The short-
est path can be pre-computed by Dijkstra’s algorithm us-
ing the visibility graph. The problem of finding the cell
Cν is the point-location problem, which can be solved in
O(log v). Besides, the cell can be determined during the
node movement towards the goal by the walking technique
similar to [31]. The complexity of such cell determination
is bounded by O(log nd), where nd is the number of passed
diagonals of the used convex polygon partition.

In the TSP, goals are fixed, and therefore, all short-
est path from the map vertices to the goals can be pre-
computed, which reduces the required computational time
for the adaptation at the cost of higher memory require-
ments. For large sets of goals, the approach visualized in
Fig. 2 can be more appropriate, as it provides approximate
path for two arbitrarily placed points in W, and its space
requirements depends only on the number ofW’s vertices.

3.4. SOM Procedure for the TSP in W
An application of the SME adaptation schema to the

TSP inW has been presented in [32]. The main difference
to the algorithm for the Euclidean TSP is in considera-
tion of the approximate path found by the above described
procedure, in particular using the pre-computed shortest
paths from the vertices to the goals. The path is used in
the select winner part to determine distance of the node
to the presented goal, and during the adaptation when
nodes are moved towards the goal. Besides, the following
modifications have been applied.

The termination condition also considers a maximal
number of adaptation steps. An error of the path approx-

imation can cause that the winner–goal distance is not ef-
fectively decreased during the adaptation, which can lead
to a distance higher than the required ε. Even though
such a convergence issue has been observed only for the
rough path approximation, the maximal number of the it-
erations is advantageous as it guarantees termination of
the algorithm.

A practical implementation of the select winner proce-
dure can utilize the Euclidean distance to inform the win-
ner searching process, and to decrease the computational
burden. During the searching, all non inhibited nodes are
examined, and the closest node is selected as the winner.
Let νg be an actual winner candidate to the presented
goal g. A distance of a node ν to g as a length of the path
among obstacles is determined only if the Euclidean dis-
tance |ν, g| is shorter than |νg, g|. This technical improve-
ment does not affect the quality of solution. However, it
has been observed that it provides solution up to two times
faster for the SME adaptation schema.

In the original SME algorithm [16], the initial values of
nodes are placed around a center of goals, which cannot be
used in theW because such a center can be in an obstacle.
Based on experimental results with various initialization it
has been observed that the SME schema is insensitive to
the initial point around which the ring is created. Thus, to
ensure that nodes are placed in W they are placed around
the first goal as a small ring with the radius 0.5 cm. The
sufficient free space around the first goal is assumed. In
the case of inspection planning the space around the goal
is ensured by the sensor placement algorithm.

3.5. SOM Procedure for the WRP in W

The SOM procedure for the WRP has been presented
in [15]. The main idea of the procedure is that the ring of
nodes represents the watchman route itself, and the nodes
are adapted towards uncovered parts of W. Determina-
tion of the ring coverage is based on approximation of the
continuous sensing along a straight line segment using a
convex cover set. The cover set consists of a set (possi-
bly overlapping) convex polygons, which dimensions are
restricted to respect the limited visibility range d. A tri-
angular mesh ofW is used to support fast determination of
incident convex polygons with a segment. A convex cover
set is found on top of the mesh, i.e., a convex polygon of
the set consists of mesh vertices, see Fig. 3a.

It is not required to have a minimal number of the con-
vex polygons, because the cover set is used as follows. Each
triangle is associated with at least one convex polygon, and
each convex polygon has associated a set of triangles that
are entirely inside the polygon. For a straight line segment
lying in W, all incident triangles are found by the walk-
ing in triangulation technique [31]. From these triangles,
all associated incident convex polygons are found, and the
coverage along the segment is determined as a union of all
triangles associated to the incident convex polygons, see
Fig. 3b. The coverage of the ring is determined from the
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sequence of straight line segments joining each neighbour-
ing nodes found by the approximation of the shortest path
between two points in W.

(a) (b)

winner node

alternate goal

triangle centroid

(c)

Figure 3: Supporting structures for the WRP; (a) a con-
vex cover set and an underlying triangular mesh, (b) an
incident convex polygons with a straight line segment, (c)
an alternate goal.

The adaptation procedure follows the SME schema for
the TSP inW. Centroids of the mesh triangles are used as
goals presented to the network. However, a winner node
is found only for triangles that are not covered. A cover-
age from the ring is determined at the beginning of each
adaptation step. During the adaptation, the coverage is
updated by adding all triangles associated to the con-
vex polygons that are incident with the presented triangle
(centroid) after the winner node adaptation towards the
centroid. The additional modification of the adaptation
rule relates to the visibility nature of the WRP. To see
the presented triangle from the ring, it is sufficient if the
winner reaches some of the incident convex polygons as-
sociated to the triangle. Thus, an alternate goal is found
from the intersection of the path from the node to the
triangle centroid with the incident convex polygons, see
Fig. 3c.

The adaptation is terminated if the ring covers all tri-
angles or after 180 adaptation steps, which can lead to an
incomplete coverage.

4. Proposed Adaptation Schema for the Multi-
Goal Path Planning

In this section, a new adaptation schema for the multi-
goal path planning problem is proposed. The schema fol-
lows the SME adaptation schema, particularly the algo-
rithm described in Section 3.4, but the main difference
is in the winner selection rule. The selection utilizes a
creation/deletion mechanism, which is similar to the one
used in [21], nevertheless it is also inspired by the ap-
proach [23]. Beside the selection rule, particular parts
of the algorithm have been improved considering modi-
fications of the aforementioned approaches proposed by
several authors, and experimental evaluation of adapta-
tion parameters settings. The proposed selection rule to-
gether with the improvements lead to a new adaptation
schema for the inspection planning with discrete sensing

that provides better solutions, and has lower computa-
tional requirements than the former schema. To provide an
overview of the proposed algorithm the adaptation schema
is depicted in Algorithm 1. The selection rule and the par-
ticular improvements are described in the following subsec-
tions.

Algorithm 1: SOM Adaptation Schema for the TSP

Input: G = {g1, . . . , gn} - a set of goals
Input: (m,σ, µ, α, δ, s) - the adaptation parameters
Input: ε – the maximal allowable error
Input: σmin – the minimal allowable σ

init(ν1, . . . , νM ) // initial set of neurons weights

i← 0 // set the adaptation step

repeat
error ← 0
I ← ∅ // set of inhibited nodes

Π(G)← a random permutation of goals
foreach g ∈ Π(G) do

ν? ← select winner(node to g), ν? /∈ I)
error ← max{error, |ν?, g|}
adapt(ν?, g) // call the adapt procedure

I ← I ∪ {ν?} // inhibit winner node

k ← k + 1 // increment the adaptation step

update adaptation parameters(σ, δ)
until error < ε orσ < σmin

4.1. Initialization

Several initialization of the neurons weights have been
proposed by various authors, e.g., a small ring around
centroid of the goals [16], a tour found by the nearest
neighbourhood [25], or convex hull of the goals [33]. In
the polygonal domain, these initialization methods can-
not be directly used, as the initial weights must be in-
side W. Based on experimental results, superior solutions
have been achieved by the following modifications of the
convex hull initialization. First, a convex hull of the goals
is found without consideration of obstacles. After that,
goals forming the hull, i.e., goals that are at the hull bor-
der, are connected by the shortest paths found using the
visibility graph. So, a tour over the forming goals is con-
structed. Finally, nodes are equidistantly placed at the
tour, starting at a random point of the tour. Examples of
connected initial rings of nodes are shown in Fig. 4.

4.2. Winner Selection

An idea behind the proposed winner selection method is
based on consideration of a path between two nodes. The
principle is shown in Fig. 5a for a problem without obsta-
cles. The closest segment connecting two nodes is found
instead of the closest winner. Then, the closest point at
the segment is determined. If the point is different from
the segment endpoints a new node is created with the point
coordinates and added to the ring. Otherwise the closest
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(a) jh, 36 goals (b) potholes, 281 goals (c) ta, 574 goals

Figure 4: Examples of initial rings of nodes in environ-
ments jh, potholes and ta; green disks represent goals and
blue disks are nodes.

node is a candidate to be the winner. If the winner candi-
date is inhibited a new node is created with the identical
values of the winner weights. The newly created node be-
comes the winner of the current selection. The winner
node is then adapted towards the presented goal.

new winner node

winner segment

(a) winner segment

candidate point

candidate point

(b) candidate points

new winner node

(c) winner node

Figure 5: A principle of the proposed winner selection rule.

The above described procedure can be effectively used
for problems without obstacles, but determination of the
closest segment to a point in W is more complex. That
is why the following approximation is used. A regular
winner node candidate is found using the approximation
of the shortest path from a node to the goal. Then, two
paths connecting the winner with its neighbouring nodes
are determined as approximate paths between two points
in W. For each of the paths, the closest segment point
to the goal is determined using the Euclidean distance.
These two points become candidates to be a winner of
the current selection, see Fig. 5b. Due to obstacles, the
candidate points can be farther than the winner candidate.
Therefore a path from each candidate point to the goal
is determined. If the length of the path for one of the
points is shorter than the winner candidate distance to
the goal, the corresponding point is used to create a new
node. If it is not the case a new node is created if the
winner node candidate is inhibited. The newly created
node is the winner, otherwise the winner node candidate
becomes the winner.

New nodes are created during the selection of winners,
which can increase the computational burden. To remove
unnecessary nodes a deletion mechanism is based on mov-
ing activity of nodes. The nodes that are not moved
(adapted) in the last s adaptation steps are removed from
the ring.

4.3. Adaptation

A winner node and its neighbouring nodes are moved to-
wards the goal in the adapt procedure. A node ν is moved
along the approximation of the shortest path S(ν, g) to the
goal g by a distance β|S(ν, g)|, where β = µf(σ, l). The
value of f(σ, l) decreases with increasing distance of the
node from the winner (in the number of nodes) and the
number of adaptation steps, as σ is decreased. In final
adaptation steps, the value of β is very small, and the
movement can be negligible. Considering this observation
the neighbouring nodes of the winner node are moved to-
wards the goal only if β > 10−5. This adaptation rule is
denoted as β − condition in this paper.

Performed experiments show that this modification does
not decrease the solution quality and increases speed of the
algorithm two times for problems with about five hundreds
goals. Even though a distance from a node to the goal is
determined in the select winner procedure, the movement
of the node is more computationally demanding. A path
as a sequence of W vertices is not needed in the distance
query, but it is required for the node movement, where a
new node position at the path is determined. Therefore,
the path is found in the adapt procedure before the node
adaptation.

4.4. Adaptation Parameters

Authors of [28] proposed adaptation rules that are de-
rived from the number of performed adaptation steps,
which dramatically decrease the required number of adap-
tation steps to find a stable solution. However, for prob-
lems in W and with combination of the select winner
procedure described in Section 4.2 better solutions are
achieved with a slower decreasing σ. Also the solution
quality is increased for a fixed value of the learning rate µ.
The algorithm performance is also affected by the size of
the winner node neighbourhood denoted as δ in this pa-
per. Due to the used node creation/deletion mechanism,
the number of nodes varies in each adaptation step. Rules
that derive δ from the number of nodes can lead to a large
winner’s neighbourhood, and the proposed decreasing δ
in [28] is not effective. So, the maximal value of δ is re-
stricted to δm = 2n/8, which corresponds to m = 2n initial
nodes and the neighbouring factor f = 8.

A summary of the used adaptation parameters is
as follows. The initial values of the parameters are:
σ=10, µ=0.6, m=2n, f=8, δ=m/f , α=0.1, s=8.
Values of δ and σ are changed (in the procedure
update adaptation parameters) after each complete
presentation of goals as follows:

• σ ← σ(1− 0.001k) - decrease the learning gain,

• d← 0.99k min{m/f, 2n/f},

where m is the actual number of the nodes and k the actual
number of the performed adaptation steps.
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4.5. Termination Condition

The initial value of the learning gain σ is independent to
the problem size. Therefore, instead of a maximal number
of adaptation steps the adaptation procedure can be ter-
minated if σ is below given threshold σmin. The selected
value is σmin = 10−4, for which the value of the neigh-
bouring function is small, and the neighbouring nodes are
practically not moved. This termination condition is more
intuitive and problem size independent contrary to the
used maximal number of steps for the SME schema. Even
though the adaptation is terminated before error is below
the selected ε, the inhibition mechanism guarantees that
all goals have associated distinct nodes. So, the final in-
spection tour over the goals is retrieved by traversing the
ring.

4.6. Discussion

A collection of the presented adaptation rules provides
new adaptation schema in which the number of nodes is
not explicitly restricted, which is one of the benefit over
the SME adaptation schema. Here, it should be mentioned
that the particular rule (modification) can be used in other
SOM approaches, e.g., the proposed β − condition. The
rules can decrease the computational burden; however,
they do not necessary improve the solution quality. During
the evaluation of the rules, it has been observed that the
proposed hull initialization does not improve solutions if
the SME adaptation parameters are used. Moreover, the
SME schema seems to be insensitive to the initial values
of neurons weights. The evaluation has been performed in
a set of 21 inspection problems that represent instances of
the non-Euclidean TSP. After this evaluation, the param-
eters presented in Section 4.4 have been selected.

5. Adaptation Schema for the Inspection Planning
with Continuous Sensing

The adaptation schema proposed in Section 4 has been
applied to the algorithm for the d-WRP [15] briefly de-
scribed in Section 3.5. The proposed schema has to be
modified, because the solution of the d-WRP is represented
by the ring of nodes itself, i.e. a sequence of straight line
segments connecting the nodes. This aspect is considered
in the following schema adjustments.

5.1. Initialization

Triangles, or more concretely their centroids, of the sup-
porting triangular mesh are used as goals presented to the
network. The nodes can be very close to the border poly-
gon of W if a convex hull of the all centroids is used for
the initial construction of the ring. It is because small tri-
angles are typically located at corners. In addition, once
a part of W is covered by some nodes, a winner is not
selected to the particular goal, and the nodes lying in the
part are moved only as neighbourhoods of another winner

node. Such initially placed nodes can lead to an unnec-
essary long inspection path. To avoid such initialization
only selected triangles are considered for the convex hull
construction. The selection is based on an idea that if a
ring starts from parts that are visible from large portion
of W, then nodes will be attracted to other locations, and
the parts will be covered by the segments connecting two
neighbouring nodes.

(a) (b) (c)

Figure 6: An example of nodes initialization; (a) visual-
ization of the triangle coverage, the highest coverage is in
red (light), while the triangles that are incident with the
smallest number of convex polygons are in blue (dark);
(b) selected triangles (centroids) with highest coverage;
(c) initial ring created from the convex hull of the selected
triangles.

First, for each triangle an area visible from the trian-
gle is determined from the associated convex polygons of
the cover set. The area is the sum of the areas of all tri-
angles associated to the polygons. A visualization of the
triangles visible areas is shown in Fig. 6a. Centroids of
triangles with the largest visible area are selected for the
convex hull construction, see Fig. 6b. Let the visible area
of the ith triangle be ai, and amax be the largest visible
area. All triangles with ai ≥ amax − at are selected. Af-
ter the selection, a convex hull of the triangles’ centroids
is created, and the centroids at the hull border are con-
nected by the approximate shortest paths. Then, nodes
are placed at the paths like in Section 4.1, see Fig. 6c.

The threshold value at can be set individually for a par-
ticular problem, as the triangular mesh provides only ap-
proximation of the coverage. However, the median of the
visible areas provided the best results in the experimen-
tal evaluation. The initial number of nodes m is set to
m = 0.1n, where n is the number of centroids (triangles),
because n is typically much higher than the number of
sensing locations in the discrete inspection planning.

5.2. Three Phases Adaptation

The WRP algorithm tries to cover all triangles, and the
adaptation is terminated if all triangles are covered. The
adaptation procedure avoids selection of winner nodes for
triangles that are already covered by nodes, or are covered
from a path connecting the nodes. This is an important
distinction in comparison to the multi-goal path planning.
Also nodes deletion can decrease the ring coverage, and
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(a) adaptation step 4 (b) adaptation step 13 (c) adaptation step 20 (d) adaptation step 25

(e) adaptation step 30 (f) adaptation step 35 (g) adaptation step 43 (h) final solution, step 55

Figure 7: An example of ring evolution and its coverage in the WRP, environment jh and visibility range 5 m

in a consequence it can lead to a convergence issue. In
final adaptation steps, σ becomes low, and if some nodes
are deleted the network does not effectively adapt to cover
all triangles, because the adaptation is terminated due to
σmin. Therefore the deletion rule cannot be simply used
during the whole adaptation.

The following three phases adaptation is proposed to
increase coverage of the final solution:

1. the creation/deletion rule described in Section 4.2 is
used until 85% of triangles are covered, then

2. the creation rule is used without the deletion until
95% coverage is reached.

3. The only winner node is selected without node cre-
ation in the final adaptation steps.

In the first phase, the ring is spread around the environ-
ment to cover most of the space while only the active nodes
are preserved. The second phase is typically active only
for several adaptation steps in which the number of nodes
is increased. To decrease the computational burden, the
number of neighbouring nodes δ is not increased in the
second phase. The value of δ is computed as δI = mI/f ,
where mI is the number of nodes in the last step of the first
phase after the deletion. Nevertheless, δ is regularly de-
creased after each adaptation step by the rule δ = 0.99kδI .
The newly created nodes in the second phase support local
searching that is finalized in the third stage.

An example of the ring evolution and the ring coverage is
depicted in Fig. 7. Notice that the space is almost covered
in the step 43; however, additional 12 steps are needed to
achieve the full coverage. The advantage of the proposed
adaptation rules is that these steps are performed very
quickly, because the network adapts only to the uncovered
triangles.

6. Experiments

The proposed SOM adaptation schema has been eval-
uated in a set of inspection planning problems for two
types of sensing. The discrete sensing is considered as the
multi-goal path planning problem formulated as the TSP,
and the d-WRP formulation is used for the continuous
sensing. The proposed algorithms are compared with the
SME adaptation schema, in particular the schema is used
in the TSP algorithm [32] and the d-WRP algorithm [15].
However, the Euclidean pre-selection (Section 3.4) and the
β−condition (Section 4.3) are considered in the algorithms
to decrease the computational burden without noticeble
changes to the solution quality. Besides, the reference so-
lutions of the examined problems are found as solutions
of the decoupled approach using the concorde solver, see
Section 3.1. The full path refinement of the approximate
shortest path inW is used in all algorithms; the node-goal
paths are used for the TSP while approximate shortest
paths between two points are used for the d-WRP.
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The SOM algorithms are randomized, and therefore,
twenty solutions are found for each problem and partic-
ular algorithm. The quality of solution is measured as the
percent deviation to the reference path length of the mean
solution value, PDM = (L − Lref )/Lref · 100%, and as
the percent deviation from the reference of the best solu-
tion value (PDB), where Lref is the length of the reference
path. Besides, sL% is denoted to the percent sample vari-
ance of the path length to the mean solution value.

All algorithms have been implemented in C++ and com-
piled by the G++ 4.2 with the -O2 optimization flag. All
results have been obtained within the same computational
environment using single core of the Athlon X2 5050e CPU
at 2.6 GHz and 2 GB RAM running FreeBSD 8.1. Thus,
all presented required computational times can be directly
compared.

The proposed adaptation schema has been studied in a
set of multi-goal path planning problems, the experimen-
tal results for the final found parameters are presented in
the next subsection. Then, the parameters found in the
evaluation of the multi-goal path planning have been used
in the experimental evaluation of the inspection planning
problems for various visibility ranges. The results are pre-
sented in Section 6.2.

6.1. Multi-Goal Path Planning - the non-Euclidean TSP

The examined multi-goal path planning problems con-
sist of polygonal maps and a set of goals (sensing loca-
tions). The maps represent real and artificial environ-
ments used for examination of path and motion planning
approaches. The used approximation of the shortest path
depends on the numbers of vertices and convex polygons,
therefore, to provide an overview of maps’ relation to the
algorithm performance, the basic maps properties are de-
picted in Table 1. Moreover, all paths from vertices to
goals are pre-computed for the node–goal path approxi-
mation.

Detailed experimental results of the SME schema and
the proposed adaptation schema are shown in Table 2.
The most time consuming preparation step is computa-
tion of all shortest paths from vertices to all goals, the
time is denoted as Tinit in the table. Construction of the
supporting convex partition, and the visibility graph is
negligible in comparison to the required computation time
of the adaptation Ta. For the largest problem h22 the con-
vex partition is found in 220 milliseconds, and the visibility
graph is found in 150 milliseconds.

The proposed adaptation schema provides solutions
with higher quality than the SME schema. The re-
quired computational times are not significantly different
for small problems, but for larger problems the proposed
algorithm provides better solution in less computational
time. An overview of the algorithms performance as aver-
age values of the solution quality measured by the PDM,
and average values of the required computational time in-
cluding Tinit are shown in Fig. 8 and Fig. 9 as histograms

Table 1: Map Properties

Name
Dimensions Area

v h p
[m × m] [m2]

jari 4.5 × 4.9 20 48 1 14

complex2 20.0 × 20.0 322 40 3 21

m1 4.8 × 4.8 20 51 4 26

m2 4.8 × 4.8 15 51 6 20

map 4.8 × 4.8 14 68 8 36

potholes 20.0 × 20.0 367 153 23 75

rooms 20.0 × 20.0 351 80 0 33

a 8.9 × 14.1 71 99 6 22

dense 21.0 × 21.5 299 288 32 150

m3 4.8 × 4.8 17 308 50 120

warehouse 40.0 × 40.0 1192 142 24 83

jh 20.6 × 23.2 455 196 9 77

pb 133.3 × 104.8 1453 89 3 41

ta 39.6 × 46.8 731 74 2 30

h2 84.9 × 49.7 2816 2062 34 476
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Figure 8: Average values of the solution quality for the
multi-goal path planning problems.

for the number of goals. Examples of found solutions are
depicted in Fig. 10.

Here, it should be noted that for SME schema various
initialization have been considered. Also the number of
nodes has been increased up to m = 3n. However, the
changes of the solution quality are below sL, and only the
computational requirements are increased for higher values
of m. Based on these observations, 2n nodes are initialized
as a small ring around the first goal for the SME algorithm
in the all presented experimental results.
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Table 2: Experimental results for the Multi-Goal Path Planning

Problem n
Lopt Tinit SME Proposed

[m] [s] m PDM PDB sL% Ta [s] m PDM PDB sL% Ta [s]

jari 6 13.6 0.001 12 0.00 0.00 0.00 0.007 6 0.81 0.00 1.38 0.002

complex2 8 58.5 0.003 16 0.00 0.00 0.00 0.014 19 0.00 0.00 0.00 0.005

m1 13 17.1 0.006 26 0.03 0.00 0.09 0.029 17 0.07 0.00 0.14 0.016

m2 14 19.4 0.005 28 7.29 0.00 3.25 0.035 19 9.16 6.02 1.86 0.018

map 17 26.5 0.010 34 2.13 0.00 2.61 0.062 29 3.08 0.00 2.15 0.029

potholes 17 88.5 0.046 34 0.83 0.00 0.85 0.074 31 0.75 0.00 1.66 0.034

a 22 52.7 0.022 44 0.11 0.00 0.25 0.118 36 0.04 0.00 0.15 0.047

rooms 22 165.9 0.016 44 0.83 0.11 0.70 0.141 25 1.36 0.17 0.79 0.058

dense4 53 179.1 0.198 106 13.76 5.85 3.77 1.092 188 8.85 4.85 2.02 0.299

potholes2 68 154.5 0.092 136 5.61 2.75 1.20 1.461 154 4.43 2.37 1.13 0.424

m31 71 39.0 0.245 142 7.06 4.34 1.21 3.327 396 5.82 4.51 1.11 0.456

warehouse4 79 369.2 0.074 158 6.27 2.20 2.39 2.091 233 4.57 2.28 1.27 0.534

jh2 80 201.9 0.116 160 1.63 0.35 0.67 2.122 228 1.48 0.43 0.71 0.534

pb4 104 654.6 0.043 208 0.64 0.05 0.28 2.846 443 0.10 0.00 0.11 0.578

ta2 141 328.0 0.070 282 3.04 2.11 0.49 5.154 421 3.21 2.14 0.65 0.918

h25 168 943.0 3.413 336 2.06 1.19 0.52 28.972 263 1.95 1.03 0.63 2.999

potholes1 282 277.3 0.498 564 6.07 4.75 0.65 28.475 814 5.25 3.82 0.73 2.563

jh1 356 363.7 0.644 712 3.87 2.84 0.36 49.823 1 066 3.90 2.76 0.69 3.410

pb1.5 415 839.6 0.446 830 2.21 1.21 1.50 50.553 1 436 1.43 0.91 0.24 3.360

h22 568 1 316.2 6.107 1 136 2.69 2.00 0.43 337.014 1 352 2.26 1.61 0.43 9.096

ta1 574 541.1 1.065 1 148 5.59 4.55 0.56 100.442 1 367 5.08 4.35 0.54 4.195
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Figure 9: Average values of the required computational
time for the multi-goal path planning problems.

6.2. Inspection Planning with Restricted Visibility Range

Three maps of real environments1 denoted as jh, ta and
pb are used for discrete and continuous sensing evaluation.

1The maps represent real testing environments of the search and
rescue mission experiments of the IST-2001-FET project number

(a) dense4, L=187.8 m (b) potholes2, L=158.2 m

Figure 10: Examples of the best solutions of the multi-goal
path planning problem found by the proposed adaptation
schema.

The examined visibility ranges are from the set {inf , 10.0,
5.0, 4.0, 3.0, 2.0, 1.5, 1.0} meters, where inf denotes the
unrestricted visibility range. The experimental results of
the proposed algorithms are presented in the following sub-
sections.

38873 - PeLoTe - Building Presence through Localization for Hy-
brid Telematic Systems [34].
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Table 3: Experimental results for the inspection planning with discrete sensing

Map
d

n
Lref Tinit SME Proposed

[m] [m] [s] m PDM PDB sL% Ta [s] m PDM PDB sL% Ta [s]

jh inf 77 193.3 0.12 154 1.55 0.51 0.57 2.0 213 1.04 0.59 0.47 0.6

jh 10.0 78 194.6 0.12 156 2.07 0.94 0.91 2.1 216 1.67 0.51 0.80 0.6

jh 5.0 85 204.3 0.12 170 1.98 0.81 0.67 2.6 254 1.64 0.84 0.61 0.7

jh 4.0 89 207.9 0.14 178 2.32 1.02 0.84 2.8 248 1.55 0.59 0.60 0.7

jh 3.0 100 215.5 0.14 200 2.09 0.96 0.75 3.6 297 2.04 0.42 1.40 0.8

jh 2.0 180 295.5 0.23 360 3.12 2.12 0.48 11.7 445 2.84 1.62 0.70 1.8

jh 1.5 282 359.0 0.44 564 3.47 2.63 0.48 29.1 673 2.78 1.88 0.55 2.7

jh 1.0 563 485.0 1.48 1 126 4.10 3.54 0.34 125.5 1 678 4.19 3.54 0.46 5.7

ta inf 46 215.6 0.03 92 1.74 0.34 1.61 0.6 137 1.17 0.00 1.37 0.2

ta 10.0 47 216.9 0.03 94 2.74 0.66 2.20 0.6 131 1.05 0.11 0.78 0.2

ta 5.0 70 256.8 0.04 140 1.52 0.44 0.83 1.5 210 0.57 0.19 0.34 0.4

ta 4.0 93 291.3 0.06 186 2.19 1.56 0.53 2.6 238 2.79 1.46 1.06 0.6

ta 3.0 138 335.6 0.08 276 1.42 1.00 0.32 6.1 397 1.86 0.98 0.73 1.2

ta 2.0 255 427.0 0.21 510 3.95 3.36 0.37 22.0 707 4.20 2.67 0.52 2.0

ta 1.5 432 538.5 0.64 864 5.56 4.65 0.54 62.0 1 068 5.40 4.65 0.45 3.2

ta 1.0 934 774.3 3.48 1 868 6.24 5.48 0.36 327.1 2 207 5.77 4.61 0.45 8.9

pb inf 50 554.9 0.05 100 3.81 0.10 4.19 0.7 150 2.34 0.00 3.48 0.2

pb 10.0 76 615.9 0.07 152 1.06 0.29 2.11 1.6 235 0.37 0.18 0.09 0.4

pb 5.0 134 687.2 0.11 268 0.68 0.37 0.19 5.0 650 0.15 0.00 0.10 0.9

pb 4.0 165 721.9 0.13 330 2.15 0.78 2.29 7.8 526 0.73 0.42 0.31 1.2

pb 3.0 244 781.6 0.21 488 1.80 0.52 2.12 17.6 732 0.76 0.53 0.15 1.7

pb 2.0 473 919.0 0.68 946 2.54 1.42 2.09 68.3 1 418 1.62 1.33 0.17 3.7

pb 1.5 870 1 158.2 2.30 1 740 2.79 2.41 0.63 241.5 2 581 2.45 1.97 0.26 8.2

pb 1.0 1 845 1 606.6 13.33 3 690 4.15 3.71 0.22 1186.4 4 368 3.78 3.17 0.33 41.4

6.2.1. Inspection Planning with Discrete Sensing

A set of sensing locations is found by the sensor place-
ment algorithm [17] for each polygonal map and the visi-
bility range d. The algorithm has been selected mainly due
to its similarity to the used supporting triangular mesh in
the d-WRP algorithm. The sensing locations are goals in
the multi-goal path planning problem that is solved as the
TSP like in the previous experiments.

Detail experimental results are presented in Table 3.
Notice the higher number of nodes m for the proposed
schema. However, the required computational time is ap-
proximately thirty times lower for the largest problem.
Moreover, the solution quality is better or competitive to
the SME schema.

The results show that the proposed adaptation schema
provides better results in less computational time. Even
though the solution quality improvements are only in units
of percents, the speedup improvements are in tens. The
proposed schema typically finished the adaptation with a
higher number of nodes (about more than 20 %) than the
SME algorithm. The higher number of nodes together
with lower computational requirements indicate that a
lower number of nodes is actually adapted. The proposed

adaptation rules with decreasing σ and δ based on the
number of performed adaptation steps decrease the com-
putational burden. However, the rules also decrease the
solution quality that is “compensated” by the proposed
winner selection method.

The utilized approximate shortest path uses pre-
computed paths from map vertices to the all goals. The re-
quired memory footprint of the algorithm is about 330 MB
for the largest problem pb with d=1 m. A typical value
of the required memory by the program without the pre-
computed paths is about 20 MB, which provides an esti-
mation of the real space requirements of the supporting
structures.

6.2.2. d-WRP - Inspection Planning with Continuous
Sensing

The proposed d-WRP algorithm utilizes a triangular
mesh and a convex cover set build on top of the mesh
triangles. The number of triangles and convex polygons of
the cover set has influence to the algorithm performance.
For each map and a particular visibility range a triangular
mesh has been created individually by the quality mesh
generator triangle [35] for the required minimal angle
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Table 4: Experimental results for the inspection planning with continuous sensing - d-WRP

Map
d Lref SME Proposed

[m] [m] m PDM PDB sL% T [s] m PDM PDB sL% T [s]

jh inf 193.3 87 -48.99 -49.79 1.88 2.33 129 -45.29 -49.58 9.05 0.31

jh 10.0 194.6 87 -48.96 -50.03 3.04 2.36 128 -46.97 -49.65 4.40 0.31

jh 5.0 204.3 87 -46.95 -49.32 3.22 2.59 154 -43.23 -48.33 5.45 0.34

jh 4.0 207.9 174 -40.62 -44.40 2.83 6.25 206 -33.73 -38.65 5.57 0.40

jh 3.0 215.5 186 -24.43 -25.94 1.21 11.02 321 -17.75 -21.95 4.19 1.29

jh 2.0 295.5 381 -13.30 -14.91 1.08 45.27 831 -7.54 -12.20 3.64 6.44

jh 1.5 359.0 682 -6.20 -7.57 0.85 146.43 1 585 -1.75 -5.40 2.90 17.95

jh 1.0 485.0 1 701 0.96 -0.29 0.79 948.87 3 684 2.33 -0.74 2.80 114.40

ta inf 215.6 101 -34.77 -35.23 0.45 0.53 112 -33.27 -34.59 3.45 0.08

ta 10.0 216.9 101 -32.84 -33.11 0.20 0.79 103 -32.03 -33.01 0.66 0.08

ta 5.0 256.8 101 -16.65 -18.64 1.84 2.40 120 -14.86 -17.96 2.73 0.24

ta 4.0 291.3 203 -13.23 -16.96 1.55 7.70 227 -9.81 -13.82 2.61 0.40

ta 3.0 335.6 376 -11.56 -14.14 1.65 26.21 427 -4.78 -9.08 3.05 1.38

ta 2.0 427.0 778 -3.25 -4.63 0.96 132.46 1 263 0.29 -3.31 1.78 9.90

ta 1.5 538.5 1 247 -2.05 -3.98 1.06 408.80 2 419 -1.64 -4.40 1.09 48.29

ta 1.0 774.3 3 522 1.07 0.20 0.74 2 993.48 5 570 -0.13 -1.47 0.68 347.47

pb inf 554.9 240 -22.25 -23.73 3.82 2.87 254 -20.51 -22.49 4.66 0.59

pb 10.0 615.9 240 -13.08 -15.11 2.75 5.26 244 -14.63 -16.69 1.17 0.48

pb 5.0 687.2 240 -7.92 -9.33 1.63 11.55 267 -7.66 -9.31 1.46 1.23

pb 4.0 721.9 481 -5.92 -8.31 3.19 35.91 318 -6.82 -7.87 0.72 2.51

pb 3.0 781.6 616 -6.38 -7.34 0.61 86.75 811 -6.27 -7.02 0.56 10.22

pb 2.0 919.0 1 408 -4.73 -5.37 0.43 503.42 2 145 -5.40 -6.47 0.56 56.10

pb 1.5 1 158.2 2 858 -2.86 -4.24 0.61 2 092.47 4 614 -3.25 -4.06 0.51 282.68

pb 1.0 1 606.6 5 785 -0.08 -0.75 0.40 11 357.65 11 316 -1.40 -2.05 0.44 2 239.71

32.5◦, and 25.0◦ for the map jh, and a selected maximum
triangle area. The area is experimentally set according
to the circumscribed circle of the triangle, which radius is
derived from the restricted visibility range d. Particular
properties of the used meshes are depicted in Table A.5.

In the d-WRP algorithm, path queries are resolved by
the approximation of the shortest path between two points
in W using the convex partition of W. Because of the rel-
atively small number of vertices in the examined maps,
the initialization of the shortest path between map ver-
tices is not computationally demanding like in the TSP
algorithm. Nevertheless, the time is included in the pre-
sented results like in the discrete sensing. Construction
of the triangular mesh, the convex polygon partition, and
the visibility graphs is done in a fraction of second. Also
a convex cover set for the largest problem, regarding the
number of triangles, is found in hundreds of milliseconds.
In comparison to the required computational time of the
adaptation procedure the required times to create the sup-
porting structures are negligible. Moreover, in comparison
to the decoupled approach of the inspection planning the
problem of determining a set of sensing locations can be
more computationally demanding [10].

In the algorithm based on the SME schema, the num-
ber of nodes is set individually according to the number
of triangles of used triangular mesh, see Table A.5 and m
in Table 4. For the proposed adaptation schema, the ini-
tial number of nodes is set to the tenth of the number of
triangles, m = 0.1NT .

Detail experimental results are presented in Table 4.
The proposed adaptation schema provides solution in a
less computational time. However, in several cases, the
found solutions have worse quality than solutions provided
by the SME schema. Regarding the PDB the proposed al-
gorithm provides shorter inspection paths than the refer-
ence solutions in all cases. Also for small visibility ranges
the proposed adaptation schema provides better results
than the SME schema. In all cases, the found solutions
provide full coverage of W, and the convergence issue has
not been observed.

Examples of the best found solutions for the selected
visibility ranges d are presented in Fig. 11. Notice the self-
crossing route in Fig. 11h that is caused due to avoidance
of the winner node selection to the already covered area.
Once the corner is covered, the network does not adapt
to that part. Also, such a crossing can be caused by the
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deletion of inactive nodes, because the shape of the ring
can be significantly changed after removing the nodes, and
self-crossing can suddenly occur.

The memory footprint of the d-WRP algorithm is
smaller than for the multi-goal path planning, because
only the vertex–vertex paths are pre-computed. The re-
quired memory is about 24 MB for the problem pb with
d=1 m.

During the experimental verification of the algorithm,
a sensitivity to the initialization of the nodes has been
observed for the proposed d-WRP algorithm. An initial-
ization as a small ring around a point gives similar re-
sults, however in several cases the found solutions were
worse than the reference solutions in units of percents.
Although the proposed hull initialization provides overall
best results, it can also stick the found route in a local
solution. The reason for that is similar to self-crossings.
Once triangles are covered, the restricted set of the neigh-
bouring nodes does not spread nodes to other parts; thus,
the nodes remain close to their previous positions. In the
presented results, this can be observed for small visibility
ranges in the maps jh and ta, which contain several rooms,
and does not occur in the map pb. Despite this issue, the
found solutions are competitive with the SME schema.

6.3. Comparison of Discrete and Continuous Sensing

An overall comparison of the solution quality for the
discrete and continuous sensing approaches is presented in
Fig. 12 as a histogram of average values for the visibility
distances. Due to shorter paths of the d-WRP solu-
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Figure 12: Average values of the solution quality for the
multi-goal path planning problems.

tions than the reference solutions, the PDM is increased
about 100%, i.e., 100% is the length of the reference path.
The discrete sensing inspection solved as the multi-goal
path planning is denoted to the TSP in the figure. Even
though the histogram bins represent average values over
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Figure 13: Average values of the required computational
time for the multi-goal path planning problems.

all maps and particular selected visibility ranges, the his-
togram shows increasing quality of the d-WRP solution
over the TSP for higher visibility ranges. With regard to
the required computational time, see Fig. 13, the proposed
d-WRP algorithm provides the best results (according to
the PDM) in hundreds of milliseconds for high values of
d. For small visibility ranges, a density of the sensing lo-
cations in the map is high, and d-WRP solutions are only
about units of percents shorter.

6.4. Discussion

Regarding the experimental results the found inspec-
tion paths for the d-WRP are shorter than for the decou-
pled approach with the same visibility range d. However,
it cannot be clearly stated that the continuous sensing is
better than the discrete approach, because the sensing and
motion costs have to be taken into account. Considering
the available d-WRP algorithms and the presented experi-
mental results, it seems that for small visibility ranges the
decoupled approach is appropriate. Moreover, a more so-
phisticated sensor placement algorithm can provide lower
number of sensing locations leading to shorter inspection
paths [10]. For higher visibility ranges, the proposed d-
WRP algorithm may be used for finding a solution of the
sensor placement. Because the found path of the d-WRP
is shorter than for the TSP, it is expected that such a solu-
tion provides overall better solution for both costs (sensing
and motion). The final position of the winner nodes can be
used as primal sensing locations, and to achieve complete
coverage points at the final ring can be selected.

The problem of selection of the smallest set of points
at the watchman route is called Vision Points problem in
computational geometry. A combination of the proposed
d-WRP algorithm and selection of the sensing locations
can provide a suitable mechanism to combine the cost of
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(a) jh, d=10 m, L=98.0 m (b) ta, d=10 m, L=145.3 m (c) pb, d=10 m, L=513.1 m

(d) jh, d=3 m, L=168.2 m (e) ta, d=3 m, L=305.2 m (f) pb, d=3 m, L=726.7 m

(g) jh, d=2 m, L=259.4 m (h) ta, d=2 m, L=412.9 m (i) pb, d=2 m, L=859.5 m

Figure 11: Best found d-WRP solutions by the proposed adaptation schema.

motion with the cost of sensing based on SOM. This prob-
lem is tightly related with the problem of nodes deletion in
the proposed adaptation schema, because nodes that may
not be deleted are eventual candidates to be sensing loca-
tions. Even though the proposed three phases adaptation
provides “good” solutions in less computational time, this

problem needs future investigations that can open new ap-
plication areas of SOM in the field of visibility problems
studied in computational geometry.
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7. Conclusion

New adaptation schema for the inspection planning has
been presented in this paper. The schema uses new win-
ner selection rule that considers a path between two nodes
utilizing a node creation/deletion mechanism. Besides, the
schema comprises particular SOM improvements proposed
by several authors. The schema has been applied to the
discrete and continuous sensing variants of the inspection
planning. Both sensing variants are considered with the re-
stricted visibility range. The discrete variant is the multi-
goal path planning formulated as the non-Euclidean TSP,
and the continuous sensing variant is formulated as the
d-WRP.

The schema has been experimentally verified in a set
of problems representing the non-Euclidean TSP and the
d-WRP. The presented experimental results show that
the proposed adaptation schema is faster than the SME
schema, it provides better solutions for discrete sensing,
and competitive solutions for the d-WRP.

For high visibility ranges, the proposed d-WRP algo-
rithm provides significantly shorter inspection paths in
comparison with the solutions for the discrete sensing.
During the solution of the d-WRP the winner nodes can be
considered as the sensing locations that makes the SOM
algorithm applicable to the inspection planning with com-
bination of the sensing and motion costs. Such a combi-
nation opens future applications of SOM principles to the
similar visibility based routing problems.

8. Nomenclature

W the polygonal domain representing the robot
workspace, W ⊂ R2

v the number of vertices of W
h the number of holes of W
p the number of convex polygons of the convex

partition of W
n the number of goals
d the visibility range

NV the number of trianguar mesh vertices
NT the number of triangles
NC the number of convex polygons of the cover set

of W
ai the visible area from a triangle

g a goal, g ∈ W
ν a node (neuron weights), ν ∈ W
S(ν, g) an approximate path from ν to g

m the number of nodes (neurons)
f the neighbouring factor
δ the size of the winner node neighbourhood
σ the learning gain (neighbouring function vari-

ance)
f(σ, l) the neighbouring function
α the gain-decreasing rate
µ learning rate
s the node moving activity threshold
ε the minimal allowable error
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