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Abstract Data collection missions are one of the

many effective use cases of Unmanned Aerial Vehi-

cles (UAVs), where the UAV is required to visit a pre-

defined set of target locations to retrieve data. How-

ever, the flight time of a real UAV is time constrained,

and therefore only a limited number of target locations

can typically be visited within the mission. In this pa-

per, we address the data collection planning problem

called the Dubins Orienteering Problem with Neigh-

borhoods (DOPN), which sets out to determine the se-

quence of visits to the most rewarding subset of tar-

get locations, each with an associated reward, within

a given travel budget. The objective of the DOPN is

thus to maximize the sum of the rewards collected from

the visited target locations using a budget constrained

path between predefined starting and ending locations.
The variant of the Orienteering Problem (OP) ad-

dressed here uses curvature-constrained Dubins vehi-

cle model for planning the data collection missions for

UAV. Moreover, in the DOPN, it is also assumed that

the data, and thus the reward, may be collected from a

close neighborhood sensing distance around the target

locations, e.g., taking a snapshot by an onboard cam-

era with a wide field of view, or using a sensor with
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a long range. We propose a novel approach based on

the Variable Neighborhood Search (VNS) metaheuris-

tic for the DOPN, in which combinatorial optimization

of the sequence for visiting the target locations is simul-

taneously addressed with continuous optimization for

finding Dubins vehicle waypoints inside the neighbor-

hoods of the visited targets. The proposed VNS-based

DOPN algorithm is evaluated in numerous benchmark

instances, and the results show that it significantly out-

performs the existing methods in both solution quality

and computational time. The practical deployability of

the proposed approach is experimentally verified in a

data collection scenario with a real hexarotor UAV.

Keywords Unmanned Aerial Vehicles · Non-

holonomic Motion Planning · Data Collection

Planning · Orienteering Problem

1 INTRODUCTION

Unmanned Aerial Vehicles (UAV) are effective systems

for long-range data collection (Ergezer and Leblebi-

cioğlu 2014) or for information gathering scenar-

ios (Nguyen et al. 2016), where a UAV has to gather

data from specified locations in the environment. Such

a scenario consists of a UAV equipped with an onboard

sensor that is required to reach particular target lo-

cations and measure or collect the desired data. For

example, in a Wireless Sensor Network (WSN), the

sensors are placed in the environment, and the UAV

can be used for retrieving the measured data from the

sensor units by wireless communication with a limited

range (Jawhar et al. 2014; Wang et al. 2015). Hence, the

objective of data collection planning can be to minimize

the required time to retrieve the requested data (i.e., to
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minimize the length of the data collection path) or/and

to maximize the information collected by a single path.

Data collection planning can be formulated

as a variant of the Traveling Salesman Prob-

lem (TSP) (Oberlin et al. 2010), where a path visit-

ing all the given locations with minimal length is to

be found. However, the required visits to all locations

may not be possible with the budget limitation of a real

vehicle (limited flight time).

Nowadays, the typical flight time of a small UAV

is limited to tens of minutes, and the time is further

decreased if the UAV is equipped with an additional

payload, e.g., onboard sensors. Therefore, the Orien-

teering Problem (OP) (Tsiligirides 1984) formulation

seems to be more suitable for data collection planning

with a limited travel budget. Rather than minimizing

the path length as in the TSP, the OP set out to find a

path maximizing the sum of the rewards collected from

a selected subset of target locations that can be reached

using the given travel budget.

In this work, we consider that the data collect-

ing vehicle with a budget constraint has to follow a

curvature-constrained path, and thus we model the

UAV as Dubins vehicle (Dubins 1957). Dubins vehicle

can be used for modeling car-like robots (Tokekar et al.

2014), fixed-wing aerial vehicles (Lugo-Cárdenas et al.

2014) or Vertical Take-Off and Landing (VTOL) multi-

rotor UAVs traversing the planned path at a constant

speed (Pěnička et al. 2017a).

For Dubins vehicle, the TSP becomes the Du-

bins Traveling Salesman Problem (DTSP) (Savla et al.

2005), where it is required to find not only the optimal

sequence for the visits to all target locations, but also

optimal heading angles of the vehicle at the locations, as

they greatly influence the final path length. Since each

heading angle can be arbitrarily selected from 0 to 2π,

the problem becomes computationally demanding due

to the required non-linear continuous optimization of

the additional dimension of the heading angles.

For a limited travel budget and Dubins vehicle, the

OP becomes the Dubins Orienteering Problem (DOP),

which was introduced and solved by a Variable Neigh-

borhood Search (VNS) based approach in (Pěnička

et al. 2017a). In the DOP, it is required to search

over all possible heading angles at the target locations

to find the most rewarding curvature-constrained path

within the limited budget. Note that both the OP and

the DOP are NP-hard similarly to the TSP and the

DTSP (Le Ny et al. 2007).

In data collection planning, the solution quality,

i.e., the path length in the (D)TSP or the sum of the

rewards collected in the (D)OP, can be increased by

introducing a non-zero sensing distance in which the

Fig. 1: A snapshot of the workspace for experimental

verification of the proposed Dubins Orienteering Prob-

lem with Neighborhoods taken by a UAV flying 100

m above the ground. The solution of the DOPN used

in the real experiment with a hexarotor UAV is calcu-

lated using the proposed Variable Neighborhood Search

method with target neighborhood radius δ = 4 m and

budget constraint Tmax = 150 m.

data can be collected from the particular target lo-

cations. An extension of the DTSP for the non-zero

sensing distance is called the Dubins Traveling Sales-

man Problem with Neighborhoods (DTSPN) (Ober-

meyer 2009; Isaacs et al. 2011; Váňa and Faigl 2015). In

this paper, we consider a similar extension of the DOP

to the Dubins Orienteering Problem with Neighbor-

hoods (DOPN), initially introduced in (Pěnička et al.

2017b). Although exploiting the neighborhood in most

cases increases the quality of the solutions (regard-

ing the collected rewards), solving the DOPN is more

challenging due to the additional determination of the

most suitable waypoint locations to retrieve the re-

wards within the neighborhood of target locations. The

DOPN thus includes both a combinatorial part and a

continuous optimization part. Determining the subset

of target locations and determining the sequence for vis-

iting them are the combinatorial parts of the DOPN.

The continuous optimization part involves determin-

ing the waypoint locations within the neighborhood

of the target locations and the determining the way-

point heading angles of Dubins vehicle at the selected

waypoint locations. An illustration of the DOPN solu-

tion from the experimental verification of the proposed

method with a hexarotor UAV is shown in Fig. 1.

The novel method for the DOPN is based on

the Variable Neighborhood Search (VNS) metaheuris-

tic (Mladenović and Hansen 1997). It consists of both

combinatorial and continuous optimization operators to

solve the DOPN. Initially, low-density equidistant sam-

pling of both the waypoint heading angles and the way-

point locations within the neighborhoods is considered,

in order to create waypoint graph for the combinato-

rial optimization to maximize the sum of the collected
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rewards. The particular waypoint samples of the solu-

tions for a given sequence of visited target locations

are selected such that the path length is minimized.

An initial greedy solution is then found by adding tar-

get locations that maximize the reward per tour pro-

longation, while the maximally allowed budget is still

fulfilled. The VNS method afterward uses a set of neigh-

borhood operators to randomly change and locally im-

prove the best found solution. The proposed VNS con-

sists of the combinatorial optimization operators ex-

tended from the VNS-based solution to the original OP

in (Sevkli and Sevilgen 2006) and also utilized for solv-

ing the DOP in (Pěnička et al. 2017a). However, the

herein VNS-based DOPN solver contains novel continu-

ous optimization operators to minimize the path length

over the selected sequence of target locations by opti-

mizing both the heading angles and the waypoint loca-

tions within the neighborhoods of the target locations.

The proposed operators shorten the solution found on

the low-density sampled waypoint graph, and update

the locally optimized values to the graph for combi-

natorial optimization. The path length is optimized to

allow addition of previously unvisited target locations

while satisfying the budget constraint.

A preliminary version of this work appears

in (Pěnička et al. 2017b), where the DOPN is ad-

dressed by a purely sampling-based approach. This

paper is considered to make the following contribu-

tions. The method introduced here significantly im-

proves the solution quality and decreases the over-

all required computational time, which allows onboard

online planning and anytime behavior. The proposed

method combines combinatorial optimization and con-

tinuous optimization in a single VNS-based framework,

which outperforms the previous purely combinatorial

sampling-based solution (Pěnička et al. 2017b) and also

the competitive Self-Organizing Map (SOM) based so-

lution (Faigl and Pěnička 2017). The initial low-density

waypoint sampling allows us to obtain high quality ini-

tial solutions (≈ 90% of the best-known rewards) within

a few seconds, and due to the continuous optimization

of the waypoints, the solution quality is improved above

the so far best-known solutions created by dense way-

point sampling with required initialization in tens of

minutes. The performance and quality improvements

are mainly caused by the proposed tight coupling be-

tween combinatorial optimizations and continuous opti-

mization in a single algorithm, which is also considered

as one of the main contributions of our work. Further-

more, the designed VNS-based algorithm minimizes the

path length in addition to the main OP objective of

maximizing the sum of the collected rewards, which can

be useful when all target locations can be feasibly col-

lected within the defined budget. Last but not least, the

experimental verification in the data collection scenario

demonstrates the practical usefulness of the addressed

problem and the proposed method.

The remainder of this paper is organized as follows.

An overview of related work is presented in the next

section. A formal definition of the DOPN is introduced

in Section 3, and the novel VNS-based approach is pro-

posed in Section 4. Section 5 shows the computational

results and the experimental verification in a real data

collection scenario. The conclusion and future work are

outlined in Section 6.

2 Related Work

The Dubins Orienteering Problem with Neighborhoods

belongs to a wider class of orienteering problems (Gu-

nawan et al. 2016), where the objective is to find a lim-

ited length path between a starting location and an end-

ing location which maximizes the sum of the rewards

collected from a subset of the specified target locations.

Therefore, this section presents an overview of existing

approaches for the Orienteering Problem and relevant

variants for UAVs. The DOPN is also related to the

Traveling Salesman Problem (TSP) and its variants in-

volving Dubins vehicle and neighborhoods; therefore a

brief overview of relevant solutions of the TSP is pro-

vided in this section.

The Euclidean version of the OP, further denoted

as the EOP, was introduced by Tsiligirides (Tsiligiri-

des 1984) in 1984, together with the deterministic D-

algorithm and stochastic S-algorithm approaches for

the EOP. The S-algorithm is based on the Monte-

Carlo method, which creates multiple feasible paths

and selects the best solution according to the reward.

The D-algorithm is based on the method for the ve-

hicle routing problem (Wren and Holliday 1972). Fur-

thermore, Tsiligirides created three OP benchmark in-

stances (Vansteenwegen 2018), further denoted as Set 1,

Set 2 and Set 3, with up to 33 target locations.

Since the first deterministic and stochastic algo-

rithms for the OP, a large number of solutions for

the EOP and other variants of the OP have been pro-

posed (Vansteenwegen et al. 2011; Gunawan et al. 2016)

with results that outperform the first solutions. The OP

can be solved optimally using the Branch and Bound

algorithm (Ramesh et al. 1992) or by the Branch and

Cut (Fischetti et al. 1998) algorithm; however, the op-

timal solution of the EOP requires significant computa-

tional resources, and the solutions are provided in sev-

eral minutes or hours for instances with tens of target

locations.
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For the Dubins Orienteering Problem or its variant

with neighborhoods, additional waypoint sampling is

required for each target location. Hence it is optimally

solvable only for a given, rather low, sampling den-

sity with reasonable computational resources. There-

fore, numerous heuristic solutions for the EOP, such as

the approaches in (Ramesh and Brown 1991; Chao et al.

1996a; Schilde et al. 2009; Sevkli and Sevilgen 2006),

have been proposed, with results that can achieve a so-

lution close to the optimal one within a fraction of the

computational time required for the optimal solution.

The Fast and Effective heuristic for the EOP by Chao

et al. (Chao et al. 1996a) considers only target locations

reachable within the prescribed budget (i.e., target lo-

cations inside the respective ellipse around the pre-

scribed starting and ending locations). This reduces the

number of target locations in solutions with low bud-

gets. The heuristic by Chao et al. uses a set of operators

consisting of two-point exchange and one-point move-

ment together with the 2-Opt operation to find high-

quality EOP solutions. Furthermore, two symmetrical

benchmark sets were created in (Chao et al. 1996a), the

diamond shaped Set 64 and the square shaped Set 66

with up to 66 target locations.

The OP has also been proposed for path and data

collection planning for UAVs. A variant of the OP,

called the Correlated Orienteering Problem (COP) (Yu

et al. 2016), introduced for persistent monitoring and

data collection tasks with UAVs, proposed a variant of

the OP where the rewards of target locations are corre-

lated on the basis of their mutual distances. The COP is

motivated by the correlation in sensory measurements

of neighboring target locations, and its solution can

be found optimally using mixed integer quadratic pro-

gramming for a small number of target locations. A ver-

sion of the COP involving Dubins vehicle has been pro-

posed recently by Tsiogkas and Lane (2018).

Thakur et al. (2013) proposed a variant of the Team

Orienteering Problem (TOP) (the multi-vehicle variant

of the OP proposed by Chao et al. (1996b)) for Dubins

vehicle in environments with obstacles. However, the

definition of the problem proposed in (Thakur et al.

2013) consists of a given set of waypoints for Dubins

vehicle and does not consider an arbitrary heading an-

gle at the target locations or the non-zero sensing dis-

tance, as in the DOPN. An optimal multilevel graph

search technique is proposed for optimizing the TOP

on a given set of Dubins vehicle waypoints for up to

15 target locations. The multi-robot variant of the OP

is also proposed in (Jorgensen et al. 2018) for so-called

Team Surviving Orienteers (TSO), where the budget

is replaced by the constraining probabilities that each

robot survives to its destination.

The proposed DOPN method is based on the Vari-

able Neighborhood Search (VNS) (Mladenović and

Hansen 1997) metaheuristic by Hansen and Mladen-

ović for combinatorial optimization applicable to nu-

merous problems (Hansen and Mladenović 2001). The

VNS employs predefined neighborhood operators used

for iterative improvement of the initial solution inside

the shaking and local search procedures. The first VNS-

based approach to the EOP (Sevkli and Sevilgen 2006)

uses neighborhood structures that motivate the com-

binatorial optimization part of the proposed solution

of the DOPN. The VNS-based method for the EOP

randomly changes the current best solution by either

path move operator or path exchange operator in the

shaking procedure to get from the possible local maxi-

mum. Then, the method tries to improve the randomly

changed path by multiple one point moves or exchanges

in the local search procedure in order to find a more re-

warded path than the incumbent solution.

In our previous work (Pěnička et al. 2017a), the

DOP was introduced together with the VNS-based

method to solve it. The method uses similar neighbor-

hood structures as the VNS method for the EOP (Sevkli

and Sevilgen 2006). However, to tackle the continu-

ous optimization problem of finding a suitable path

for curvature-constrained Dubins vehicle, equidistant

sampling of the heading angle at the target locations

was proposed. The VNS-based method then searches

for the most rewarding path, together with the appro-

priate sequence of sampled heading angles to fit the

path length within the budget constraint. The DOPN

and its heuristic VNS-based solution was introduced

in (Pěnička et al. 2017b) with a straightforward exten-

sion of the pure sampling-based approach by additional

sampling of visit positions in the circular neighborhood

of each target location. In this paper, the solution of the

DOPN is further improved by a combination of com-

binatorial optimization of the DOPN with continuous

optimization of the waypoint samples in a single VNS-

based algorithm. Furthermore, the deployment of the

proposed method is shown in an experimental verifica-

tion with a hexarotor UAV.

The first approach addressing the generalization

of the OP to the Euclidean variant of the Orienteer-

ing Problem with Neighborhoods (OPN) was proposed

in (Best et al. 2016), and was further improved in (Faigl

et al. 2016). The multi-robot variant of the OPN for

active perception has been studied in (Best et al.

2018). The approach is based on unsupervised learn-

ing of the Self-Organizing Map (SOM) for the Prize-

Collecting Traveling Salesman Problem with Neighbor-

hoods (PC-TSPN) (Faigl and Hollinger 2014), i.e., a

variant of the TSP that combines maximization of the
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rewards (prizes) and minimization of the path length.

The approach has been further extended to variants

with multiple vehicles in the OP (Faigl 2017) and also

multi-vehicle PC-TSPN (Faigl and Hollinger 2018). The

SOM has also been applied to the DTSP and DT-

SPN in (Faigl and Váňa 2017). Recently, the SOM-

based approach has been adopted for solving the Close

Enough Dubins Orienteering Problem (CEDOP) (Faigl

and Pěnička 2017), which is the DOPN with name

emphasized usage of disk-shaped neighborhoods. The

VNS-based solution of the DOPN proposed here signif-

icantly outperforms the SOM-based approach for CE-

DOP, both in the maximal achievable solution quality

and also regarding computational time.

The proposed DOPN is also related to existing ap-

proaches to the DTSP (Cohen et al. 2017) and the

DTSPN (Váňa and Faigl 2015). The most relevant

approaches are sampling-based variants of the DTSP,

where the heading angles at the target locations are

sampled, and the problem is transformed to the Asym-

metric TSP (ATSP) (Noon and Bean 1993), which

can be solved optimally for the specified sampling. A

similar approach can be used for the DTSPN (Ober-

meyer et al. 2010), where both the heading angles and

the positions within the neighborhood are sampled.

The problem is then transformed into the Generalized

TSP (GTSP) and further to the ATSP, which can be

solved, e.g., by the LKH solver (Helsgaun 2000). The so-

lutions of sampling based methods, however, can be fur-

ther improved by employing the Dubins Touring Prob-

lem (DTP) (Faigl et al. 2017), which sets out to find the

optimal heading angles of Dubins vehicle for a given

sequence of target locations in order to minimize the

path length in the DTSP. For the DTSPN, the DTP

can be further extended to the Dubins Touring Regions

Problem (DTRP), recently addressed as the General-

ized Dubins Interval Problem (Váňa and Faigl 2018),

where both the heading angles of Dubins vehicle and the

visit position inside the neighborhoods of target loca-

tions are optimized for a given sequence of target loca-

tions. The proposed VNS-based solution of the DOPN

uses the adopted version of the Local Iterative Opti-

mization (LIO) procedure (Váňa and Faigl 2015) (orig-

inally designed for the DTRP) in continuous optimiza-

tion VNS operators. It iteratively optimizes individual

heading angles and neighborhood positions at each tar-

get location to minimize the required path length. The

related DTSPN and its DTRP subproblem, however,

does not contain subset selection with maximization of

the collected rewards, and the budget constraint, as in

the DOPN, which is formally introduced in the next

section.

3 Problem Statement

In this section, we formally define the DOPN. The

problem studied here consists of two main optimization

parts. The first part is the combinatorial optimization

part of the OP, which sets out to maximize the sum of

the collected rewards by selecting a subset of the tar-

get locations such that the path length visiting them is

within the specified travel budget. The second part is

the continuous optimization of the DTRP which, for a

given sequence of target locations themselves, sets out

to find appropriate waypoint heading angles of Dubins

vehicle and also the waypoint locations themselves in

the neighborhoods of the selected target locations. Both

parts have to be addressed at the same time, as the

OP subset selection influences the continuous DTRP

optimization, which on the other hand influences the

path length constrained by the combinatorial OP. The

addressed DOPN is therefore incrementally formulated

from the OP and the DTRP in the following subsec-

tions.

3.1 Orienteering Problem (OP)

The OP assumes a given set of target locations to

be visited S = {s1, · · · , sn}, where each target loca-

tion si = (ti, ri) consists of its position in the plane

ti ∈ R2 and the associated reward ri. The reward of

all target locations is expected to be strictly positive

ri ∈ R>0, with the exception of the predefined starting

location s1 and ending location sn with zero rewards

r1 = rn = 0. Furthermore, the problem is constrained

by the given maximal allowed travel budget Tmax, i.e.,

the path length of the vehicle is limited by this value.

The objective of the OP is to maximize the sum of

the collected rewards R =
∑
ri∈Sk

ri by selecting a sub-

set of k target locations Sk ⊆ S. However, the length

of the tour to visit all the locations of subset Sk is con-

strained by Tmax, and therefore, the path length has to

be taken into account during the selection of Sk. The

path can be described as a sequence of target location

indexes Σk, in which the path visits the selected target

locations Σk = (σ1, · · · , σk), with 1 ≤ σi ≤ n, σi 6= σj
for i 6= j, sσh

∈ Sk where h ∈ (1, . . . , k) and σ1 = 1,

σk = n. Using the predefined starting and ending loca-

tions in the permutation (σ1 = 1, σk = n), the solution

of the OP is determined by searching over all possible

values of k, Sk, and Σk. In the ordinary OP (Gunawan

et al. 2016), the Euclidean distance Le(sσi , sσj ) is used

as the travel cost between two target locations sσi
and

sσj
. Having these preliminaries, the OP can be formu-

lated as the optimization problem:
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Problem 1 (Orienteering Problem (OP))

maximizek,Sk,Σk
R =

k∑
i=1

rσi

subject to

k∑
i=2

Le(tσi−1
, tσi

) ≤ Tmax

σ1 = 1, σk = n .

(1)

3.2 Dubins Touring Regions Problem (DTRP)

In the DTRP, Dubins vehicle model is utilized to plan

a curvature-constrained data collection path. Dubins

(1957) showed that the shortest path between two con-

figurations of Dubins vehicle can be found by a closed-

form expression, and the path is one of six possible

maneuvers of CSC or CCC type, where ‘C’ stands for

turning right or left and ‘S’ means going straight. A

configuration of Dubins vehicle q = (p, θ)T = (x, y, θ)T

can be described by its position p = (x, y) in the plane,

i.e., p ∈ R2, and the vehicle heading angle θ, θ ∈ S1.

The kinematic model of Dubins vehicle shown in (2)

uses a constant forward velocity vc and a control input

u, which steers the vehicle. The minimal turning radius

ρ of Dubins vehicle is assumed to be constant.

q̇ =

[
ṗT

θ̇

]
=

 ẋẏ
θ̇

 = vc

 cos θ

sin θ
u
ρ

 , u ∈ [−1, 1] (2)

In multi-goal path planning with curvature-

constrained Dubins vehicle formulated as the DTSP or
the DOP and their variants with neighborhoods, the

important issue of the continuity of heading angles has

to be solved. The analytical solution of optimal Dubins

maneuvers (Dubins 1957) provides the shortest path

between two target locations with known heading an-

gles. However, the heading angles have to be appro-

priately found to connect multiple Dubins maneuvers

into a path of minimal length over multiple target loca-

tions with a priori unknown heading angles. For a given

sequence of waypoint locations, the problem of deter-

mining the optimal heading values is called the Dubins

Touring Problem (DTP) (Faigl et al. 2017). For the

purposes of the OP, we can consider a variant of the

DTP in which the target locations in Sk are visited in

the sequence defined by Σk = (σ1, · · · , σk) with speci-

fied starting and ending locations σ1 = 1 and σk = n,

respectively. The problem is then to find a vector of the

waypoint heading angles Θk = (θσ1
, · · · , θσk

) that con-

nects Dubins maneuvers at the target locations. The

solution of the DTP minimizes the sum of the length

of Dubins maneuvers, where Ld(qσi , qσj ) denotes the

length of the shortest Dubins maneuver (Dubins 1957)

between configurations qσi
and qσj

.

The DTRP additionally requires to find the way-

point locations within a disk-shaped neighborhood of

each target location. The non-zero sensing distance in

the DTRP is denoted as the neighborhood radius δ

defining a δ-radius disk centered at the respective tar-

get location. The same neighborhood radius is used

for all the target locations in the given sequence Σk,

with the exception of the starting s1 and ending sk lo-

cations, which are assumed to have a zero neighbor-

hood radius due to the vehicle taking off and land-

ing at these locations. The DTRP extends the DTP

to a variant where an additional vector of the waypoint

locations Pk = (pσ1
, · · · , pσk

) has to be found. Each

pσi ∈ R2 defines the location within the δ neighbor-

hood of the target location sσi
= (tσi

, rσi
) ∈ Sk such

that ‖pσi
, tσi
‖ ≤ δ for i ∈ (2, k − 1) and ‖pσi

, tσi
‖ = 0

for i = 1, k. The DTRP sets out to minimize the length

L(Θk, Pk) of the Dubins tour over the given sequence

of targets Σk by optimizing both the vector of the way-

point heading angles Θk and the vector of the waypoint

locations Pk that are inside the neighborhoods of the

particular selected targets. This type of continuous op-

timization problem is complex, as any change of, e.g.,

heading angle θσi at a single target location, influences

not only the optimal location pσi
of the same waypoint,

but also other adjacent waypoint heading angles and lo-

cations. The same applies to changes in the waypoint

locations Pk. The DTRP can be summarized as the fol-

lowing optimization problem.

Problem 2 (Dubins Touring Regions Problem

(DTRP))

minimizeΘk,Pk
L(Θk, Pk) =

n∑
i=2

Ld(qσi−1
, qσi

)

subject to

qσi = (pσi , θσi), pσi ∈ Pk, θσi ∈ Θk, i ∈ (1, k) ,

‖pσi , tσi‖ ≤ δ , i ∈ (2, k − 1) ,

‖pσ1 , tσ1‖ = 0 , ‖pσk
, tσk
‖ = 0 ,

σ1 = 1 , σk = n .

(3)

3.3 Dubins Orienteering Problem with Neighborhoods

The DOPN combines combinatorial OP reward maxi-

mization with continuous path length minimization of

the DTRP. However, both optimization problems com-

bined in the DOPN have to be addressed simultane-

ously, due to their mutual influence. The DOPN can
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be therefore expressed in a single optimization formu-

lation:

Problem 3 (Dubins Orienteering Problem with

Neighborhoods (DOPN))

maximizek,Sk,Pk,Σk,Θk
R =

k∑
i=1

rσi

subject to

k∑
i=2

Ld(qσi−1
, qσi

) ≤ Tmax ,

qσi = (pσi , θσi), pσi ∈ Pk, θσi ∈ Θk, i ∈ (1, k) ,

‖pσi , tσi‖ ≤ δ , i ∈ (2, k − 1) ,

‖pσ1 , tσ1‖ = 0 , ‖pσk
, tσk
‖ = 0 ,

σ1 = 1 , σk = n .

(4)

4 Proposed Approach for the DOPN

The proposed approach for the DOPN is a novel vari-

ant of the Variable Neighborhood Search (VNS) meta-

heuristic, which combines combinatorial optimization

and continuous optimization. The preliminary VNS-

based method for the DOPN proposed in (Pěnička et al.

2017b) is purely sampling-based combinatorial opti-

mization, which requires significantly longer computa-

tional times and achieves lower quality solutions. In this

paper, we propose the VNS-based method, which ad-

ditionally contains continuous optimization to improve

the solution quality and to reduce the computational

burden. The method proposed here uses low-density ini-

tial sampling for solving the DTRP subproblem (sam-
pling the waypoint heading angles and the waypoint

locations); however, it also employs continuous opti-

mization of the waypoints. This kind of waypoint opti-

mization can shorten the actual tour to cover the same

subset of target locations, and thus it potentially al-

lows visits to additional as yet unvisited target loca-

tions, without violating the travel budget constraint.

Optimized waypoints that shorten the actual path are

therefore added to the initial sampled waypoints to be

used further for OP optimization.

The proposed method for the DOPN is based on

the VNS metaheuristic (Mladenović and Hansen 1997),

which has been introduced for combinatorial optimiza-

tion in various problems (Hansen and Mladenović 2001)

and its principles are also applicable for continuous op-

timization (Mladenović et al. 2008). VNS uses shake

and local search procedures to iteratively improve the

best achieved incumbent solution. Both procedures use

the lmax predefined operators in the context of the

VNS described as neighborhood structures Nl, l =

1, . . . , lmax, where, in each VNS iteration, the neigh-

borhood Nl is gradually increased when no better solu-

tion is found. The shake procedure uses the incumbent

solution and randomly changes it using one of its oper-

ators to get from possible local optima. The randomly

changed incumbent solution is then used by the local

search procedure in an attempt to increase the quality

of the solution above the incumbent solution.

The VNS-based algorithm for the DOPN uses

equidistant initial sampling of the waypoints in the δ-

radius neighborhood disk centered at the respective tar-

get locations sσi
∈ S. Each waypoint consists of the

waypoint location pσi
on the circumference of the neigh-

borhood circle and also the heading angle of Dubins ve-

hicle θσi
at the waypoint location. The initial sampling

uses o equidistantly placed waypoint locations along the

circumference of the δ-radius circle. Each such waypoint

location is described throughout the VNS-based algo-

rithm by its directional angle 〈0, 2π) from the respec-

tive target location. This allows the waypoint location

to be described by only one parameter and, like the

description by two parameters (x, y), does not restrict

solutions of the DOPN. Zero neighborhood radius is

used for both the starting locations and the ending lo-

cation specified by the DOPN, as the exact start and

end position of the vehicle is considered, and therefore

the o = 1 location sample is used. The heading an-

gle is similarly sampled into m values from the inter-

val 〈0, 2π) for each of the o waypoint location samples.

The sampling approach requires (o · m) samples per

target location, which is sufficient for the initial solu-

tion of the DOPN (Pěnička et al. 2017b). However, a

high sampling rate, which is needed for finding high-

quality solutions, is very computationally demanding,

and most of the waypoint samples are never used in the

improvements to the solution. Therefore, we propose

to use low-density sampling of the waypoints from the

initialization, together with the online addition of the

optimized waypoints, which shorten the current paths,

to the set of initial waypoint samples. DOPN paths are

then created on the optimized waypoint samples where

the appropriate waypoints, i.e., vectors Θk and Pk, are

selected for the target sequence Σk using the shortest

path in the graph of samples between the starting and

ending target locations.

The neighborhood operators used for combinatorial

optimization inside the VNS algorithm for the DOPN,

namely Path Move, Path Exchange, One Point

Move, and One Point Exchange, were introduced

for the Euclidean OP in (Sevkli and Sevilgen 2006). The

modified version of the same operators was also used in

the initial solution of the purely sampling-based DOPN

in (Pěnička et al. 2017b). The novel VNS shake proce-
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dure for the DOPN consists of the following l = 1, . . . , 3

neighborhood operators: Path Move and Path Ex-

change, which are further described in detail in Sec-

tion 4.1, and Waypoint Shake, which is described in

Section 4.3. The particular l for the individual opera-

tors of the shake procedure are:

– Waypoint Shake (l = 1);

– Path Move (l = 2);

– Path Exchange (l = 3).

The local search procedure consists of three operators,

One Point Move and One Point Exchange, which

are discussed in Section 4.2, and Waypoint Improve-

ment, which is described in Section 4.3. The particular

l for the individual operators of the local search proce-

dure are:

– Waypoint Improvement (l = 1);

– One Point Move (l = 2);

– One Point Exchange (l = 3).

The proposed continuous optimization of the way-

points is performed by a combination of the Waypoint

Shake operator in the shake procedure and the Way-

point Improvement operator in the local search proce-

dure. The operators randomly change the waypoint of

the current solution of the DOPN, and then improve the

waypoints by iterative usage of local improvements. The

continuous optimization operators (l = 1) are priori-

tized in order to shorten any newly found solution (see

Algorithm 1) and thus to allow the combinatorial oper-

ators (l = 2, 3) to add previously unvisited target loca-

tions within the same budget. Local optimization of the

waypoint is also performed during the local search One

Point Move and One Point Exchange operators, when

a new unvisited target location is added to the path.

The improvement ratio αimp defines the minimal col-

lected reward Rimp = αimpRinit when the newly-added

target location is optimized for its waypoint samples.

Value Rinit denotes the sum of the rewards collected

by the initial greedy solution of the DOPN. This im-

mediate shrinking of the path allows more unvisited

target locations to be added within the same travel

budget, and at the same time, improvement ratio αimp
ensures that only waypoints of promising paths are im-

proved. Ratio αimp thus represents a tradeoff between

exploration and exploitation. While low αimp attempts

waypoint improvement for all new target location ad-

ditions made by the local search, a high value of αimp
(up to the point where αimpRinit is equal to the cur-

rent maximal reward) tends to exploit (improve) only

the best found solution. Having high αimp can thus lead

to an even better solution being missed by not continu-

ously optimizing the waypoints of promising solutions.

On the other hand, optimizing the waypoints of low-

quality solutions is more computationally demanding,

mainly due to the large number of additional waypoint

samples that are never used in further solutions. The

influence of ratio αimp is shown in Section 5.1.

The internal representation of the DOPN solution

in the designed VNS-based method consists of the vec-

tor v = (sσ2 , . . . , sσk−1
, sσk+1

, . . . , sσn), where the first

k − 2 elements are the selected target locations of set

Sk, together with the starting sσ1
= s1 and ending

sσk
= sn target locations ordered according to Σk. The

rest of the vector elements are the unvisited target lo-

cations (sσk+1
, . . . , sσn

). Any solution of the DOPN is

describable only by v on existing waypoint samples, as

the appropriate waypoints Θk and Pk at the target lo-

cations are selected from the samples waypoint graph

in such a way that the path over Σk is minimal. Dur-

ing combinatorial optimization by the operators Path

Move, Path Exchange, One Point Move, and One Point

Exchange, the whole solution vector v is used, such that

the same operators can change the order of the visited

target locations, and new unvisited targets can also be

introduced to the solution path.

The proposed VNS-based method for the DOPN is

summarized in Algorithm 1. The method starts with

the getReachableLocations procedure, which filters out

all target locations unreachable within the budget to

reduce the number of target locations considered to be

visited by the travel budget Tmax. The reachable set

of target locations Sr then contains si ∈ Sr such that

Le(s1, si) + Le(si, s1) − 2δ ≤ Tmax. Note that the Eu-

clidean distance with subtracted neighborhood radius is

used as the lower bound on the required distance to the

target location. This can add some unreachable target

locations for Dubins vehicle; however, it does not re-

quire to determine the waypoint location and the head-

ing angle that visits the neighborhood of the target lo-

cation.

Using the set of reachable target locations Sr, the

initial solution is created by a method denoted as cre-

ateInitialPath. This method greedily adds target loca-

tions into the initial path between the starting location

and the ending location with respect to the additional

reward per length increase of the data collection path.

The initial solution then consists of all such added tar-

get locations that fit within the budget constraint Tmax.

Afterward, the VNS uses the neighborhood operators

in the shake and local search procedures, which are de-

scribed in detail in the following subsections, to improve

the incumbent solution P , either by increasing the sum

of the collected rewards or by shrinking the length of

the equally rewarded solution. The termination condi-

tion for the proposed method can be the number of per-
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Algorithm 1: VNS method for the DOPN

Input : S – Set of the target locations
Input : Tmax – Maximal allowed travel budget
Input : o – Initial number of position waypoints for

each target
Input : m – Initial number of heading values for

each waypoints
Input : αimp – Local waypoint improvement ratio
Input : lmax – Maximal neighborhood number
Output: P – Found data collecting path defined by k,

Sk, Σk, Θk, and Pk

1 Sr ← getReachableLocations(S, Tmax)
2 P ← createInitialPath(Sr,Tmax) // greedy

3 while Stopping condition is not met do
4 l← 1
5 while l ≤ lmax do
6 P ′ ← shake(P , l)
7 P ′′ ← localSearch(P ′, l, αimp)
8 if Ld(P ′′) ≤ Tmax and
9 [R(P ′′) > R(P ) or [R(P ′′) == R(P ) and

Ld(P ′′) < Ld(P )]] then
10 P ← P ′′

11 l← 1

12 else
13 l← l + 1

formed iterations, or the number of iterations without

any improvement, or the elapsed computational time,

or a targeted sum of collected rewards. For brevity, the

solution DOPN path (defined by k, Sk, Σk, Θk, and

Pk) is denoted P , and the sum of the rewards collected

by the vehicle traveling along path P is denoted R(P )

and its length is denoted as Ld(P ).

4.1 Combinatorial shake Operators

The combinatorial part of the shake procedure consists

of two operators, Path Move and Path Exchange.

Both operators are intended to randomly change the

currently best achieved incumbent solution to escape

from possible local optima. Changes are made to the

underlying sequence Σk and subset selection Sk by

random reordering of the solution vector v, which in-

ternally represents the DOPN solution. Corresponding

waypoints of the target locations for the reordered so-

lution are selected from the existing graph of waypoint

samples to minimize the overall length of the solution.

A DOPN solution is selected from the first k− 2 target

locations in vector v that fit within the budget con-

straint between the starting location and the ending

location.

Operator Path Move (l = 2), illustrated in Fig. 2a,

randomly selects a part of the existing solution and

moves it into a different randomly selected place within

the solution vector. The operator is implemented by

selecting three random indexes inside the solution

vector, e.g., i1 ∈ 〈2, n − 1〉, i2 ∈ 〈i1 + 1, n − 1〉,
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Fig. 2: Path Move and Path Exchange operators

with a random change of the initial incumbent solu-

tion of the DOPN (dashed black) into a shorter solu-

tion (green) by changing the sequence of target loca-

tions and selecting the optimal waypoint samples. The

combinatorial shake operators are shown with waypoint

sampling, which consists of o = 4 number of neighbor-

hood position samples and m = 4 heading samples of

Dubins vehicle in each position sample.

i3 < i1 or i3 > i2, and i1...3 6= k. The DOPN

solution vector v = (sσ2
, . . . , sσn

) of the initial in-

cumbent solution is then changed, e.g., for the case

of i3 > i2, into v = (sσ2
, . . . , sσi1−1

, sσi2+1
, . . . , sσi3

,

sσi1
, . . . , sσi2

, sσi3+1
, . . . , sσn

). Note that the operator

can change not only the used part of the solution, the

part until index k−1 that fits within Tmax between the

starting and ending locations, but it can also change the

order of the unused target locations. The same property
applies to all the other operators for combinatorial op-

timization.

The Path Exchange operator (l = 3) randomly se-

lects two non-overlapping parts of the existing solution

and switches their position inside the solution. Such a

random exchange can be realized by selecting four fea-

sible random indexes i1 ∈ 〈2, n−1〉, i2 ∈ 〈i1 + 1, n−1〉,
i3 ∈ 〈i2+1, n−1〉, and i4 ∈ 〈i3+1, n−1〉 with i1...4 6= k.

The initial solution v = (sσ2
, . . . , sσn

) is then modified

by the operator into v = (sσ2 , . . . , sσi1−1 , sσi3
, . . . , sσi4

,

sσi2+1
, . . . , sσi3−1

, sσi1
, . . . , sσi2

, sσi4+1
, . . . , sσn

). An ex-

ample of the operator is shown in Fig. 2b.

4.2 Combinatorial local search Operators

The local search operators for combinatorial optimiza-

tion of the DOPN are One Point Move and One

Point Exchange. The proposed method for the DOPN

is based on the Randomized Variable Neighborhood
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Search (RVNS), a variant of the VNS where the local

search procedure is randomized. In the ordinary VNS,

the local search uses a systematic local search in the

solution space; however, in the proposed RVNS-based

variant, the solution space is searched by numerous ran-

dom operations. In both combinatorial local search op-

erators, each random operator is tested for a number

of times equal to the square of the number of reachable

target locations. Every such random operation that in-

creases the quality of the solution, i.e., increases the

sum of the collected reward or decreases the path length

for the same reward, is applied, and the operators con-

tinue with testing other random changes. Using local

search randomized optimization, the solution created

in the shake procedure is deeply searched for local op-

tima in pursuit of a solution that improves the current

best incumbent solution. Both the One Point Move op-

erator and the One Point Exchange operator use the

graph of the existing waypoint samples, and for any

testing sequence Σk, represented by solution vector v,

they select the waypoint samples that minimize the to-

tal path length.

For solutions with promising rewards (i.e., with the

sum of the rewards equal to or higher than Rimp =

αimpRinit, where Rinit is the reward of the initial

greedy solution created by createInitialPath), the op-

erators also perform local optimization of the waypoint

samples. When a new target location sσi
is added into

the existing solution with a reward equal to or higher

than Rimp, the currently selected waypoint heading

sample θσk
and the waypoint location sample inside the

target neighborhood pσi
are optimized by a hill climb-

ing method, similar to the method used in Waypoint

Improvement, introduced in Section 4.3 for decreasing

the length of the data collection path. Additionally, the

waypoint samples of the adjacent target locations (in

the current solution) are optimized, and if the path

length after adding the new target location meets the

budget constraint the solution is modified, and the op-

timized samples are inserted into the global graph of

the waypoint samples. In this manner, the local search

operators can fit more target locations within the same

budget Tmax, even with low initial sampling density de-

termined by o and m.

The One Point Move operator (l = 2) shown in

Fig. 3a randomly selects one target location within so-

lution vector v and moves it into a different randomly

chosen position inside v. By selecting two random in-

dexes i1 and i2, i1 6= i2, i1 6= k, i2 6= k, without loss

of generality i1 < i2, inside v = (sσ2
, . . . , sσn

) , the

solution of a single move operation is v = (sσ2
, . . . ,

sσi1−1 , sσi1+1 , . . . , sσi2−1 , sσi1
, sσi2

, . . . , sσn). If such a

move operation improves the quality of the solution,
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Fig. 3: Local search operators One Point Move and

One Point Exchange with waypoint sampling o = 4

and m = 4. The combinatorial optimization operators

randomly move one target location within the solution

in the case of One Point Move or randomly exchange

two target locations in the solution sequence by the One

Point Exchange operator.

the change is applied, and further random One Point

Move operations are tested.

The One Point Exchange operator (l = 3) illus-

trated in Fig. 3b is similar to the first l = 2 operator;

however, instead of moving one target location within

the solution v, the operator exchanges two randomly se-

lected target locations. The operator can be realized by

selecting two random indexes i1 and i2, i1 6= i2, i1 6= k,

i2 6= k, within the existing solution v = (sσ2
, . . . , sσn

)

and by exchanging the target location with the selected

indexes v = (sσ2 , . . . , sσi1−1 , sσi2
, sσi1+1 , . . . , sσi2−1 ,

sσi1
, sσi2+1

, . . . , sσn
). Like the One Point Move oper-

ator, the One Point Exchange operator tests numer-

ous such operations and applies those that improve the

quality of the solution.

4.3 Continuous Optimization Operators for the DOPN

This section presents two novel operators used for con-

tinuous optimization of the underlying DTRP to min-

imize the required path length for visiting a selected

sequence of target locations. Minimization of the path

length is motivated by the idea of fitting additional tar-

get locations that slightly violate the budget constraint

Tmax; however, the path length can fulfill Tmax after

optimizing the waypoint samples. Two proposed oper-

ators: Waypoint Shake inside the shake procedure,

and Waypoint Improvement in the local search, are

used within the proposed VNS algorithm as the first

Neighborhood operators l = 1.
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Fig. 4: Waypoint Shake and Waypoint Improve-

ment with o = 4 samples of waypoint locations and

m = 4 samples of heading angles at each waypoint lo-

cation. Waypoint Shake randomly changes the current

waypoint samples used in the incumbent solution. Way-

point Improvement optimizes the waypoint samples to

minimize the length of the solution.

The Waypoint Shake operator randomly changes

the waypoints currently used by the incumbent solution

within the interval 〈0, 2π) for the heading angle and

within the δ-radius circle for the waypoint location in-

side the target neighborhoods. Note that the waypoint

location on the δ-radius circle can also be described by

the angle within the interval 〈0, 2π), and it can there-

fore be changed and optimized in a similar way as the

heading angle. The operation corresponds to a random

change of vectors Θk and Pk that describe a solution

of the DTRP, and similarly to the other shake opera-

tors it is intended to get the solution from possible local

optima. Waypoint Shake is illustrated in Fig. 4a.

The Waypoint Improvement operator is a pro-

cedure which utilizes continuous local optimization of

both the waypoint locations and the corresponding

heading angles to improve the solution produced by

Waypoint Shake. This continuous optimization enables

solutions to be found closer to the optimum because the

configurations are no longer selected from a discrete set

of initial samples. This problem is formalized as the

DTRP, as introduced in Section 3.2.

Although the sequence of visits to the targets is

given, the DTRP remains challenging due to 2k + 2

continuous variables, where k is the number of cur-

rently selected targets to be visited. One variable de-

fines the location of the waypoint on the boundary of

the respective target neighborhood, and the other vari-

able defines the waypoint heading angle. The DTRP

is addressed by dividing the problem into smaller opti-

mization sub-problems, where each variable is treated

separately. The modification of a single variable influ-

ences not more than two adjacent Dubins maneuvers,

which makes the optimization very fast. However, the

variables are mutually affected, and the local optimiza-

tions of a single variable are therefore repeated several

times. This method has been adopted from the LIO

procedure (Váňa and Faigl 2015), originally designed

for the DTSPN.

5 Results

The proposed VNS-based solution to the DOPN has

been evaluated on benchmark datasets for the regular

OP from the literature, and has also been verified ex-

perimentally in a data collection scenario with a real

UAV. The computational results on the OP datasets

show that the proposed solution of the DOPN increases

the so far best achieved collected rewards (Pěnička

et al. 2017b) in numerous benchmark instances. The

proposed approach also outperforms the only other ex-

isting solution of the DOPN, which is based on the

Self-Organizing Map (SOM) (Faigl and Pěnička 2017).

Moreover, in comparison to the preliminary purely

sampling-based approach (Pěnička et al. 2017b), the

computational time is significantly decreased by the

continuous optimization and solutions with ≈ 90% of

the maximally collected rewards are found within sev-

eral seconds. The experimental verification with the

hexarotor UAV shows the benefit of using the neigh-

borhood distance δ in a data collection scenario with a

wide field of view camera.

5.1 Computational Results

The VNS-based DOPN method has been evaluated

on two existing benchmark1 groups for the ordinary

OP (Vansteenwegen 2018). The first group consists of

Set 3, created by Tsiligirides (1984) with up to 34

randomly placed target locations and with various in-

stances for different budget constraints Tmax. The sec-

ond group consists of two larger sets, Set 64, with

a diamond-shaped structured placement, and Set 66,

with a square-shaped structured placement, with up to

66 target locations proposed by Chao et al. (1996a).

Example solutions of the DOPN for all benchmark sets

used here are presented in Fig. 5, showing the benefits

of using a non-zero neighborhood radius for maximizing

the collected reward.

The computational times reported in this section

have been achieved using a single core of the Intel i7

1 Available online https://www.mech.kuleuven.be/en/

cib/op/#OP

https://www.mech.kuleuven.be/en/cib/op/#OP
https://www.mech.kuleuven.be/en/cib/op/#OP
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(a) Set 3, δ = 0, R = 510 (b) Set 3, δ = 0.5, R = 570

(c) Set 64, δ = 0, R = 894 (d) Set 64, δ = 0.5, R = 1116

(e) Set 66, δ = 0, R = 890 (f) Set 66, δ = 0.5, R = 1055

Fig. 5: Solutions of the DOPN for Set 3, Set 64, and

Set 66, using Tmax = 50, 55, and 60, respectively. All

solutions are shown for the turning radius ρ = 1.0 and

the neighborhood distance δ = 0 (i.e., a solution of

the DOP) on the left and δ = 0.5 on the right. The

indicated sum of the collected rewards R is shown to

increase in all three instances, in comparison with the

rewards of δ = 0, with the VNS-base solution of the

DOPN for δ = 0.5.

3.4GHz CPU and C++ implementation of the proposed

algorithm. The VNS is a stochastic method, and thus

each benchmark instance has been solved 10 times to

obtain meaningful statistical results. The initial way-

point sampling of the possible vehicle headings and the

waypoint locations are o = 8 and m = 8. For instances

with the zero neighborhood radius δ = 0, only o = 1

has been used, and for the zero turning radius of Du-

bins vehicle ρ = 0, the algorithm automatically uses

m = 1 samples for the heading angle at the target loca-

tions. The local waypoint improvement ratio αimp used

for defining the minimal collected reward in which the

local search combinatorial operators start the local op-

timization of the waypoints during the target location

addition has been set to αimp = 0.95. The termina-

tion criterion used in the computation of the presented

results is a combination of the maximum of 10 000 it-

erations together with the maximal number of 5 000

iterations without any improvement.

Table 1: Maximal Collected Rewards for Set 3

Tmax

δ=0 δ=0.5 δ=1

ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1

15 170 160 160 180 180 180 210 210 *200
20 200 190 180 250 240 230 300 290 *290
25 260 260 250 320 320 310 370 370 360
30 320 320 320 380 370 370 450 450 450
35 390 380 380 450 450 440 510 500 *490
40 430 430 *420 500 500 480 570 570 *550
45 470 460 *460 550 550 *540 600 600 *590
50 *520 520 *510 580 570 *570 630 630 *620
55 550 550 530 620 620 600 670 670 *660
60 580 580 560 650 650 630 710 710 *700
65 610 600 590 680 670 *660 750 740 *730
70 640 630 *620 720 710 *700 790 780 *760
75 670 660 *650 750 740 730 800 800 *790
80 710 690 680 790 780 *760 800 800 800
85 740 730 *710 800 800 *790 800 800 800
90 770 760 740 800 800 800 800 800 800
95 790 780 770 800 800 800 800 800 800

100 800 800 790 800 800 800 800 800 800
105 800 800 800 800 800 800 800 800 800
110 800 800 800 800 800 800 800 800 800

Table 2: Maximal Collected Rewards for Set 64

Tmax

δ=0 δ=0.5 δ=1

ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1

15 96 96 96 204 204 204 *312 312 *306
20 294 294 252 432 426 *384 576 570 *552
25 390 384 342 564 558 *510 744 738 *714
30 474 468 420 714 696 *630 *954 948 *936
35 576 570 516 894 852 *774 *1170 1146 *1128
40 714 696 624 1068 1026 *900 *1296 1272 *1242
45 816 792 708 1164 1134 *990 1344 1344 1326
50 900 882 *798 1248 1212 *1026 1344 1344 *1344
55 984 972 894 1320 1296 *1116 1344 1344 1344
60 1062 1044 954 1344 1344 1188 1344 1344 1344
65 1116 1098 1020 1344 1344 *1236 1344 1344 1344
70 1188 1170 1092 1344 1344 *1290 1344 1344 1344
75 1236 1218 1134 1344 1344 *1308 1344 1344 1344
80 1284 1266 *1176 1344 1344 *1344 1344 1344 1344

One of the most important factors that shows the

performance of the OP solver, or the DOPN solver in

our case, is the maximally achievable sum of the col-

lected rewards. The maximal rewards for various bud-

get constraints Tmax and for the neighborhood distance

δ ∈ {0, 0.5, 1.0} and turning radii ρ ∈ {0, 0.5, 1.0} are

shown in the tables. In particular, the results for Set 3,

Set 64, and Set 66 are presented in Table 1, Table 2,

and Table 3, respectively. Due to the computational

requirements for computing all the instances for vari-

ous δ and ρ, the results for Tables 1–3 have been ob-

tained with a grid of Xeon CPUs running at 2.2 GHz to

3.4 GHz. The solutions with an improved maximal col-

lected reward with respect to the previously best found
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Table 3: Maximal Collected Rewards for Set 66

Tmax

δ=0 δ=0.5 δ=1

ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1

5 10 10 0 20 15 0 35 25 0
10 40 40 40 70 70 55 105 100 90
15 120 100 *100 160 160 *160 *225 220 *205
20 *205 200 195 265 265 *260 *385 370 *360
25 280 280 275 400 380 *375 540 540 540
30 400 380 370 *500 495 *475 685 685 *655
35 *465 465 455 605 595 *590 870 845 835
40 575 570 *545 735 710 *680 985 965 *960
45 650 650 *645 840 815 *775 1135 1100 *1130
50 730 710 710 920 920 *865 1275 1240 *1235
55 825 825 820 *1050 1015 *950 1390 1370 *1380
60 915 895 890 1165 1120 *1055 1555 1500 *1485
65 980 950 955 1265 1205 *1155 1620 1605 *1590
70 1070 1050 1070 1360 1315 *1260 1680 1650 *1620
75 1140 1090 1120 1450 1410 *1325 1680 1680 *1680
80 1215 1185 1175 1535 1490 *1375 1680 1680 *1680
85 1270 1255 *1240 1605 1570 *1410 1680 1680 1680
90 1340 1310 1295 1635 1620 *1500 1680 1680 1680
95 1395 1390 1365 1680 1665 *1565 1680 1680 1680

100 1465 1445 1420 1680 1680 *1605 1680 1680 1680
105 1520 1505 *1480 1680 1680 *1670 1680 1680 1680
110 1550 1550 1535 1680 1680 *1680 1680 1680 1680
115 1595 1580 1565 1680 1680 *1680 1680 1680 1680
120 1625 1625 1610 1680 1680 1680 1680 1680 1680
125 1670 1655 1640 1680 1680 1680 1680 1680 1680
130 1680 1680 1670 1680 1680 1680 1680 1680 1680

solutions provided by the purely sampling VNS-based

solution of the DOPN (Pěnička et al. 2017a) without

continuous optimization are displayed in bold font. In

all cases, the maximal collected rewards are the same

as, or better than, the previously best found solutions.

The instances with significantly better rewards us-

ing significance level α = 0.05 are denoted by ‘*’ based

on a t-test comparison between the proposed method

and the purely sampling VNS-based solution. As is

shown in Tables 1–3, the maximal collected reward is

improved mainly for non-zero neighborhood distances δ
and turning radii ρ. This is caused by the fact that the

improvements are mainly due to the continuous opti-

mization, which is only effective when at least δ > 0 or

ρ > 0. Furthermore, the longer δ and ρ are, the greater

their influence on the path length (continuously opti-

mized in the proposed approach), and thus on the max-

imally achievable reward. Increasing the turning radius

enlarges the limited path length and thus decreases the

collected reward. Larger neighborhood radius, on the

other hand, can increase the collected reward due to

the distance savings. Both effects can be observed in

Tables 1–3 by comparing ρ = 0 and ρ = 1 for the

turning radius, and δ = 0 and δ = 1 for the neigh-

borhood radius. The results for ρ = 0.5 do not con-

tain any improvement, as this particular turning radius

has no previously known best found solutions (Pěnička

et al. 2017a). Furthermore, the maximal reward cannot

be improved for a large number of instances where the

created path visits all possible target locations. This is

mainly noticeable for δ > 0 and higher budgets Tmax,

where from a certain budget the maximally collected

reward does not increase. Significantly better results

(based on the t-test comparison) are in most cases in

the same instances where the maximal collected re-

ward is improved. However, for several maximal reward

improvements, the newly found maximal reward tends

to be an outlier, and the reward is not systematically

higher. On the other hand, several instances have signif-

icantly better rewards without improving the maximal

score. This is caused by the closeness of the average re-

ward of the proposed method to the known maximum,

together with a small standard deviation in comparison

with the purely sampling VNS-based solution. We refer

to an enlarged variants2 of Tables 1–3, which contain

the average rewards and the standard deviations of all

instances.

The continuous optimization of the waypoint sam-

ples is one of the main improvements of the proposed

DOPN algorithm in comparison to the previous algo-

rithm proposed in (Pěnička et al. 2017b). Waypoint op-

timization is used in two main parts of the proposed

VNS-based algorithm. The first part is used in the

combinatorial local search operators One Point Move

and One Point Exchange while testing an additional

target insertion into a solution with the minimal re-

ward of Rimp = αimpRinit. The waypoint samples of

the inserted and adjacent target locations are locally

optimized to shrink the length of the solution below

Tmax. The second waypoint optimization is through the

Waypoint Shake and Waypoint Improvement operators,

which randomly change the waypoint samples and opti-

mize the randomly changed waypoints to minimize the

length of the incumbent solution. Fig. 6 shows a com-

parison of the solution quality as the average sum and

as the maximal sum of the collected rewards over the

computational time. The solution obtained for ‘High

sampling DOPN’ uses o = 12 and m = 12 samples and

the ‘Low waypoint sampling’ solution uses o = 4 and

m = 4 samples. Both use only combinatorial optimiza-

tion with sampled waypoints, as proposed in (Pěnička

et al. 2017b). The reward improvement for the solutions

denoted as ‘Local optimization local search’ uses local

waypoint improvement during the combinatorial local

search operators, together with low initial waypoint

sampling. The solution denoted as ‘With Waypoint Im-

provement’ shows the reward improvement with way-

point optimization employed both in local waypoint

improvement during combinatorial local search and by

using the Waypoint Shake and Waypoint Improvement

operators. Low waypoint sampling o = 4 and m = 4 is

also used for the solution with both waypoint optimiza-

tions.

2 https://archive.org/download/vns-dopn/results.pdf

https://archive.org/download/vns-dopn/results.pdf
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Fig. 6: Comparison of the average sum and the max-

imal sum of the collected rewards over time for high

o = m = 12 and low o = m = 4 dense initial sampling

of the DOPN without and with waypoint optimization.

The solution denoted as ‘Local optimization in local

search’ uses waypoint optimization only in the combi-

natorial local search operators and the ‘With Waypoint

Improvement’ solution uses additionally the Waypoint

Shake and Waypoint Improvement operators. The algo-

rithm performance is shown for Set 64 with Tmax = 50,

ρ = 1.0 and δ = 0.5. The upper plot shows the reward

progress over one hour of maximal computational time,

while the lower plot shows a detail of the initial 180

seconds of computation.

The comparison shows that waypoint continuous

optimization increases the maximal achieved sum of the

collected rewards within the maximal one hour of com-

putational time, which was used in these tests as an ad-

ditional stopping criterion. The maximum sum of the

achieved reward is (similarly to the results in Table 1–3)

considered as one of the most important aspects of the

OP solver that shows the limiting extreme-most per-

formance of the proposed method. The initial solution

for low-density sampling together with waypoint opti-

mization (denoted as ‘With Waypoint Improvement’)

provides solutions with more than 90% of the best so-

lutions within a few seconds only. The initial solution

for a high sampling solution, however, takes approxi-

mately two minutes to compute, and in that time its

maximally achieved reward is outperformed by the ini-

tially low sampling solution with both waypoint opti-

mizations. The high sampling approach has a bigger

average reward than the proposed method shortly after

initialization (between time 125 s and 149 s) due to the

quality of the initial solution, which influences the aver-

age. However, the high sampling approach is limited by

static samples, which also limit the maximally achiev-

able reward during the computation and also result in a

lower average reward than that of the proposed method

after 167 s of calculation.

The local optimization in local search is highly influ-

enced by the selection of the improvement ratio αimp,

which determines how rewarded (compared to the re-

ward of initial solution) a solution has to be in order to

perform the local waypoint optimization of newly added

target locations. Fig. 7 shows a comparison of the se-

lected values of αimp with the average and maximal sum

of the collected rewards over the computational time.
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Fig. 7: Comparison of the average and maximal

sum of the collected rewards for improvement ratio

αimp ∈ {0.8, 0.9, 0.95, 1.0, 1.05, 1.1} over the computa-

tional time for Set 64, on the left, with Tmax = 55,

ρ = 0.5, δ = 0.5 and for Set 66, on the right, with

Tmax = 60, ρ = 0.5, δ = 0.5.

The comparison shows that higher αimp ∈
{1.05, 1.1} tends to optimize only the current incum-

bent solution which is demonstrated by the faster initial

growth of the average rewards. In the same time, how-

ever, the higher αimp prohibits continuously optimizing

enough promising solutions in order to find even bet-

ter than the currently best found solution, which is re-

flected in the fact that it cannot find the best known so-

lutions. On the other hand, the lower αimp ∈ {0.8, 0.9}
slows down the computation of local search operators

(by performing waypoint optimization on more non-

promising solutions), which results in both lower av-

erage rewards and lower maximal rewards. Maximal re-

wards are achieved by either αimp ∈ {0.95, 1.0} based

on the dataset instance being solved.

To the best of our knowledge, the only other exist-

ing algorithm for solving the DOPN is the SOM-based

approach for the so-called Close Enough Orienteering

Problem, which is in fact the DOPN emphasizing the

usage of circular neighborhoods. A comparison of the

proposed VNS-based and SOM-based algorithms for

various neighborhood radii is presented in Fig. 8 for

20 runs of VNS per instance, and for 80 runs in the

case of the SOM-based algorithm. The results show

that for all tested neighborhood distances, the proposed

method produces solutions with similar or significantly
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better results than the SOM-based algorithm (Faigl and

Pěnička 2017).
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Fig. 8: Comparison of the proposed VNS-based solution

and the SOM-based solution (Faigl and Pěnička 2017)

of DOPN for selected neighborhood distances. The col-

lected rewards are shown for Dubins vehicle with turn-

ing radius ρ = 0.5 for all Set 3, Set 64, and Set 66.

The performance of the proposed algorithm is sig-

nificantly influenced by the initial waypoint sampling

density defined by the number of Dubins vehicle head-

ing samples m at each of the o waypoint location sam-

ples. Waypoint sampling mainly influences the compu-

tational time and the maximally achievable sum of the

collected rewards. Using high sampling density such as

o = 12 and m = 12 requires much more computational

time in the local search One Point Move and One Point

Exchange operators for selecting the samples with the

shortest path for a given sequence of target locations.

However, with high sampling density, the quality of the

solution as the sum of the collected rewards is higher

than for low-density sampling. For the newly proposed

VNS-based solution of the DOPN with optimization of

the waypoint samples, it is possible to achieve the same

solution quality with low initial sampling through opti-

mization of the samples. The initial sampling therefore

mainly influences the evolution of the solution quality,

i.e., the maximal sum and the average sum of the col-

lected rewards, over the computational time, as shown

in Fig. 9.

The comparison of the initial waypoint sampling

shows that both for very low sampling o = m = 1

and for very high sampling o = m = 16, the av-

erage and maximal collected rewards are below other

medium sampling densities. The highest maximal and

average rewards are collected with waypoint sampling

o = m = 8, with similar results for o = m = 4. How-

ever, the computational time required for creating the

initial solution with o = m = 8 is approximately 17 s,

while for a lower sampling density o = m = 4, it is

within 1.5 s.

Fig. 9 also shows the computational requirements of

the proposed VNS-based solution for the DOPN, and

can be used for a comparison of the computational time
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Fig. 9: Comparison of different initial waypoint sam-

pling densities for Set 66 with Tmax = 60, ρ = 0.5, and

δ = 0.5. In the upper plot, the average and maximal

collected rewards are shown over one hour of the maxi-

mal computational time. The lower plot shows a detail

of the average and maximal rewards within the initial

360 seconds of computation.

for achieving a certain sum of collected rewards. The

SOM-based solution (Faigl and Pěnička 2017) requires,

for Set 66, Tmax = 60, δ = 0.5 and ρ = 0.5, an average

computational time of 33.8 s with the maximal achieved

rewards R = 955 and average R = 880. For the same

configuration of the problem, Fig. 9 shows that in 33.8 s

the average sum of the collected rewards is 970 for o =

m = 8, 985 for o = m = 4, and 997 for o = m = 2. The

maximal collected rewards at the same time are 1045

for o = m = 8, 1040 for o = m = 4, and 1050 for o =

m = 2. The proposed VNS-based solution outperforms

the state-of-the-art algorithm not only in the maximally

achievable sum of collected rewards but also regarding

the computational time required for achieving a certain

sum of collected rewards. This is very important for a

real deployment of the method, as it is demonstrated

in the following section.

5.2 Experimental Verification

The proposed method was experimentally verified in

a visual data collection scenario with a real hexarotor

UAV in an outdoor environment. Although the Ver-

tical Take-Off and Landing (VTOL) UAV does not

necessarily have to be modeled as Dubins vehicle, the

model is convenient for the VTOL UAV when travers-

ing a curvature-constrained path at a constant speed.

Constant speed flights of the VTOL can be beneficial

for visual data collection missions, where additional vi-
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sual information during flights between target location

neighborhoods can be further used, and constant speed

improves the quality of the images that are taken. From

the selected constant speed vc and the maximal accel-

eration amax of the UAV, the minimal turning radius

of Dubins vehicle can be computed using the equation

of circular motion with constant speed ρ = v2c/amax.

Note that for the VTOL (not so much for the fixed-wing

UAV), the solution quality can be improved by allowing

acceleration to the maximal speed during straight line

segments of Dubins maneuvers. This, however, is only

a technical consideration, which does not require any

change to the proposed algorithm. Considering these

accelerated Dubins maneuvers would only require the

time of flight cost instead of length cost, and would

change the length-budget constraint to a time-budget

constraint. We therefore consider for experimental ver-

ification the DOPN as defined in Problem 3 with stan-

dard Dubins maneuvers for VTOL, which also provides

a better comparison of the results. We refer to Pěnička

et al. (2017a) for a comparison of an experimental de-

ployment of the DOP and the ordinary OP with a

straight line trajectory and sharp turns. The advan-

tage of using Dubins vehicle model for fast and reliable

visits to multiple locations to be scanned by the on-

board camera was also demonstrated by our team in

the third challenge of the Mohamed Bin Zayed Inter-

national Robotics Challenge (MBZIRC) competition,

which also motivated the research presented here. The

effectiveness of fast flying using Dubins vehicle model

(e.g., demonstrated in the MBZIRC challenge in the so-

lution of the DTSP) resulted in the best performance

among all 143 competing teams.

The used hexarotor UAV was designed for the

MBZIRC competition3 and was built on the DJI hex-

acopter F550 frame with E310 DJI motors and with

the PixHawk Autopilot low-level flight controller (Meier

et al. 2012). The low-level localization of the Pix-

Hawk Autopilot is realized as a combination of the

standard GPS with a compass and with the ac-

celerometers and gyroscopes at the lowest level. To

increase the localization precision, the system uses

PRECIS-BX305 (Tersus-GNSS 2018) RTK GPS with

centimeter accuracy and also the TeraRanger One laser

rangefinder for measuring the distance from the ground.

The onboard Intel NUC-i7 mini PC provides enough re-

sources for calculating the plan for the addressed data

collection scenario formulated as the DOPN. In addi-

tion, the onboard computer realizes the Model Predic-

tive Control (MPC) trajectory controller (Báča et al.

2016) for trajectory tracking, UAV localization estima-

3 See http://mrs.felk.cvut.cz/mbzirc for examples of
the experimental deployment of the system.

tion, and sensor fusion. For a visual information gather-

ing task, a high-resolution wide field of view Mobius Ac-

tionCam camera was used. The hardware components

are summarized in Fig. 10.

Fig. 10: Hardware components of the hexarotor UAV for

experimental verification of the data collection scenario

formulated as the Dubins Orienteering Problem with

Neighborhoods.

The results from the experimental verification of the

proposed DOPN method in a realistic data collection

scenario using the onboard camera are shown in Fig. 11.

During the experiment, constant vehicle speed vc =

4 ms-1 was used together with maximal acceleration

amax = 2.6 ms-2, which resulted in ρ = 6.15 m turning

radius of Dubins vehicle. The scenario for the exper-

imental verification consists of 19 target locations, in-

cluding the starting and ending locations, with the bud-

get constraint set to Tmax = 150 m. The planned trajec-

tories for the various neighborhood radii δ = {0, 3, 6} m

together with the real flown trajectories of the UAV are

depicted in Fig. 11.

The real trajectories deviate slightly from the

planned trajectory due to the strong wind conditions

and the tightly set maximal acceleration of the vehicle.

However, the presented camera images show the tar-

get markers placed throughout the experimental area,

which were taken at the respective waypoints of the

targets, and thus the mission was successfully fulfilled.

The sum of the collected rewards for the increas-

ing neighborhood radii shows the main benefits of us-

ing the VNS-based solver for the DOPN with non-zero

turning radii, where the collected reward increases with

each incrementation of the neighborhood distance. The

onboard camera images in Fig. 11 show that the high

neighborhood radius of 6 m, with a high collected re-

ward, is usable for a visual data collection scenario of

this kind. The complete set of radii used during the ex-

perimental verification, together with the correspond-

ing sum of the collected rewards and the path lengths,

is shown in Table 4.

http://mrs.felk.cvut.cz/mbzirc
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δ = 6 m δ = 3 m δ = 0 m

Fig. 11: Snapshots from the experimental verification of the proposed VNS-based algorithm for the DOPN in a

data collection scenario with various neighborhood distances δ. We refer to https://youtu.be/zPXZahW33-w for

supporting video material from the experimental verification of the method.

Table 4: Collected reward and path length from the real

experiment for various neighborhood radius δ

δ [m] 0 1 2 3 4 5 6 7

Reward R 65 67 71 77 79 85 87 88
Length [m] 148.0 143.3 146.9 148.0 148.6 147.9 139.0 143.7

6 CONCLUSIONS

In this paper, we introduce a novel approach for

curvature-constrained data collection planning with

UAVs that is formulated as the Dubins Orienteering

Problem with Neighborhoods (DOPN). The DOPN sets

out to find a path for Dubins vehicle that maximizes

the sum of the collected rewards by visiting a subset

of the given target locations with prescribed starting

and ending locations and a constrained travel budget.

The DOPN uses a predefined circular neighborhood at

each target location, motivated by remote data collec-

tion from the target locations to save the required travel

cost, and thus to increase the sum of the collected re-

wards within the same budget constraint.

The proposed Variable Neighborhood Search-based

method uses a set of neighborhood operators that per-

form a combinatorial optimization to maximize the sum

of the collected rewards by selecting a subset of tar-

get locations to be visited, and also by determining the

sequence of the visits. The proposed method employs

initial low-density waypoint sampling consisting of sam-

pling both Dubins vehicle headings and waypoint loca-

tions within the neighborhood of each target location,

to quickly determine an initial data collection path by a

greedy maximization of reward per tour prolongation.

The continuous optimization employed in the proposed

VNS neighborhood operators is used for the optimiz-

ing the initial waypoint samples to minimize the length

of the Dubins path visiting the neighborhoods of the

selected target locations. The proposed waypoint opti-

mization increases the sum of the collected rewards by

adding unvisited target locations within the prescribed

budget constraint.

The computational results show that the proposed

VNS-based algorithm is a viable method for solving the

DOPN. The continuous optimization employed in the

novel approach significantly improves the required com-

putational time, and also improves the best-known solu-

tions in several benchmark instances. The method also

outperforms the only other existing SOM-based DOPN

approach in both solution quality and computational

https://youtu.be/zPXZahW33-w
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time. Finally, the experimental verification of the pro-

posed method with a real hexarotor UAV demonstrates

the deployment of the proposed solution of the DOPN

in a data collection scenario with an onboard camera.

The solutions found for the experimental deployment

also show the benefits of using a non-zero neighborhood

distance on the sum of the collected rewards.

For our future work, we intend to extend the pro-

posed approach to a variant of multi-UAV data collec-

tion scenarios and to employ more complex maneuvers,

such as cubic splines, which are suitable for the non-

constant forward velocity of the VTOL UAV, e.g., as

in Faigl and Váňa (2018) for solving TSP-like scenar-

ios.
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bézier curves. IEEE Robotics and Automation Let-

ters 3(2):750–757

Faigl J, Pěnička R, Best G (2016) Self-organizing map-

based solution for the orienteering problem with

neighborhoods. In: IEEE International Conference

on Systems, Man, and Cybernetics (SMC), pp 1315–

1321
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Mladenović N, Hansen P (1997) Variable neighbor-

hood search. Computers & Operations Research

24(11):1097–1100
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