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Technická 2, 166 27, Prague 6, Czech Republic

Abstract

Data collection path planning is a problem to determine a cost-efficient path to read the most valuable data from a

given set of sensors. The problem can be formulated as a variant of the combinatorial optimization problems that

are called the price-collecting traveling salesman problem or the orienteering problem in a case of the explicitly

limited travel budget. In these problems, each location is associated with a reward characterizing the importance of

the data from the particular sensor location. The used simplifying assumption is to consider the measurements at

particular locations independent, which may be valid, e.g., for very distant locations. However, measurements taken

from spatially close locations can be correlated, and data collected from one location may also include information

about the nearby locations. Then, the particular importance of the data depends on the currently selected sensors

to be visited by the data collection path, and the travel cost can be saved by avoiding visitation of the locations that

do not provide added value to the collected data. This is a computationally challenging problem because of mutual

dependency on the cost of data collection path and the possibly collected rewards along such a path. A novel

solution based on unsupervised learning method called the Growing Self-Organizing Array (GSOA) is proposed to

address computational challenges of these problems and provide a solution in tens of milliseconds using conventional

computational resources. Moreover, the employed GSOA-based approach allows to exploit capability to retrieve

data by wireless communication or remote sensing, and thus further save the travel cost.
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1. Introduction

Autonomous data collection is a problem studied in robotics in which one or several robotic vehicles are requested

to collect the most valuable sensor measurements from a given set of sensors in a cost-efficient way or even with

an explicitly limited travel budget. The problem is motivated by several practical scenarios such as data retrieving

from pre-deployed sensor networks [1] to study ocean floor [2, 3], monitoring algae blooms [4], volcanic activity [5, 6],

and pollution monitoring [7] or environment monitoring missions [8]. The problem is to determine a cost-efficient

path to visit a set of sensor locations that can be formulated as the combinatorial Traveling Salesman Problem

(TSP) [9], which is known to be NP-hard unless P=NP [10].

Data from a sensor can be remotely retrieved using wireless communication [11], and thus a precise visitation

of the sensor locations can be avoided to save the travel cost. Such an extension of the TSP is called the TSP

with Neighborhoods (TSPN) or with explicitly specified disk-shaped neighborhoods for a symmetric communication

range δ as the Close Enough TSP (CETSP) [12], e.g., used in forest fire detection in [13]. Since for δ = 0 the

problem becomes the TSP, also the TSPN is NP-hard.
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Solving the TSPN (or CETSP) optimally is computationally very demanding, e.g., using Mixed Integer Non-

linear Programming [14], and thus heuristic approaches [15, 16] and evolutionary techniques have been proposed [17]

including unsupervised learning approaches [18, 19]. Besides, the CETSP can be addressed by an explicit sampling

of the possible locations within the particular disk-shaped neighborhood around each sensor location, and the

problem can be solved as the Generalized TSP (GTSP) [20] using heuristic approaches [21, 22]. The main drawback

of this sampling-based approach is that the size of the problem is quickly increasing for a simple sampling strategy

and a solution of such a transformed problem is computationally demanding [23].

In addition to the challenges related to the remote sensing or data retrieving within the δ range [24], another

important part of data collection planning is the fact that the quality of data retrieved from each sensor can be

characterized as expected information received. Therefore, it may be suitable to avoid visitation of sensors that

provide less important data in a benefit of reducing the travel cost or collecting more rewarding data from a distant

location. This aspect can be considered in formulation of the data collection planning as the Prize-Collecting

TSP (PCTSP) [25], i.e., extended to the PCTSP with Neighborhoods (PCTSPN) [26], or the Orienteering Problem

(OP) [27, 28] that has been relatively recently generalized into the OP with Neighborhoods (OPN) [29, 30, 31].

In the PCTSP, each sensor has associated a penalty if data from the sensor are not collected and the problem

is to determine a path such that the sum of the path length and sum of the penalties for not visiting sensors is

minimal. For the OP, each sensor has associated reward for the retrieved data from it, but the main difference

is that the length of the data collection path maximizing the sum of the collected rewards has not to exceed the

given travel budget Tmax [27].

Both the PCTSPN and OPN formulations can be utilized for planning a data collection path to retrieve data

from the most rewarding sensors; however, in most of the existing approaches (further described in Section 2), the

measurements are considered independent, and thus also the rewards associated to the sensors are fixed, i.e., the

reward (penalty) value of the particular sensor does not depend on the collected data from other sensors. Although

such an assumption may hold for many practical cases, there are also problems where the collected data are used

for modeling and predicting large-scale and spatially correlated environment phenomena [32]. In such a case, the

solution becomes more challenging as the reward values depend on the currently selected sensors to be visited by

the data collection path.

In this paper, the data collection planning with spatially correlated measurements is addressed. The proposed

solution originates from the previous successful deployment of unsupervised learning methods in the solution

of the PCTSPN [33], OPN [31], and early results on the PCTSPN with spatial correlations reported in [34].

However, a novel unsupervised learning procedure for routing problems called the Growing Self-Organizing Array

(GSOA) [19] is employed in the presented approach to solving the close enough variants of the PCTSP and OP with

spatially correlated measurements. Since the presented work originates in the previous approaches, the particular

contributions are considered as follows:

• Generalization of the GSOA for the CETSP [19] to the solution of the Close Enough PCTSP (CEPCTSP)

• and its further extension to the problems with spatially correlated measurements.

• Novel GSOA-based solution of the Close Enough Orienteering Problem (CEOP)

• with comparison to the previous unsupervised learning based approaches;

• and its application to problems with spatially correlated measurements.

2



Beside of that, the herein proposed approach is the first deployment of the GSOA [19] in the solution of the

orienteering problems. Specifically, the proposed GSOA-based solver provides competitive solutions to the previous

unsupervised learning based approaches to the OP, it improves the solution quality in the CEOP, and it is also

capable to exploit spatial correlation of the measurements. Thus, the presented GSOA approach provides solution

of the whole class of the data collection planning problems including CETSP, CEPCTSP, OP, and CEOP all with

spatially correlated measurements.

The remainder of the paper is organized as follows. An overview of the related work on the PCTSP, OP,

and also correlated measurements is presented in the following section. Formulations of the addressed problems

together with the model of the spatial correlations are in Section 3. The proposed GSOA-based solutions of the

Close Enough PCTSP and OP are presented in Section 4 and results on their evaluations and comparisons with

existing approaches are reported in Section 5. Finally, Section 6 is dedicated to the concluding remarks.

2. Related Work

Two main problem formulations can be found in the literature to solve data collection path planning, the Prize-

Collecting TSP (PCTSP) [25] and the Orienteering Problem (OP) [27]. Both problem formulations can be extended

to their variants with the neighborhoods and also spatial correlations. An overview of the existing approaches is

presented in this section to provide a context and emphasize the main challenges.

Existing approaches for the PCTSP include approximate algorithms [35, 36] and unsupervised learning tech-

nique [37]. The PCTSPN extends the problem to determine the particular locations where the data are retrieved

from the sensors, which allows exploiting retrieving data remotely from the sensors. Authors of [26] address the

PCTSPN by a decoupled approach that combines heuristics to determine locations inside the respective neigh-

borhood of the sensors and a solution of the standard TSP to find the path connecting the locations. A unifying

approach based on unsupervised learning has been presented in [33] which directly addresses the continuous space

of the neighborhood of each sensor. Despite the approach [33] does not utilize the explicit sampling of the neigh-

borhood into a pre-specified discrete set as [26], it is less computationally demanding, and it provides significantly

better solutions.

Even though the PCTSPN can be used for planning data collection paths, the main drawback of this formulation

is the question how to balance the trade-off between the path length and the sum of penalties for not visited sensors.

There is a single objective function in the PCTSP formulation in which the total solution cost is the sum of the

travel cost (the path length) and the penalties for not visited sensors, e.g., see Problem 3.1. If the balance is not

easy to setup, it may be more suitable to formulate the data collection planning problem as the OP or as the OPN

to exploit a non-zero communication range δ.

Many approaches and variants of the OP have been proposed in the literature [38, 28]. On the other hand,

an explicit solution of the OPN has been introduced relatively recently and the first such a solution is based on

the unsupervised learning techniques [29, 30, 31, 39]. Besides, the Variable Neighborhood Search (VNS) meta-

heuristic [40] can be utilized for sampled neighborhoods into discrete sets, but such a solution is computationally

very demanding.

Probably the first approach directly addressing the spatially correlated measurements in data collection planning

has been proposed in [41]. The authors formulate the data collection planning problem on a discrete graph, where

rewards are associated with the nodes of the graph and the rewards may be related to the neighborhood nodes.
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The problem is called the Correlated Orienteering Problem (COP), and the proposed solution is based on Mixed

Integer Quadratic Programming (MIQP). The reported results are for graphs formed as a grid with up to 12×12

nodes for which solutions are found in tens or hundreds of seconds using Intel Core-i7 5820 CPU [41].

Another recent approach addressing the data collection planning with spatially correlated measurements is

based on unsupervised learning technique previously employed in the solution of the PCTSPN [34]. The authors

exploit low computationally requirements of [33] and update the reward values during the learning. The influence

of visiting one location to the rewards (penalties) of the neighboring locations are considered in a continuous space,

contrary to the discrete model of [41]. The rewards (penalties) are updated based on the idea that measurements

from one or several locations may also include information about the measurements at the nearby locations.

In [34], it is assumed that the influence of spatial correlations is decreasing with the distance of the sensor

locations and from a specific distance, the measurements are not correlated at all. The spatial correlation is

therefore formulated as a distance based model of correlation between the sensor measurements. The actual value

of the reward is determined online from the default value of the reward r (without the influence of the other sensors)

proportionally decreased by the ratio computed from the geometrical relations of the neighboring sensors using the

so-called correlation radius χ and reward (penalty) radius ξ of the involved sensors.

Performance of the method proposed in [34] is demonstrated in the same PCTSPN scenario as in [33], fur-

ther denoted as the OOI, and the reported computational requirements are in tens of milliseconds using similar

computational resources as in [41] but with utilizing only a single core of the CPU. The solution cost is a bit im-

proved if spatial correlations are considered in comparison to the previous approach [33]; however, with increasing

communication range δ, such a benefit is less noticeable.

The MIQP-based approach [41] is formulated on a discrete graph where the travel cost from one location to

another location is a weight of the particular edge. On the other hand, the unsupervised learning method [34] is

considered in the continuous space which provides an advantage of determining suitable locations for collecting

the rewards during the solution of the problem; and the travel cost is directly computed as the Euclidean distance

between two respective locations. However, the unsupervised learning can be deployed on a graph [42] and the

Euclidean distance can be replaced by point-to-point path planning using a motion planning roadmap [43] at the

cost of more complex and more demanding algorithm. Besides, an artificial potential field has been used as a

navigation function in [44], and therefore, similar approaches such as [45] can be eventually utilized.

Here, it is worth mentioning that the learning techniques employed in [33] and [31] have been consolidated and

conceptually simplified into unifying unsupervised learning based approach for solving routing problems in [19].

The novel method is called the Growing Self-Organizing Array (GSOA). Even though the GSOA originates from

the SOM-based approaches for the TSP, one of its main advantages is that it directly supports the selection of

the most rewarding sensors in the data collection planning problems with an adjustment of the number of learning

nodes, contrary to SOM-based approaches that require a fixed number of neurons defined prior the learning, e.g.,

see [46, 47, 48]. Besides, it does not need explicit parameter tuning.

In [19], the GSOA is evaluated and compared with other state-of-the-art SOM-based solvers for the regular

TSP in representative benchmarks of the TSPLIB [49], where it provides the best trade-off between the solution

quality and the required computational time. Moreover, the GSOA has also been evaluated and compared in the

solution of the CETSP instances where it provides competitive or better results than the heuristic approaches, but

it is about three orders of magnitude faster than a heuristic based on a solution of the related GTSP [19]. Another
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advantage of the GSOA is its flexibility to solve CETSP instances with individual communication radius per each

sensor, and thus it supports local properties of the sensors surroundings and communication capabilities of each

sensor.

Based on the overview of the existing approaches and results reported therein, the GSOA is considered as the

promising approach to address data collection planning with spatially correlated measurements in a new unifying

way. Further, motivated by the evaluation presented in [19], the PCTSPN and OPN are rather called the Close

Enough PCTSP (CEPCTSP) and Close Enough OP (CEOP) to emphasize the disk-shaped neighborhoods of the

sensors. Therefore, the GSOA is applied in the solution of the CEPCTSP and CEOP with spatially correlated

measurements using the geometrical model of the spatial correlations proposed in [34]. The particular formulations

of the problems addressed in this paper are presented in the following section.

3. Problem Statement and Formulations

The data collection planning addressed in this paper is formulated as two problems that can be found in the liter-

ature, the Prize-Collecting Traveling Salesman Problem (PCTSP) and Orienteering Problem (OP) both considered

in their close enough variants to exploit capability to retrieve data from the sensors within the communication range

δ, and thus save the travel cost. Besides, both problems are considered with spatially correlated measurements

that may influence the associated rewards (penalties) to the sensors if data from the nearby sensors are retrieved

along the data collection path being found. The problems are formally introduced in the following paragraphs, but

the model of spatial correlation is addressed separately (in Section 3.1) to make the problem definitions clear and

readable as it only changes the way how the rewards are computed.

Both the problem formulations share the description of the data collection mission that consists of the set of

n sensors S located in a plane, S ⊂ R2. The position of each sensor si is known and for simplicity and with

a slightly overloaded notation, the sensor location is denoted si and S = {s1, . . . , sn}, i.e., si ∈ R2. The data

collection vehicles are operating in R2 with a constant average velocity. The travel cost c(p1,p2) between p1 ∈ R2

and p2 ∈ R2 can be directly computed from the Euclidean distance between p1 and p2 and it is assumed w.l.o.g.

c(p1,p2) = ‖(p1,p2)‖.

In the original formulation of the PCTSP [25], it is considered that each sensor si has associated penalty

ζ(si) ≥ 0, while rewards r(si) ≥ 0 are considered in the OP [27]. The herein presented formulation of the PCTSP

is slightly modified to unify the symbols and notation of the PCTSP and the OP. The penalties ζ(si) are considered

as the rewards r(si), but since the sum of penalties is combined with the travel cost in the PCTSP, it is necessary to

scale the reward value to the penalty and ζ(si) = λr(si) and w.l.o.g., λ = 1 is considered to simplify the notation.

In the rest of the paper, ri is used instead of r(si) whenever it is clear the reward is associated with the i-th sensor

si.

In planning a data collection path, we are searching for a subset of k sensors Sk ⊆ S from which the most

rewarding data are collected along the cost-efficient path. Therefore, the data collection path can be specified

by a permutation Σk defining the order of visits to the sensors Sk, and Σk is a permutation of the sensor labels

Σk = (σ1, . . . , σk), where 1 ≤ σi ≤ n and σi 6= σj for i 6= j.

Having these preliminaries and not considering the communication range, i.e., δ = 0, the PCTSP can be

formulated as Problem 3.1. W.l.o.g. the vehicle starting location is considered to be the sensor location s1, i.e.,

σ1 = 1, and it is always selected to be in Sk.
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Problem 3.1 (PCTSP – Prize-Collecting TSP).

min 1≤k≤n,Sk⊆S,Σk C(Sk,Σk) (1)

C(Sk,Σk) =

k−1∑
i=1

∥∥(sσi , sσi+1
)
∥∥ (2)

+ ‖(sσk , sσ1
)‖ (3)

λ
∑

sj∈S\Sk

r(sj) (4)

s.t. 1 ≤ k ≤ n; 1 ≤ σi ≤ n; σi ∈ Σk

sσi ∈ Sk; sσ1
= s1; s1 ∈ Sk

The term (3) is because the PCTSP follows the TSP where the requested path has to be closed, and the term (4)

represents the sum of penalties for not visited sensors.

For the Close Enough PCTSP (CEPCTSP), it is allowed to retrieve data from si within the range δi. Therefore,

the problem is not only to determine the subset Sk of k sensors and the order of visits Σk to minimize the cost

function C(Sk,Σk), but also the most suitable waypoint locations P = {pσ1
, . . . ,pσk}, pi ∈ R2 are requested to be

found such that ‖(pi, si)‖ ≤ δi. Hence, the CEPCTSP is not a purely combinatorial problem as the PCTSP, and it

includes a continuous optimization part as the particular waypoint can be arbitrarily selected within the distance

δi from the respective sensor location si.

Problem 3.2 (CEPCTSP – Close Enough PCTSP).

min 1≤k≤n,Sk⊆S,Σk,Pk⊂R2 C(Sk,Σk,Pk) (5)

C(Sk,Σk,Pk) =

k−1∑
i=1

∥∥∥(pσi ,pσi+1
)
∥∥∥ (6)

+
∥∥(pσk ,pσ1

)
∥∥ (7)

λ
∑

sj∈S\Sk

r(sj)

s.t. 1 ≤ k ≤ n; 1 ≤ σi ≤ n; σi ∈ Σk

sσi ∈ Sk; sσ1
= s1; s1 ∈ Sk

pσi ∈ Pk;
∥∥(pσi , sσi)

∥∥ ≤ δi
Notice, we assume the initial location of the vehicle is s1, and therefore, it may be suitable to set δ1 = 0. The

communication radius can be individual per each sensor; however, a single δ is used in the rest of the paper

whenever the radii are considered the same to simplify the notation.

The OP is similar to the PCTSP in selecting the most rewarding sensors, but it differs in explicitly prescribed

travel budget and maximizing the total collected rewards. Besides, the original formulation [27] specifies the initial

and final locations of the data collection vehicle which are w.l.o.g. defined as s1 and sn, both with the zero rewards
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r1 = rn = 0. The OP is combinatorial optimization problem to select k sensors Sk ⊆ S with the maximal sum of

the rewards such that the length of the path connecting them (that starts at s1 and terminates at sn) does not

exceed the travel budget Tmax. Thus, at least two sensors are selected1 in Sk, i.e., k ≥ 2 and σ1 = 1 and σk = n.

The OP is formally defined as Problem 3.3.

Problem 3.3 (OP – Orienteering Problem).

maxk,Sk⊆S,Σk R(Sk,Σk) =

k∑
i=1

r(sσi) (8)

s.t.

k−1∑
i=1

∥∥(sσi , sσi+1
)
∥∥ ≤ Tmax (9)

Σk = (σ1, . . . , σk); 2 ≤ k ≤ n

1 ≤ σi ≤ n; σ1 = 1; σk = n

sσi ∈ Sk; sσ1
= s1, sσk = sn

Similarly to the CEPCTSP, the waypoints Pk at which data from the selected sensors are retrieved are deter-

mined in the Close Enough OP (CEOP), where we consider δ1 = δn = 0 as it is requested to start and finish the

mission exactly at the locations s1 and sn, respectively, and thus p1 = s1 and pk = sn. The CEOP is formally

defined as Problem 3.4.

Problem 3.4 (CEOP – Close Enough OP).

maxk,Sk⊆S,Σk,Pk R(Sk,Σk,Pk) =

k∑
i=1

r(sσi) (10)

s.t.

k−1∑
i=1

∥∥∥(pσi ,pσi+1
)
∥∥∥ ≤ Tmax (11)

Σk = (σ1, . . . , σk); 2 ≤ k ≤ n

1 ≤ σi ≤ n; σ1 = 1; σk = n

sσi ∈ Sk; sσ1
= s1, sσk = sn∥∥(pσi , sσi)

∥∥ ≤ δσi ; p1 = s1; pk = sn

3.1. Model of Spatially Correlated Sensor Measurements

A distance-based model of the spatially correlated measurements has been presented in [30]; however, it is

briefly described here to make the paper self-contained. The main idea of the model is that the value of the reward

(penalty) characterizing the possible information gain of the collected data from a particular sensor si depends on

how much data from the nearby sensors are collected. Thus, including a particular sensor in the selected subset

Sk may decrease rewards of the nearby sensors from S \ Sk.

In general, data are collected to study some spatial or even spatiotemporal phenomena that can be modeled as

a time-varying scalar field, Ψ(p, t), p ∈ R2 [41]. Having the sampled data at the sensor locations S, the problem

is to create a model of the field from the collected values Ψ(si, t) at the particular sensor locations si ∈ S. In [41],

1It is assumed the travel budget Tmax is at least Tmax ≥ ‖(s1, sn)‖ otherwise a feasible solution does not exist.

7



the authors model the spatial relations in a graph G(V,E) where V denotes the sensors and G(V,E) has an edge

(vi, vj) if and only if Ψ(vj , t) is dependent on Ψ(vi, t), i.e., measurements at corresponding sensor locations sj and

si, respectively. Ψ(vi, t) can have a form

Ψ(vi, t) = fi(Ψ(vi1 , t), . . . ,Ψ(vil , t)), (12)

where Ni = {vi1 , . . . , vil} are the neighboring sensors of vi in the graph G(V,E).

Having a subset of the selected sensors Sk with the corresponding subset Vk ⊆ V , the quality of the field model

created from the collected data Ψ(vi, t) for vi ∈ Vk can be computed as the reward function J : {Sk} → R+ ∪ {0}

that maps data from the sensors Sk to real values [41]. The contribution of measurements from a sensor si can be

then expressed as

JSk(si) = J(Sk ∪ {si})− J(Sk). (13)

Using (13), we can compute the default reward r(si) considering Sk = ∅. Then, during the solution of the PCTSP

or OP, the reward value of the sensors not included in the currently selected Sk can be updated, i.e., r(si) = JSk(si).

Despite the fact that the formulas (12) and (13) provide a general way how to compute the rewards, its particular

evaluation depends on the phenomena studied from the collected measurements. Therefore the distance-based

model of the spatial correlations has been proposed in [34] to evaluate benefits of considering spatial correlations

in the solution of the PCTSP in a phenomenon independent way. In this paper, we follow this model which is

summarized in the rest of this section.

χ(sj )

ξ(si )

sj

Part of ξ(si ) 
covered by
χ(sj ) and χ(sj+1)

Correlation
radii/circles

Reward 
radius/circle

si

sj+1

χ(sj+1 )

Figure 1: Geometrical relations of the correlation and penalty radii in the utilized distance-based model of the spatial correlations

proposed in [34]. The default reward of the sensor si is decreased proportionally to the covered part (shown in red) of the circle with

the reward radius ξ(si) centered at si that is within the influence of the sensor locations sj , sj+1 ∈ Sk. The influence of the particular

sensor sj to the reward of the data collected from si is computed as a part of the circle with the reward radius ξ(si) that is inside the

circle with the correlation radius χ(sj) centered at sj . Such a covered part of the reward circle of the sensor si is computed for all the

sensors in Sk and the expected information gain provided by the sensor measurements at si is decreased according to the ratio of the

not covered portion of the reward circle ξ(si) to the length of the complete circumference of the circle ξ(si).

Each sensor location si ∈ S is associated with the default reward r(si) and two radii defining two circles centered

at si that are called the correlation radius χ(si) and reward radius ξ(si) (formerly the penalty radius in [34]). The

circles are further referred as the correlation circle and reward circle with the particular radii χ(si) and ξ(si),

respectively. The geometrical relations of the radii are depicted in Fig. 1, where the default reward r(si) of the

sensor si /∈ Sk is decreased according to the influence of the data collected from the sensors sj , sj+1 ∈ Sk. The
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influence is computed as the union of the covered parts of the reward circle of si by the correlation circles of the

sensors sj and sj+1.

Let the total circumference of the reward circle with the radius ξ(si) be circ(ξ(si)), the selected sensors be

Sk, the neighboring sensors of the sensor si /∈ Sk in the graph G(V,E) be Ni, and the default reward of si be

r(si). The reward of si can be decreased because of correlation with the data provided by the sensors Ni that are

collected by the current data collection path. The updated value of r(si) with respect to Sk is determined as

rSk(si) =

(
1− L(ξ(si),Ni

⋂
Sk)

circ(ξ(si)

)
r(si), (14)

where L(ξ(si),Ni

⋂
Sk) is the length of the union of covered parts of the reward circle ξ(si) by the correlations

circles of the influencing sensors selected in Sk, i.e., circles of the sensors sj ∈ Ni

⋂
Sk with the radii χ(sj) centered

at sj .

Individual values of the correlation and reward radii (circles) can be set for each particular sensor. The model

(14) can be then utilized during the solution of the PCTSP and OP to update the rewards of all sensors not

currently selected in Sk whenever Sk is changed. The objective functions of the PCTSP and CEPCTSP, i.e., (1)

and (5), respectively, include penalties (scaled values of the rewards) only for the sensors in S \ Sk. Since the

rewards of Sk are not considered, it is not necessary to make any adjustments in the formulations of Problem 3.1

and Problem 3.2. The only needed calculation is the sum of penalties that can be influenced by the data collected

from the selected Sk because of (14).

The sums of rewards in the OP (8) and CEOP (10) are computed using only the sensors Sk selected for data

collection. Therefore, it is necessary to include the model (14) into the solution cost R(Sk) as the sum of the total

collected rewards should also include the rewards collected as a result of the spatial correlation of Sk to S \ Sk,

and thus the objective function R(Sk) is computed as

R(Sk) =
∑
si∈Sk

r(si) +
∑

sj∈S\Sk

(r(sj)− rSk(sj)) , (15)

where rSk(sj) is computed according to (14). Notice, when χ(si) is zero for all the sensors, the second term of (15)

is zero and the spatial correlation between the measurements is not considered.

4. GSOA-based Data Collection Path Planning

The herein studied data collection path planning is addressed by the GSOA [19] which is a variant of the

unsupervised learning network based on the principles of self-organizing map (SOM) for the TSP. The GSOA is an

array of nodes N = {ν1, . . . , νM} that represents points in the problem space, i.e., ν ∈ R2. The connected nodes

form a ring which represents the requested data collection path that evolves during the unsupervised learning of

the GSOA. Each node ν ∈ N is further associated with the particular sensor ν.s and the corresponding waypoint

location ν.p at which data from s can be retrieved within δ communication radius, i.e., the waypoint location is

inside the δ-disk centered at s. A similar notation as for the sensors is used for the nodes, and ν denotes the node,

and its location is ν.

The learning procedure is an iterative adaptation of the GSOA to the sensors S in a finite number of learning

epochs. In each learning epoch, a new node ν∗ may be added to N for each sensor s ∈ S and ν∗ can be then

adapted towards s. The sensors S are considered in a random order for each learning epoch to avoid local optima.

For each sensor s a new node ν∗ is determined together with the waypoint location ν∗.p using the winner node
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selection, see Fig. 2a. Then, ν∗ together with its neighbouring nodes in the ring are adapted towards the waypoint

location ν∗.p, i.e., their positions are adjusted to “move” towards the waypoint

ν′ = ν + µf(σ, d)(ν∗.p− ν) (16)

with the power of the adaptation defined by the neighbouring function

f(σ, d) =

 e−
d2

σ2 for d < 0.2M

0 otherwise
, (17)

where M is the current number of nodes in N and d is the distance of the node ν from ν∗ in the number of nodes in

the ring. Finally, all nonwinning nodes are removed from N at the end of each learning epoch to keep the number

of nodes in N balanced with the number of sensors.

νi

s1

δ

νi+1

νi+2

s2

s3

s6

s4

s5
δ*ν

p

(a) Winner node selection

νi

s1

δ

νi+1

νi+2

s2

s3

s6

s4

s5
δ

(b) Path represented by N

Figure 2: Demonstration of the principle of winner node selection (on the left) where the closest point of the ring of connected nodes

N to the particular sensor s5 is determined as the position of the new node ν∗ together with the particular waypoint p to retrieve

data from s5 within δ communication range. (on the right) The ring of nodes N defines the order of visits to the sensors associated

to the nodes and the connected waypoints p form the requested data collection path that is shown in red. The nodes are shown as

small blue disks, and the sensor locations are shown as small green disks with the particular surrounding perimeter according to the

communication range δ. The images are adapted from [19] where the GSOA for the CETSP is introduced.

The array of nodes N represents a ring in R2 and the sequence of nodes in the ring defines the order of visits to

the sensors associated with the nodes. Moreover, the sequence of nodes defined by the array N and the associated

waypoint locations to the nodes can be used to quickly construct the data collection path from which data from

the selected sensors can be retrieved. This is the main benefit of the GSOA over the SOM-based solvers for the

TSP because it allows to trade-off the visitation of the particular sensor and the path length in a solution of the

PCTSP or to explicitly address the limited travel budget in the OP. Besides, the growing structure allows to easily

adjust the number of nodes according to the selected sensors. The winner selection and an example of the path

represented by the ring are depicted in Fig. 2. Note that in the GSOA, a feasible solution is available at the end of
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each learning epoch, and therefore, there are not issues with the convergence, and the GSOA has anytime property,

see detailed discussion in [19].

The GSOA as it has been introduced for solving the TSP and CETSP in [19] can be almost directly used in the

solution of the CEPCTSP and CEOP. There are two main adjustments needed to solve these problems. The first

is the initialization of the ring N , where the ring is initialized to a single node located at s1, which is the same as

for the TSP; however, an open path with the initial location s1 and terminal location sn is requested in the OP.

Therefore, the GSOA is initialized as two nodes ν1 and νend that are never adapted nor removed from the array.

Besides, the neighboring function (17) has to respect the open path in the solution of the OP and CEOP.

The second adjustment is related to trade-off the path length and rewards of the not visited sensors in the

PCTSP and to satisfy the budget limit Tmax in the OP. Both these aspects are addressed by the same way as the

conditional adapt of the GSOA to the particular sensors. New nodes are determined for all sensors in every learning

epoch, but the new node is inserted into the GSOA only if certain criteria are met. In the case of the PCTSP,

the adaptation is performed only if the distance of the new node ν∗ and its waypoint location ν∗.p is shorter than

the penalty (reward) to not collect data from s, i.e., the adaptation is performed only if ‖(ν∗, ν∗.p)‖ ≤ λr(ν∗.s).

However, for the first learning epoch, it is likely the case that new nodes are very far from the sensors, and thus

this rule is not active for the first learning epoch.

For the OP, the adaptation of the ring is performed only if the path represented by the ring after the adaptation

would be shorter than Tmax [31]. Because the nodes in N have associated waypoints, this can be evaluated as

follows. Let the current epoch be i, the current ring N have M nodes and represent a path with the length L, ν∗

be the current winner node, νprev be the first neighboring node of ν∗ in the direction to ν1 that has been added to

N in the epoch i (or ν1 if such a node has not been added yet), and νnext be similarly the first neighboring node

of ν∗ towards νM added in the current epoch (or νend if such a node has not been added yet), then ν∗ is kept in

N and the ring is adapted towards the respective sensors only if

L− dp(νprev, νnext) + dp(νprev, ν
∗) + dp(ν

∗, νnext) ≤ Tmax, (18)

where dp(νi, νj) is the distance between the waypoints associated to νi and νj , i.e.,

dp(νi, νj) = ‖(νi.p, νj .p)‖ . (19)

If the conditional adaptation is not performed, the new node ν∗ is discarded and the ring is not adapted towards

the particular s.

Beside of these conditions for the actual adaptation of the nodes to the particular sensor location, it is desirable

to consider the rewards associated with the sensors. In [31], it is proposed to adjust the power of adaptation (16)

according to the reward of the sensor towards which the ring is adapted. This is especially suitable for solving

instances of the OP, where the preference of highly rewarding sensors is crucial in finding high-quality solutions.

Therefore, the adaptation has the form

ν′ = ν +R(s)µf(σ, d)(ν∗.p− ν), (20)

where R(s) is the normalized reward of the sensor s computed as R(s) = r(s)/Rmax for

Rmax = maxs∈S r(s). (21)

The value of the sensor reward r(s) is a subject of change when spatial correlations are considered, but since the

learning is performed in several iterations, the updated rewards can be directly utilized whenever the network is
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(a) Learning epoch 5 (b) Learning epoch 40

(c) Learning epoch 70 (d) Final found solution

Figure 3: Evolution of the GSOA in a solution of the CEPCTSP with spatial correlations. The nodes are visualized as small light blue

disks connected to the ring. The sensors are shown as colored disks where sensors with high rewards (penalties) are in red and sensors

with low rewards are in blue. The final solution is the data collection path connecting the waypoints shown as small orange disks.

The red segments connecting waypoints with the sensors denote the communication range δ. The spatial correlations are shown by

connecting the influencing sensors by green segments. Thus each sensor si from which data are directly collected are connected with

the Ni neighbouring nodes that are not selected in the solution, but a part of the information about the locations is included in data

collected from si.

adapted to the sensors, and the sensor is selected to be part of the data collection path for the current learning

epoch.

The adaptation (20) is beneficial for solving the OP, but it does not provide an added value in a solution of

the PCTSP. Although it negligibly increases the solution cost, according to the performed evaluations it increases

computational cost noticeably because of slower convergence, and therefore, the standard adaptation (16) is rather
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(a) Learning epoch 50 (b) Learning epoch 163

(c) Learning epoch 460 (d) Final found solution

Figure 4: Evolution of the GSOA in a solution of the CEOP instance called Set 66 with the travel budget Tmax = 60, communication

range δ = 1.0, and χ = 0, i.e., without the spatial correlations. The visualization follows the same color schema as in Fig. 3. A new

solution is determined every learning epoch, and therefore, the GSOA is performing as a stochastic search where the best solution

found so far is maintained during the learning.

preferred for solving the PCTSP.

In addition to the conditional adaptation, it is suggested in [31] to support adaptation by avoiding saturation

of the path length close to Tmax and up to two nodes of N may be removed from the array if the length of the path

represented by the array would be longer than Tmax after adding new sensor to Sk. These two nodes represent

the node νf ∈ N with the longest distance to its waypoint νf .p and the node νl ∈ N which is the node associated

to the sensor νl.s with the lowest reward. Both the nodes νf and νl can be therefore removed from N during the

winner node selection. However, if the ring is not adapted to the sensor because of (18), the deletion of these nodes

is rolled-back, i.e., the ring is set to the state before the winner node selection.

Examples of the proposed GSOA for data collection planning in a solution of the CEPCTSP with spatial

correlations is shown in Fig. 3. The solution follows the GSOA for the CETSP [19], and the network quickly

converges to a stable solution which does not evolve with further learning epochs. Thus, solutions of the CEPCTSP

instances reported in Section 5 are found in tens of learning epochs and typically in less than one hundred epochs.

An example of the GSOA evolution in solving the CEOP instance Set 66 is presented in Fig. 4.

An overview of the GSOA learning procedure is depicted in Fig. 7 where the particular modifications to solve

PCTSP and OP formulations of the data collection path planning algorithms are highlighted. The additional

procedure for removing nodes νf and νl in solving instances of the OP is depicted in Fig. 6.
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Figure 5: Evolution of the relative solution cost (sum of the rewards) in particular learning epochs to the final solution cost in solving

the Set 66 instance of the OP and CEOP with Tmax = 60 for δ = 0 and δ = 1, respectively.

Procedure remove nodes(N , s, ν∗):

1. Get all winner nodes of the current epoch Nwin ← winners(N \ {ν1, νend}).

2. Determine the winner node νf which has the longest distance to its associated waypoint νf .p

νf = argmaxν∈Nwin ‖(ν, ν.p)‖ . (22)

3. Determine the winner νl which associated sensor location νl.s has the lowest reward

νl = argminν∈Nwin r(ν.s). (23)

4. If the expected path length after the adaptation of ν∗ would be longer than Tmax.

• If r(νf .s) < r(s) ∧ ‖(νf , νf .s‖ > ‖(ν∗, s)‖ Then remove νf from the ring N ← N \ {νf}.

• If r(νl.s) < r(s) ∧ ‖(νl, νl.s‖ > ‖(ν∗, s)‖ Then remove νl from the ring N ← N \ {νl}.

5. return(N ).

Figure 6: Removing of not promising nodes from the current ring to support adaptation of the current winner node ν∗ and satisfying

the limited travel budget Tmax in a solution of the OP. The procedure has been originally proposed in [31].

A new solution is determined in every learning epoch in solving the OP. It is because new nodes are added to

the ring for every considered sensor which is selected according to (18). Since only the newly added nodes in the

current learning epoch are preserved for the next epoch, and sensors are evaluated in a random order, the learning

procedure can be considered as a stochastic search. However, it is not an issue as the best solution found so far

is maintained (Line 25 of the GSOA algorithm depicted in Fig. 7) and it can only improve over the time. An

evolution of the solution cost (the sum of the collected rewards R) found in the particular learning epochs and

the final best-found solution are depicted in Fig. 5. It can be noticed that a solution close to the final solution is

found relatively quickly in around 200 learning epochs, but a bit better solution can be found in additional epochs.

Because the computational requirements of the GSOA are relatively very low, see the results reported in Section 5,

the maximal number of learning epochs is set to imax = 500. The initial values of the learning parameters are set at

Line 2 of the GSOA algorithm in Fig. 7. The particular values have been found empirically and they originate from

the evaluation reported in [50]. Although the performance of the GSOA can be tuned by adjusting the parameters’
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GSOA for data collection planning formulated as the Close Enough PCTSP and OP

Input: S = {s1, . . . , sn} – a set of sensor locations to be visited, each with particular disk-shaped δ-neighborhood and default reward

value ri. For the spatially correlated measurements, each sensor si ∈ S is further associated with the correlation radius χi and

reward radius ξi.

Input: Tmax – the maximal allowed travel budget in the case of solving the OP.

Input: imax – the maximal number of learning epochs, i.e., imax ← 150 for solving the PCTSP and imax ← 500 for solving the OP.

Output: (Sk,Σk,Pk) – Sk is a set of k selected sensors, Σk is the order of visits to the sensors, Pk is the array of the corresponding

waypoint locations at which data from Sk can be retrieved.

� Initialization1

Set the learning parameters: the initial value of the learning gain σ ← 10, the gain decreasing rate α← 0.0005, and the learning rate2

µ← 0.6.

� if solving the PCTSP: N ← {ν1} such that ν1 = s1; ν1 is always adapted towards s1 in every learning epoch.3

� if solving the OP: N ← {ν1, νend} such that ν1 = s1, νend = sn, and ν1 and νend are never changed nor removed from N during4

the learning.

imax ← min(imax, 1/α) // ensure σ will always be above 05

i← 1 // set the learning epoch counter6

while i ≤ imax ∧ solution is changing do7

� Learning epoch8

foreach s in a random permutation of S do9

ν∗(ν∗, ν∗.p)← determine winner(N , s, δs) // Determine the winner node for s according to Fig. 210

� if solving the OP then11

N ′ ← N // save the ring for the case the adaptation would fail because of Tmax12

N ← remove nodes(N , s, ν∗) // remove nodes to possibly fit the path length to Tmax, see Fig. 613

� Conditional adapt14

if

 ( i = 1 ) ∨ ( ‖(ν∗, ν.p)‖ ≤ λr(s) ) �for solving the PCTSP

Condition (18) holds �for solving the OP
then

15

N ← insert winner(N , ν∗)16

foreach node ν ∈ N in the d-neighborhood of the node ν∗ such that 0 ≤ d ≤ 0.2M do17

Adapt ν towards ν∗.p using (16) for solving the PCTSP or using (20) for solving the OP with the neighborhood18

function (17).

else19

� if solving the OP: N ← N ′ // revert changes made by remove nodes(N , s, ν∗)20

� Update the ring and the best solution found so far21

N ← regenerate(N ) // remove all not winning nodes from N22

i← i+ 1 // update the epoch counter23

σ ← (1− iα)σ // decrease the learning gain24

Determine a solution S′k and Σ′k with the corresponding waypoints P′k by traversing the current ring of nodes. if25  C(S′k,Σ
′
k,P

′
k) < C(Sk,Σk,Pk) �for solving the PCTSP

(R(S′k,Σ
′
k,P

′
k) > R(Sk,Σk,Pk)) �for solving the OP

then

(Sk,Σk,Pk)← (S′k,Σ
′
k,P

′
k) // update the best solution found so far26

return (Sk,Σk,Pk)27

Figure 7: An overview of the GSOA for solving the PCTSP and OP; both also in the Close Enough variant as the CEPCTSP and the

CEOP. For the solution of the OP, nodes νf and νl can be removed from the ring using the remove nodes(N , s, ν∗) procedure that is

depicited in Fig. 6.

values, the performance is only slightly changing, and therefore, they are considered as constants.

Also note that for small budgets Tmax it does not make sense to consider sensor locations that are unreachable.

Therefore, sensors for which Tmax does not allow to travel from s1 and returning to sn are not considered in the
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(a) OOI scenario, ξ = 50 km, χ = 25 km,

and δ = 0 km

(b) OOI scenario, ξ = 50 km, χ = 100

km, and 0 ≤ δ ≤ 100 km

Figure 8: Examples of the solved OOI scenarios with spatial correlations. The sensors are visualized as small disks with the color

according to the associated rewards (red for high reward values and blue for low reward values). The green segments connect sensors

with spatial correlations of the measured data, i.e., a sensor is connected with another sensor if data collected from one sensor also

provides some information that can be collected from another sensor. The individual communication radius per each sensor is shown

as the red circle around the sensor locations (on the right).

solution of the particular OP instance, similarly to heuristic approaches, e.g., 4-phase algorithm [51].

5. Results

The proposed GSOA for data collection path planning has been evaluated in a series of scenarios where the

data collection planning problem is addressed as one of the variants of the PCTSP and OP. The performance of the

GSOA in solving the PCTSP is performed in the OOI scenario that has been introduced in [33], which is motivated

by autonomous data collection from a set of 128 sampling stations located on an ocean floor. Several instances of

the PCTSP and CEPCTSP are created from the OOI scenario also considering correlations between the sensors.

An example of two instances with visualization of the spatial correlations and individual communication radius per

each sensor are depicted in Fig. 8.

On the other hand, scenarios used for evaluation of the GSOA in OP instances are created from the standard

benchmarks proposed in [52]. In particular, the problems called Set 64 and Set 66 are considered because they repre-

sent more complex problems than the other standard OP benchmarks available at [53]. In addition to these existing

benchmarks, the OOI scenario utilized in the evaluation of the PCTSP [33] and visualized in Fig. 8 is considered for

creation of new OP instances with the two additional locations for the requested initial and terminal position of the

vehicle with the total number of locations 130. The original OOI scenario is proportionaly scaled down about the

factor 10 to make it close to the standard Set 64 and Set 66, and the new OP dataset is called Set 1302. Each OP

scenario is further defined by the particular value of the travel budget Tmax (see [53] or the further reported results),

2The OP instances of the Set 130 are available at https://purl.org/faigl/op.
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(a) Set 64 (b) Set 66

Figure 9: Instances of the OP scenarios Set 64 and Set 66 both with the reward radius ξ = 0.5, the correlation radius χ = 2, and the

identical communication radius for all the sensors δ = 0.5. The green line segments denote nearby correlated sensors.

where for increasing budget, more sensors can be visited and the problem can be considered closer to the TSP. The

newly introduced Set 130 is accompanied with the travel budget Tmax = {50, 100, 150, 200, 250, 300, 350, 400, 410}.

The problems are also used to create instances of the CEOP with particularly specified communication radii δ.

An example of the particular instances of the Set 64 and Set 66 with communication radius δ = 0.5 is depicted

in Fig. 9 to show the dimensions of the problem and spatial relations. Besides, selected instances are further

(a) Set 66, χ = 1 (b) Set 66, χ = 2

Figure 10: Examples of the created OP scenarios with spatial correlations using the reward radius ξ = 0.5 and correlation radius χ.

The green line segments is a visualization of the spatially correlated sensors.

used in evaluation of spatial correlations that is studied for different values of the correlation radius χ and reward

radius ξ. Influence of different correlation radii to the influencing nearby sensors in Set 64 scenarios with zero

communication radius is demonstrated in Fig. 10. An overview of the Set 130 is visualized in solutions shown in

Fig. 21 and Fig. 22.

The PCTSP also with the non-zero communication radius δ as the CEPCTSP have been already addressed by

the unsupervised learning together with the comparison with traditional combinatorial heuristics in [54, 33] and

with spatial correlations firstly tackled in [34]. Thus, the herein presented evaluation results on the PCTSP is

mainly to show the influence of different correlation radii and performance of the GSOA in solving this type of

data collection planning formulation.

The focus of the presented performance evaluation is on the novel GSOA-based approach to the OP and CEOP
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together with the study of the influence of spatial correlations to the sum of the collected rewards to demonstrate the

capability of the proposed GSOA solution to exploit the non-zero communication radius and correlation radius. The

first SOM-based unsupervised learning approach to the CEOP has been presented in [30] and its improved version

in [31] together with the comparison to the existing combinatorial heuristics in the standard OP benchmarks [53].

Therefore, the proposed GSOA solution is compared with the approaches [30] and [31] that are further denoted

as SOM v1 and SOM v2, respectively. Besides, the results in standard OP instances are compared with one of

the best performing traditional heuristic [52] denoted as the CGW and one of the very first heuristics for the

OP called 4-phase [51] that has been reimplemented to compare computational requirements of the combinatorial

heuristic with unsupervised learning based approaches. Since the only existing available solvers for the CEOP

without spatial correlations are those based on unsupervised learning, the performance evaluation is presented for

selected CEOP instances. Finally, the only currently available solution for the CEOP with spatial correlations is

the proposed GSOA-based method, and thus the evaluation is focused on the study the influence of the correlation

radius and communication radius to the solution cost and computational requirements.

The used parameters of the SOM-based solvers are set as they are reported in [30] and [31]. For the proposed

GSOA-based solvers the same values of the initial learning gain σ, the gain decreasing rate α, and the learning

rate µ as presented in Fig. 7 are used for both problems: the PCTSP and OP. The only difference is that for solving

the PCTSP, the maximal number of learning epochs is set to imax = 150 because the network usually converges in

tens of epochs. For the solution of the OP, imax is set to imax = 500 as the learning is de facto stochastic search.

All the unsupervised learning and 4-phase [51] algorithms have been implemented in C++ and run within the

same computational environment using a single core of the Intel Core i7-6700K processor running at 4 GHz. The

SOM-based and GSOA-based algorithms are stochastic, and therefore, the presented results are computed from 20

trials per each particular problem instance that is defined by the scenario, reward, correlation, and communication

radii and in the case of the OP also the travel budget Tmax.

The performance indicators are the solution quality and the required computational time. The solution quality

is reported as the average cost of the solution C (accompanied by the standard deviation) for the PCTSP instances.

In the case of the OP, the solution quality is reported as the average collected sum of the rewards R that is rounded

to integers as the rewards are integer values in Set 64 and Set 66 [53]. Besides, following the literature on the

OP [55, 56], the quality is also reported as the relative percentage error (RPE) computed as

RPE =
Ropt −R
Ropt

· 100%, (24)

where R is the best solution among the performed trials and Ropt is the optimal solution for the particular instance

reported in the literature [56, 57, 28] and also found by the ILP-based solver for the OP. Besides, the algorithm

robustness over the performed trials is reported as the average relative percentage error (ARPE) [56]

ARPE =
Ropt −Ravg

Ropt
· 100%, (25)

where Ravg is the average sum of the collected rewards among the trials of the particular problem instance. For the

newly introduced Set 130, the best solution found among of all evaluated algorithms is considered as the reference

solution Rref instead of Ropt because the optimal solution is not available.

The required computational time TCPU is reported as the average real computational time that is presented

in milliseconds due to the computational efficiency of the proposed GSOA and unsupervised learning approaches.

The standard deviations are shown as error bars in the accompanied bar plots.
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5.1. Close Enough PCTSP with Correlation Measurements

The performance of the proposed GSOA in the PCTSP instances, or more particularly in the CEPCTSP in-

stances with spatial correlations, has been evaluated in OOI scenarios with different communication and correlation

radii. The selected OOI scenarios represent data collection missions from an area about 450×700 km large per-

formed by an autonomous underwater vehicle operating with a constant velocity 5 km/h [33]. The communication

range δ is considered up to 20 km, i.e., δ ∈ {0, 5, 10, 20} in km, the reward radius ξ = 25 km, and the correlation

radius is considered as χ ∈ {0, 14, 35} in km.
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Figure 11: The average solution cost per each OOI scenario of the PCTSP with spatially correlated rewards (penalties) for the

communication radius δ and correlation radius χ. The reward radius ξ of the distant based spatial correlation model is ξ = 25 km;

however, the spatial correlations are enabled only for χ > 0.

The average solution cost is depicted in Fig. 11a. It can be noticed that the increasing communication range

δ has a significant positive influence on the solution cost. However, the benefit of exploiting spatial correlations

is mostly noticeable for δ = 0 and χ = 35 km. The average computational requirements per solution of a

single trial are depicted in Fig. 11b. In all cases, the solution is provided in less than one hundred milliseconds.

The computational requirements are slightly increased with increasing communication range δ but from a certain

distance, the convergence of the network is faster, and thus the learning needs less number of learning epochs.

Regarding the spatial correlations, the learning procedure is noticeably more demanding for increased χ. It is

because for a longer χ more sensors are in the influencing neighborhood set Ni and the evaluation of (14) is more

computationally intensive.

For the particular case of the evaluated OOI scenarios, considering spatial correlations only slightly decreases the

solution cost. In particular, for δ = 0 the average solution cost C is C = 841 km for χ = 0 km and it is C = 790 km

for χ = 35 km, which is noticeable but not directly visible in Fig. 11a. On the other hand, considering δ = 5 km and

χ = 0 km, the average solution cost is significantly lower C = 724 km. Nevertheless, the proposed GSOA approach

is capable of exploiting the spatial correlations between the measurements in benefit of the improved solution at

the cost of increased computational requirements, which are about two times more demanding for χ = 35 km than

for χ = 0 km.

5.2. GSOA in the Orienteering Problem

The performance of the novel GSOA-based solution of the OP has been evaluated using the standard OP

benchmarks Set 64 and Set 66 [53] with 64 and 66 nodes, respectively, and with the travel budget Tmax ranging

19



from 15 to 80 and 130, respectively. The detail results are presented in Table 1 and Table 2. Besides, the OP

instances for the Set 130 have been solved by the implemented 4-phase [51] heuristics and the unsupervised learning

based approaches, and the results are reported in Table 3.

Table 1: Performance of the Proposed GSOA solver for the OP in Set 64

Tmax Ropt

CGW 4-phase [51] SOM v1 [30] SOM v2 [31] Proposed GSOA

RPE RPE ARPE TCPU* RPE ARPE TCPU* RPE ARPE TCPU* RPE ARPE TCPU*

15 96 0.00 0.00 0.00 547.0 0.00 0.00 96.6 0.00 0.00 13.2 0.00 0.00 13.3

20 294 0.00 0.00 0.00 1 258.0 0.00 0.00 473.0 0.00 0.82 26.4 0.00 1.02 25.7

25 390 0.00 1.54 1.54 1 084.0 1.54 6.54 576.7 1.54 8.31 31.6 1.54 7.62 31.3

30 474 0.00 3.80 3.80 2 074.0 3.80 8.99 637.4 2.53 7.47 38.6 5.06 7.72 36.6

35 576 1.04 5.21 5.21 2 362.0 4.17 7.34 653.8 1.04 4.43 45.0 2.08 5.26 44.4

40 714 0.00 5.88 5.88 2 278.0 5.04 8.99 675.9 3.36 5.59 51.6 3.36 5.34 49.6

45 816 0.00 6.62 6.62 2 167.0 7.35 11.21 691.6 1.47 5.81 58.2 5.15 6.43 56.5

50 900 0.00 6.67 6.67 3 235.0 7.33 9.93 696.0 4.00 5.90 64.0 4.00 6.07 61.8

55 984 0.00 4.27 4.27 3 367.0 7.32 10.73 688.2 3.05 4.76 68.5 2.44 4.82 65.4

60 1 062 1.69 1.13 1.13 4 341.0 5.08 9.12 672.9 2.82 5.00 72.6 3.95 5.20 70.7

65 1 116 0.00 0.54 0.54 4 099.0 3.23 6.40 648.6 2.15 3.39 76.0 2.15 3.74 75.6

70 1 188 1.01 0.51 0.51 5 318.0 4.04 5.76 611.6 2.02 3.74 79.8 1.01 3.76 76.4

75 1 236 0.97 2.91 2.91 6 615.0 1.46 3.88 580.6 0.49 2.65 83.0 0.97 2.60 79.4

80 1 284 0.93 2.80 2.80 7 159.0 0.93 1.68 537.8 0.93 1.75 84.2 0.93 1.71 81.2

∗All reported computational times are in milliseconds

The results indicate that the improved SOM v2 [31] and the herein proposed GSOA are far the fastest solvers

for the OP. However, the traditional CGW heuristic [52] provides the best results. On the other hand, the 4-phase

heuristic [51] provides in some cases worse solution than the unsupervised learning based approaches and overall

both SOM and GSOA approaches can be considered competitive. Regarding the comparison of the proposed GSOA

to the previous SOM-based approaches, the overall solution quality is competitive with the SOM v2. Based on

the statistical evaluation of the average sum of the collected rewards among the performed trials using the t-test

with the significance level of 0.05, the SOM v2 provides statistically significant better solutions for the Set 66 with

Tmax ∈ {60, 120} and the GSOA provides better results for the Set 66 with Tmax ∈ {45, 85}, which are highlighted

in Table 2. In all other cases, differences in the solutions quality for both approaches (the SOM v2 and the herein

proposed GSOA) are not statistically significant. However, the main expectations are in solutions of the Close

Enough OP (CEOP) for which the results are reported in the following section.

5.3. GSOA in the Close Enough Orienteering Problem

The performance of the GSOA in the CEOP has been evaluated in the same problems as the comparison

of the SOM v1 and SOM v2 reported in [31], i.e., in the Set 64 with Tmax = 45 and Set 66 with Tmax = 60,

and δ ∈ {0.0, 0.5, 1.0, 1.5, 2.0}. Besides, the newly introduced Set 130 with Tmax = 200 and Tmax = 300 and

δ ∈ {0, 1, 2, 3, 4} is considered to show the performance of the CEOP solvers in larger instances. The average values

of the solution cost R computed as the sum of the collected rewards are presented in Fig. 12a, Fig. 12b, and Fig. 13.

20



δ  = 0.0 δ  = 0.5 δ  = 1.0 δ  = 1.5 δ  = 2.0

S
um

 o
f 

th
e 

co
ll

ec
te

d 
re

w
ar

ds

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

SOM v1
SOM v2
Proposed GSOA

(a) Set 64, Tmax = 45

δ  = 0.0 δ  = 0.5 δ  = 1.0 δ  = 1.5 δ  = 2.0

S
um

 o
f 

th
e 

co
ll

ec
te

d 
re

w
ar

ds

0
50

0
10

00
15

00

SOM v1
SOM v2
Proposed GSOA

(b) Set 66, Tmax = 60

Figure 12: The average sums of the collected rewards in the OP Set 64 and Set 66 scenarios for the selected Tmax and the communication

range δ. The previous SOM-based approaches are denoted SOM v1 [30] and SOM v2 [31].
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(a) Set 130, Tmax = 200
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(b) Set 130, Tmax = 300

Figure 13: The average sums of the collected rewards in the OP Set 130 scenarios with the travel budget Tmax ∈ {200, 300} and the

communication range δ. The previous SOM-based approaches are denoted SOM v1 [30] and SOM v2 [31].
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Table 2: Performance of the Proposed GSOA solver for the OP in Set 66

Tmax Ropt

CGW 4-phase [51] SOM v1 [30] SOM v2 [31] Proposed GSOA

RPE RPE ARPE TCPU* RPE ARPE TCPU* RPE ARPE TCPU* RPE ARPE TCPU*

15 120 0.00 25.00 25.00 122.0 0.00 0.00 281.4 0.00 0.00 15.0 0.00 0.00 15.4

20 205 4.88 0.00 0.00 517.0 0.00 1.46 561.6 0.00 3.90 22.8 0.00 2.80 22.2

25 290 0.00 6.90 6.90 1 298.0 0.00 2.16 864.0 0.00 3.45 26.1 0.00 3.19 25.4

30 400 0.00 7.50 7.50 1 383.0 0.00 9.88 1 001.3 3.75 8.88 29.9 0.00 8.50 28.0

35 465 1.08 0.00 0.00 1 151.0 2.15 7.58 1 134.0 5.38 8.01 32.0 3.23 6.61 31.8

40 575 0.00 6.96 6.96 1 115.0 6.96 12.48 1 252.0 6.09 11.96 36.8 6.96 10.52 34.8

45 650 0.00 5.38 5.38 2 099.0 0.77 10.81 1 330.0 6.15 11.58 39.8 1.54 9.31 39.1

50 730 0.00 0.00 0.00 2 256.0 4.11 10.99 1 394.4 4.79 10.45 44.8 6.85 9.69 45.0

55 825 0.00 1.21 1.21 2 422.0 5.45 11.30 1 395.2 3.03 10.48 49.3 4.24 9.76 46.2

60 915 0.00 2.19 2.19 2 405.0 7.65 11.56 1 407.2 7.65 10.38 54.2 9.29 11.53 50.6

65 980 0.00 0.00 0.00 2 295.0 1.02 9.69 1 422.6 4.59 7.88 59.2 3.57 7.76 56.3

70 1 070 0.00 0.93 0.93 2 148.0 5.14 9.49 1 413.4 2.80 7.20 63.7 2.34 7.55 60.1

75 1 140 0.00 2.63 2.63 3 252.0 5.26 9.50 1 409.0 2.63 6.58 67.2 4.39 6.64 63.4

80 1 215 0.00 3.29 3.29 3 418.0 6.17 9.09 1 379.4 4.12 6.13 70.1 2.88 6.03 67.7

85 1 270 0.00 3.15 3.15 3 057.0 3.94 7.97 1 346.4 3.54 5.22 72.8 1.97 4.45 71.2

90 1 340 0.00 0.75 0.75 4 382.0 5.22 8.04 1 305.7 2.24 4.44 75.9 2.61 4.40 74.4

95 1 395 1.08 0.00 0.00 4 240.0 4.66 6.67 1 250.6 2.87 4.44 79.6 3.23 4.07 78.3

100 1 465 2.05 0.00 0.00 5 488.0 3.41 6.55 1 194.8 2.05 4.71 80.6 2.73 4.25 79.8

105 1 520 0.66 0.00 0.00 5 030.0 3.29 5.81 1 121.1 3.29 4.67 82.6 2.30 4.01 81.8

110 1 560 0.64 0.64 0.64 6 370.0 2.56 4.65 1 063.4 2.24 3.53 85.0 1.92 3.48 81.8

115 1 595 0.00 0.00 0.00 7 501.0 0.94 2.54 986.6 0.94 2.40 85.8 0.94 2.08 85.5

120 1 635 0.00 0.00 0.00 8 362.0 0.00 1.15 909.3 0.00 1.15 87.2 0.92 1.61 84.9

125 1 670 0.90 0.00 0.00 9 262.0 0.00 1.12 713.3 0.60 1.09 88.8 0.90 1.05 88.4

130 1 680 0.00 0.00 0.00 10 030.0 0.00 0.36 496.7 0.00 0.12 67.8 0.00 0.12 88.9

∗All reported computational times are in milliseconds

Overall, the proposed GSOA provides the best solutions and noticeably improves the performance of unsuper-

vised learning based solution of the CEOP. It seems it solves the worse performance of the SOM v2 than SOM v1

in the Set 66 with δ = 0.5, and it provides stable performance with the expected increase of the collected rewards

with increasing the communication range δ. The computational requirements are similar to the SOM v2 as in the

solution of the OP, and therefore, a presentation of detail results is omitted.

5.4. GSOA in the CEOP with Spatial Correlation

The proposed GSOA is the first solution of the CEOP with spatial correlations, and therefore, the performance

of the solver is studied for all the travel budgets of the problems Set 64, Set 66, and Set 130. For the instances of

the Set 64 and Set 66, the spatial correlations are modeled for the rewards radius ξ = 0.5, which can be compared

with the mutual distance of the sensor locations in Fig. 9 where the communication range δ = 0.5 is visualized.
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Table 3: Performance of the Proposed GSOA solver for the OP in Set 130

Tmax Rref

4-phase [51] SOM v1 [30] SOM v2 [31] Proposed GSOA

RPE ARPE TCPU* RPE ARPE TCPU* RPE ARPE TCPU* RPE ARPE TCPU*

50 375 0.80 0.80 781.0 0.00 5.08 1 620.5 0.00 0.73 22.3 0.00 0.28 26.8

100 816 42.56 42.56 15 935.0 22.68 30.08 3 284.7 0.98 4.98 65.2 0.00 3.80 66.3

150 1 238 14.97 14.97 17 356.0 28.88 36.98 3 403.2 3.80 9.66 90.2 0.00 9.09 95.3

200 1 608 8.03 8.03 18 764.0 24.22 34.29 4 217.6 2.08 9.26 121.8 0.00 7.67 127.7

250 2 104 0.00 0.00 21 857.0 26.05 30.53 5 248.6 4.13 7.78 165.2 1.05 8.30 170.6

300 2 647 0.00 0.00 27 675.0 16.51 23.00 6 062.9 3.55 7.62 214.7 5.82 7.50 221.2

350 3 111 0.00 0.00 36 083.0 6.49 13.03 5 764.6 2.09 4.82 257.4 2.44 4.28 264.6

400 3 521 1.96 1.96 48 885.0 0.34 3.36 4 127.9 0.00 1.92 285.1 0.77 1.91 286.6

410 3 609 5.62 5.62 47 137.0 0.67 2.84 3 662.6 0.00 1.91 281.5 0.72 1.84 289.0

∗All reported computational times are in milliseconds

The correlation radius χ is selected from the set χ ∈ {0, 1, 2} and the communication radius δ is one of the three

possible values δ ∈ {0.0, 0.5, 1.0}. For the instances of the Set 130, a longer reward radius ξ = 2.5 is considered

because of the large scale problem. The correlation radius χ and the communication radius δ are selected from

the set χ ∈ {0, 1, 2} and δ ∈ {0, 1, 2}, respectively. Detail results are depicted in Table 4, Table 5, and Table 6,

where it can be noticed the maximal rewards R = 1344, R = 1680, R = 3609 for the Set 64, Set 66, and Set 130

respectively, are achieved for lower budgets because of increasing communication radius δ as well as exploiting the

spatial correlations for increasing correlation radius χ.

Overall results are depicted in Fig. 14a and Fig. 14b. Selected best found solutions are visualized in Fig. 17,

Fig. 18, Fig. 19, Fig. 20, Fig. 21, and Fig. 22.
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Figure 14: The sums of the collected rewards in the OP instances of the Set 64 and Set 66 with the travel budget Tmax, correlation

radius χ, and communication range δ. The collected rewards are shown as the percentage of the total rewards in the scenario.

An overview of the solution improvement is shown in Fig. 14a for the Set 64 and selected Tmax = 20 and

Tmax = 45. In Fig. 14b, the overview of the solution cost is presented for the Set 66 and Tmax = 60 and Tmax = 85.

Both plots support the idea of improving the solution cost by considering not only non-zero communication radius

δ but also the correlation radius χ.
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Figure 15: The average required computational times for solving the Set 64 and Set 66 instances of the CEOP with spatial correlations,

the travel budget Tmax, correlation radius χ, and communication range δ.

χ = 0 χ = 1 χ = 2

C
ol

le
ct

ed
 r

ew
ar

ds
 o

f 
th

e 
 m

ax
im

um
 to

ta
l r

ew
ar

ds
 [

%
]

0
20

40
60

80
10

0
0

20
40

60
80

10
0

Set 130, Tmax= 200, δ  = 0
Set 130, Tmax= 200, δ  = 1
Set 130, Tmax= 200, δ  = 2

Set 130, Tmax= 300, δ  = 0
Set 130, Tmax= 300, δ  = 1
Set 130, Tmax= 300, δ  = 2

(a) Set 130, Collected rewards

χ = 0 χ = 1 χ = 2

T
C

P
U

 [
m

s]

0
10

0
20

0
30

0
40

0

Set 130, Tmax= 200, δ  = 0
Set 130, Tmax= 200, δ  = 1
Set 130, Tmax= 200, δ  = 2

Set 130, Tmax= 300, δ  = 0
Set 130, Tmax= 300, δ  = 1
Set 130, Tmax= 300, δ  = 2

(b) Set 130, Computational requirements

Figure 16: The sum of the collected rewards and the average required computational times for the CEOP instances of the Set 130 with

spatial correlations, the travel budget Tmax, correlation radius χ, and communication range δ.

An overview of the average required computational time is shown in Fig. 15. Again, the solution is provided in

less than one hundred milliseconds, and increasing δ and χ makes the solution up to two times more demanding.

Since the solution with the spatial correlations are found very quickly, the proposed approach can be directly

employed in online decision-making as the early version of the SOM v1 [30], which is significantly slower than the

proposed GSOA (e.g., see Table 4 and Table 5), in active perception [39], while it can save the computational

power for demanding image processing or localization.

5.5. Discussion

Regarding the presented results, the proposed GSOA for the CEPCTSP and CEOP seems to be a vital al-

ternative to the combinatorial approaches and also to the previous SOM-based unsupervised learning methods.

Although the performance in solving the standard OP seems to be a bit worse than the previous SOM v2 [31], the

GSOA provides statistically competitive results. Besides, the proposed GSOA provides better results in solving the

CEOP. The most supportive results are presented for the CEOP with spatial correlations, where the solution can

benefit in saving the travel cost by retrieving data within the δ communication range and avoiding data collection

from sensors providing data with decreased information gain because of the collected data from the nearby sensors.

The computational requirements of the GSOA are very low, and solutions are found in tens of milliseconds. There-

fore a relatively high number of learning epochs imax = 500 can be considered without a noticeable increase in

the computational time. On the other hand, the current low computational requirements motivate for employing
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(a) Tmax = 20, δ = 0.0, χ = 0, R = 294 (b) Tmax = 20, δ = 0.0, χ = 1, R = 340 (c) Tmax = 20, δ = 1.0, χ = 2, R = 927

Figure 17: Selected best found solutions of the CEOP Set 64 scenarios with Tmax = 20, the communication radius δ, and correlation

radius χ.

(a) Tmax = 45, δ = 0.0, χ = 0, R = 792 (b) Tmax = 45, δ = 0.5, χ = 0, R = 1134 (c) Tmax = 45, δ = 1.0, χ = 0, R = 1344

(d) Tmax = 45, δ = 0.0, χ = 1, R = 913 (e) Tmax = 45, δ = 0.5, χ = 1, R = 1189 (f) Tmax=45, δ = 0.0, χ = 2, R = 1338

Figure 18: Selected best found solutions of the CEOP Set 64 scenarios with Tmax = 45, the communication radius δ, and correlation

radius χ.

other local optimization strategies, e.g., such as VNS [58], to improve the solution, especially in the solution of the

standard OP.
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(a) Tmax = 60, δ = 0.0, χ = 0, R = 865 (b) Tmax = 60, δ = 0.5, χ = 0, R = 1020 (c) Tmax = 60, δ = 1.0, χ = 0, R = 1520

(d) Tmax = 60, δ = 0.0, χ = 2, R = 1277 (e) Tmax = 60, δ = 0.5, χ = 2, R = 1423 (f) Tmax = 60, δ = 1.0, χ = 2, R = 1656

Figure 19: Selected best found solutions of the CEOP Set 66 scenarios with Tmax = 60, the communication radius δ, and correlation

radius χ.

(a) Tmax = 85, δ = 0.0, χ = 2, R = 1593 (b) Tmax = 85, δ = 0.5, χ = 2, R = 1672 (c) Tmax = 85, δ = 1.0, χ = 0, R = 1680

Figure 20: Selected best found solutions of the CEOP Set 66 scenarios with Tmax = 85, the communication radius δ, and correlation

radius χ.
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(a) Tmax = 200, δ = 0, χ = 0, R = 1545 (b) Tmax = 200, δ = 1, χ = 0, R = 2113 (c) Tmax = 200, δ = 1, χ = 1, R = 2110

Figure 21: Selected best found solutions of the CEOP Set 130 scenarios with Tmax = 200, the communication radius δ, and correlation

radius χ. The initial and terminal locations are very close and they are the right most locations, approximately in the middle of the

locations (vertically).

(a) Tmax = 300, δ = 0, χ = 1, R = 2659 (b) Tmax = 300, δ = 0, χ = 2, R = 2835 (c) Tmax = 300, δ = 1, χ = 2, R = 3452

Figure 22: Selected best found solutions of the CEOP Set 130 scenarios with Tmax = 300, the communication radius δ, and correlation

radius χ.
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Table 4: Performance of the proposed GSOA in the CEOP with spatially correlated measurements in the Set 64 problems

Problem, Tmax

R for χ = 0 R for χ = 1 R for χ = 2

δ = 0.0 δ = 0.5 δ = 1.0 δ = 0.0 δ = 0.5 δ = 1.0 δ = 0.0 δ = 0.5 δ = 1.0

Set 64, Tmax = 15 96 180 288 155 249 356 423 516 641

Set 64, Tmax = 20 294 366 522 340 438 571 725 813 927

Set 64, Tmax = 25 384 522 672 448 572 745 939 1068 1201

Set 64, Tmax = 30 450 660 912 558 744 993 1180 1253 1325

Set 64, Tmax = 35 570 834 1116 681 938 1174 1275 1313 1344

Set 64, Tmax = 40 684 1026 1266 816 1091 1292 1318 1344 1344

Set 64, Tmax = 45 792 1134 1344 913 1189 1344 1338 1344 1344

Set 64, Tmax = 50 864 1212 1344 982 1271 1344 1343 1344 1344

Set 64, Tmax = 55 960 1308 1344 1059 1315 1344 1344 1344 1344

Set 64, Tmax = 60 1032 1344 1344 1117 1344 1344 1344 1344 1344

Set 64, Tmax = 65 1086 1344 1344 1171 1344 1344 1344 1344 1344

Set 64, Tmax = 70 1164 1344 1344 1234 1344 1344 1344 1344 1344

Set 64, Tmax = 75 1224 1344 1344 1268 1344 1344 1344 1344 1344

Set 64, Tmax = 80 1272 1344 1344 1300 1344 1344 1344 1344 1344
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Table 5: Performance of the proposed GSOA in the CEOP with spatially correlated measurements in the Set 66 problems

Problem, Tmax

R for χ = 0 R for χ = 1 R for χ = 2

δ = 0.0 δ = 0.5 δ = 1.0 δ = 0.0 δ = 0.5 δ = 1.0 δ = 0.0 δ = 0.5 δ = 1.0

Set 66, Tmax = 5 10 20 20 14 20 20 48 75 75

Set 66, Tmax = 10 40 70 95 44 74 95 113 158 210

Set 66, Tmax = 15 120 160 200 125 164 207 240 295 362

Set 66, Tmax = 20 205 255 345 210 257 327 381 429 529

Set 66, Tmax = 25 290 365 500 297 360 465 489 556 679

Set 66, Tmax = 30 400 450 605 390 439 579 606 709 821

Set 66, Tmax = 35 455 520 760 455 529 732 725 807 920

Set 66, Tmax = 40 545 650 860 545 644 844 835 938 1114

Set 66, Tmax = 45 625 690 1025 640 745 1007 954 1083 1269

Set 66, Tmax = 50 680 810 1180 720 815 1240 1072 1192 1405

Set 66, Tmax = 55 765 910 1350 782 919 1345 1150 1320 1587

Set 66, Tmax = 60 865 1020 1520 847 1020 1520 1277 1423 1656

Set 66, Tmax = 65 940 1155 1620 945 1154 1620 1386 1528 1676

Set 66, Tmax = 70 1020 1265 1665 1034 1274 1665 1438 1598 1680

Set 66, Tmax = 75 1100 1390 1680 1097 1419 1680 1521 1639 1680

Set 66, Tmax = 80 1175 1510 1680 1179 1519 1680 1553 1660 1680

Set 66, Tmax = 85 1230 1580 1680 1239 1587 1680 1593 1672 1680

Set 66, Tmax = 90 1310 1630 1680 1314 1629 1680 1625 1680 1680

Set 66, Tmax = 95 1370 1670 1680 1385 1677 1680 1643 1680 1680

Set 66, Tmax = 100 1420 1680 1680 1450 1680 1680 1659 1680 1680

Set 66, Tmax = 105 1475 1680 1680 1484 1680 1680 1671 1680 1680

Set 66, Tmax = 110 1540 1680 1680 1554 1680 1680 1676 1680 1680

Set 66, Tmax = 115 1590 1680 1680 1589 1680 1680 1679 1680 1680

Set 66, Tmax = 120 1625 1680 1680 1629 1680 1680 1680 1680 1680

Set 66, Tmax = 125 1670 1680 1680 1670 1680 1680 1680 1680 1680

Set 66, Tmax = 130 1680 1680 1680 1680 1680 1680 1680 1680 1680
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Table 6: Performance of the proposed GSOA in the CEOP with spatially correlated measurements in the Set 130 problems

Problem, Tmax

R for χ = 0 R for χ = 1 R for χ = 2

δ = 0 δ = 1 δ = 2 δ = 0 δ = 1 δ = 2 δ = 0 δ = 1 δ = 2

Set 130, Tmax = 50 375 462 530 390 473 534 420 501 574

Set 130, Tmax = 100 839 1092 1254 857 1135 1291 1010 1184 1333

Set 130, Tmax = 150 1185 1527 1769 1267 1568 1808 1407 1702 1885

Set 130, Tmax = 200 1545 2113 2408 1671 2110 2507 1871 2322 2625

Set 130, Tmax = 250 2042 2776 3207 2197 2828 3249 2343 2895 3301

Set 130, Tmax = 300 2555 3389 3609 2659 3417 3609 2835 3452 3609

Set 130, Tmax = 350 3036 3609 3609 3089 3609 3609 3233 3609 3609

Set 130, Tmax = 400 3503 3609 3609 3509 3609 3609 3549 3609 3609

Set 130, Tmax = 410 3584 3609 3609 3593 3609 3609 3599 3609 3609
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6. Conclusion

The herein proposed GSOA-based solution for solving the Close Enough Prize-Collecting Traveling Salesman

Problem and Close Enough Orienteering Problem (both with spatial correlations) represents a unifying approach for

data collection planning where it is requested to determine a cost-efficient path to retrieve the most rewarding sensor

measurements from a set of pre-deployed sensors. The proposed solution allows exploiting not only the remote

reading of the data from the sensors but also possible spatial correlations where data from one sensor includes

information about the measurements from nearby locations. The proposed GSOA solver has low computational

requirements and based on the previous comparison of the SOM-based solvers with combinatorial heuristics in the

solution of the PCTSP. It provides better results. Moreover, the GSOA improves performance in a solution of the

CEOP that is a suitable formulation of the data collection missions with the limited travel budget, which better fits

the limitations of real robotic platforms. The reported results support the feasibility of the proposed approach and

the current computational requirements of the GSOA technique provides a groundwork for further improvements

of the solution quality or generalization for data collection planning for a team of vehicles.

On the other hand, the utilized distant based spatial correlations model is a general model that is easy to

compute, and a more complex relation of the spatiotemporal field can be more demanding. Therefore, one of the

planned future work is to employ the proposed GSOA in mission scenarios with a more complex model of the

spatiotemporal field, where the studied phenomena are not static, and the rewards vary in time.
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