Autonomous Robots
https://doi.org/10.1007/s10514-017-9691-4

@ CrossMark

Online planning for multi-robot active perception with self-organising
maps

Graeme Best'® - Jan Faigl? - Robert Fitch'3

Received: 5 December 2016 / Accepted: 20 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract

We propose a self-organising map (SOM) algorithm as a solution to a new multi-goal path planning problem for active
perception and data collection tasks. We optimise paths for a multi-robot team that aims to maximally observe a set of nodes
in the environment. The selected nodes are observed by visiting associated viewpoint regions defined by a sensor model. The
key problem characteristics are that the viewpoint regions are overlapping polygonal continuous regions, each node has an
observation reward, and the robots are constrained by travel budgets. The SOM algorithm jointly selects and allocates nodes to
the robots and finds favourable sequences of sensing locations. The algorithm has a runtime complexity that is polynomial in
the number of nodes to be observed and the magnitude of the relative weighting of rewards. We show empirically the runtime
is sublinear in the number of robots. We demonstrate feasibility for the active perception task of observing a set of 3D objects.
The viewpoint regions consider sensing ranges and self-occlusions, and the rewards are measured as discriminability in the
ensemble of shape functions feature space. Exploration objectives for online tasks where the environment is only partially
known in advance are modelled by introducing goal regions in unexplored space. Online replanning is performed efficiently
by adapting previous solutions as new information becomes available. Simulations were performed using a 3D point-cloud
dataset from a real robot in a large outdoor environment. Our results show the proposed methods enable multi-robot planning
for online active perception tasks with continuous sets of candidate viewpoints and long planning horizons.

Keywords Active perception - Multi-robot systems - Self-organising maps - Online planning

1 Introduction

Mobile robots use their sensors and perception algorithms to

This work was supported in part by the Australian Centre for Field
Robotics; the NSW Government; the Australian Research Council’s
Discovery Project funding scheme (No. DP140104203); and the Faculty
of Engineering & Information Technologies, The University of Sydney,
under the Faculty Research Cluster Program. The work of Jan Faigl was
supported by the Czech Science Foundation (GACR) under research
Project No. 15-09600Y.

This is one of the several papers published in Autonomous Robots
comprising the Special Issue on Online Decision Making in
Multi-Robot Coordination.

B Graeme Best
g.best@acfr.usyd.edu.au

Jan Faigl
faiglj@fel.cvut.cz

Robert Fitch
rfitch@acfr.usyd.edu.au; rfitch@uts.edu.au

I Australian Centre for Field Robotics (ACFR), The University
of Sydney, Camperdown, NSW 2006, Australia

Published online: 13 December 2017

understand their surrounding environment. Of fundamental
interest are object recognition, classification and model gen-
eration tasks, which require understanding properties such as
the pose, segmentation, class and identity of a set of objects
in an environment (Van Hoof et al. 2014; Wu et al. 2015;
Patten et al. 2016). The informativeness of observations,
and therefore the performance of perception algorithms,
can be improved by judiciously selecting observation loca-
tions (Chen et al. 2011). Performance can be significantly

Department of Computer Science, Faculty of Electrical
Engineering (FEE), Czech Technical University in Prague,
Prague, Czech Republic

Centre for Autonomous Systems, University of Technology
Sydney, Ultimo, NSW 2007, Australia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-017-9691-4&domain=pdf
http://orcid.org/0000-0003-0443-8248

Autonomous Robots

/

Fig. 1 Illustration of the motivating active perception problem. Each
object segment (point clouds) is observed by visiting the viewpoint
regions (circle segments). Grey cylinders represent positions of two
robots. The currently visited viewpoint regions are drawn in bold. Black
lines represent the path plans. The aim is to collectively maximise the
weighted sum of viewpoint regions visited by the robots. This scene is
part of the environment in Fig. 2

improved by using longer planning horizons (Singh et al.
2009; Becerra et al. 2016; Atanasov et al. 2014), jointly plan-
ning for multiple robots (Best et al. 2016a; Charrow 2015;
Garg and Ayanian 2014; Xu et al. 2013; Hollinger et al. 2009)
and considering larger sets of candidate sensing locations.
However, current planning algorithms with these properties
are often too computationally expensive for practical use in
large scale, online and more complex active perception tasks;
we propose a self-organising map algorithm as a solution to
bridge this gap.

The performance of an active perception mission, such as
a classification, exploration, coverage, or persistent monitor-
ing task, is largely dependent on an appropriate choice of
viewpoints. Current approaches for active perception typi-
cally estimate the value of visiting candidate viewpoints by
simulating predicted observations (Van Hoof et al. 2014,
Wu et al. 2015; Patten et al. 2016). For complex sensor
models, these predictions can be computationally expensive,
which therefore restricts the capabilities of planning algo-
rithms. Instead, we focus on planning paths for perception
tasks where informative parts of the objects in the envi-
ronment have been extracted. Therefore, we use an inverse
sensor model to define a discrete set of overlapping con-
tinuous viewpoint regions, with associated rewards, where
each part can be observed. Correlations between viewpoints
can be naturally modelled in our formulation as the over-
lap between viewpoint regions. Figures 1 and 2 illustrate an
example outdoor environment with a collection of objects
observed by a 3D laser scanner. The path planning problem
is to optimise the rewards gained by visiting these desirable

@ Springer

viewpoint regions. This new formulation for active percep-
tion enables the planner to consider a continuous space
of candidate viewpoints, long-horizon planning, multi-robot
scenarios and efficient online replanning.

This active perception formulation describes a multi-goal
path planning problem with similarities to the orienteer-
ing problem (OP) (Gunawan et al. 2016; Vansteenwegen
etal. 2011) and the travelling salesman problem (TSP) (Toth
and Vigo 2001). The prize-collecting TSP with neighbour-
hoods (PC-TSPN) is a closely related TSP variant that has
recently been solved and applied to data collection in sen-
sor network applications (Faigl and Hollinger 2014). In the
PC-TSPN, the objective is to plan the path of a robot that
maximally selects and visits a set of disks, where the objec-
tive function is defined as the sum of the path length and the
rewards for visiting each disk. This objective function has
convenient algorithmic properties; however, it is unclear how
to balance the trade-off between path lengths and rewards
when applied to real problems. Instead, we develop a new
formulation that generalises the OP; we directly optimise
the observation rewards while the path length is limited by
a maximum travel budget. These budget constraints can be
selected to meet the requirements of the application, such
as fuel, time and other resource constraints, or a planning
horizon.

The considered problem is NP-hard, which can be shown
by a reduction from the orienteering problem, and therefore
we turn to heuristic solutions. In particular, we consider an
extension of the self-organising map (SOM) approaches for
the TSP. SOM is a two-layered neural network accompanied
by an unsupervised learning procedure that preserves topo-
logical properties of an input space. SOM has been applied
to the traditional TSP by several authors, e.g., Angéniol et al.
(1988), Somhom et al. (1997). Although SOM for the TSP
does not compete with the best known combinatorial heuris-
tics for the conventional TSP (Helsgaun 2000), it provides
a significant advantage in problems that require selecting
observation locations. This is particularly important in the
TSPN (Faigl and Hollinger 2014) and the OP with neigh-
bourhoods (Faigl et al. 2016) where the algorithm implicitly
selects sensing locations within continuous neighbourhoods.

Jointly optimising the selection and sequence of nodes
to observe, along with finding favourable viewpoints within
sensing regions, can greatly reduce the path distance by
avoiding unnecessary travel. Therefore, we consider the
original idea of the SOM-based data collection planning
introduced in Faigl and Hollinger (2014) for our constrained
problem with limited travel budgets. Our new approach
ensures these hard budget constraints are satisfied by the
planning algorithm.

Moreover, we also generalise the approach in Faigl and
Hollinger (2014) to planning for multi-robot teams. This
requires addressing additional challenges, including coordi-

Autonomous Robots

Fig. 2 An example environment, object parts, viewpoint regions and
solution paths for two robots (same as Fig. 1). The 3D point cloud was
generated by a real robot moving around an environment consisting of
trees, tables, chairs, bins and a motorbike. The underlying grid has 5m
spacing. Almost all object parts are observed along the planned paths,

nating the robots to select mutually beneficial observation
locations, effectively using the available resources of each
robot, and overcoming the compounded computational com-
plexity to quickly find good solutions. Our algorithm jointly
plans for multiple robots simultaneously by optimising the
allocation of nodes to robots. Therefore, our approach does
not require predefined or explicit partitioning of the envi-
ronment. The algorithm has polynomial bounds on runtime
complexity, and scales well as the number of robots increases.

A primary contribution of this paper is to demonstrate
that the algorithmic approach is suitable for online scenar-
ios. In particular, we show that the formulation can naturally
incorporate exploration objectives to discover new informa-
tion, and the planner efficiently performs replanning as new
information becomes available. Exploration objectives can
naturally be encoded as viewpoint regions, so that the plan-
ner balances between making high-quality observations of
known objects and visiting unexplored space to discover new
objects. This formulation is motivated by scenarios where
there are two complementary sensing modalities. For exam-
ple, a long-range laser sensor (Bargoti et al. 2015) detects
the presence and locations of trees on a farm, while a close-
range high-resolution RGB-D sensor (Martens et al. 2017;
Peng et al. 2016) performs the primary task of character-
ising the fruit in the trees. The planner needs to balance
the use of these two modalities in order for the robots to
discover as many objects as possible while also making
sufficient close-range observations. The proposed SOM algo-
rithm enables efficient online replanning as new information
becomes available since it is able to effectively reuse and
adapt previous solutions. This is a vitally important require-
ment for real robots performing onboard computations while
executing a mission (Likhachev et al. 2005).

with some skipped due to the travel budget constraints. In this scenario,
all objects are known to the offline planner. In online scenarios, addi-
tional goals are placed in unexplored regions, and the goals and plans
adapt as observations are made

In addition to theoretical analysis, we also perform simu-
lations of several random environments and active perception
tasks using a 3D point cloud dataset (Patten et al. 2015) and
a realistic observation model using ensemble of shape func-
tions descriptors (Wohlkinger and Vincze 2011). The results
highlight advantages of the algorithm in an offline setting
for addressing the multi-robot, non-uniform reward, con-
strained budget and polygonal region characteristics of the
problem. We also show the advantages of planning over con-
tinuous rather than discrete space by showing our approach
outperforms the Dec-MCTS algorithm (Best et al. 2016a).
Additionally we empirically evaluate the performance of
the planner when incorporating exploration objectives and
adapting to new information when replanning. We high-
light the advantages of long-horizon planning over greedy
approaches, even when limited information is available. The
active perception experiments show the feasibility in prac-
tice of online long-horizon planning for multi-robot active
perception tasks.

A preliminary version of this paper appeared as Best
et al. (2016b). This extended version additionally contains:
expanded algorithmic details; a generalised formulation for
fixed start and/or end locations (similar to Faigl et al. (2016));
extended theoretical analysis of the runtime complexity and
convergence; empirical analysis of the algorithm’s conver-
gence and anytime properties; empirical validation of an
example observation model definition; a comparison to Dec-
MCTS; a formulation for online scenarios; and extensive
simulation experiments that demonstrate the feasibility of
the approach for online replanning scenarios.

The remainder of this paper is organised as follows. Sec-
tion 2 summarises related work. Section 3 introduces our
new problem formulation for active perception. In Sect. 4,

@ Springer

Autonomous Robots

we propose a self-organising map solution algorithm. The
algorithm is analysed theoretically and empirically in Sect. 5
(and the “Appendix”). Sections 6 and 7 describe how this for-
mulation can be applied to object recognition type problems
in offline and online scenarios, and show results for simulated
experiments with a 3D point-cloud dataset. Finally, Sect. 8
concludes the paper and discusses avenues of future work.

2 Related work

Active perception systems typically consist of several mod-
ules (Patten et al. 2016): a planning module uses the current
belief of the world to select the next observation locations;
a navigation module is responsible for driving the robot to
the next chosen locations; and observation, processing and
update modules update the belief of the world. This new
belief then feeds back in to the planning module to replan
the observation locations, and this process continues. Tradi-
tionally, active perception problems arise while using vision
sensing modalities (Chen et al. 2011), although recently there
has also been a need for new formulations suitable for sensing
modalities with depth information, such as 3D laser (Patten
etal.2017), RGB-D (Van Hoof et al. 2014; Patten et al. 2016;
Martens et al. 2017) and thermal (Cunningham-Nelson et al.
2015) modalities.

The performance of an active perception system is highly-
dependent on the observation locations selected by the
planning module; in this work we develop a planner that
efficiently produces high-quality sequences of observation
locations and can adapt to new information collected online.
In most work, the planning component of active percep-
tion systems is myopic (single-step) (Van Hoof et al. 2014;
Wau et al. 2015; Cunningham-Nelson et al. 2015), which is
reasonable in small environments where it is assumed that
previous actions do not affect the cost of future actions.
Scaling the problem up to larger environments results in
location-dependent action costs, and therefore performance
is significantly improved by planning sequences of view-
points over longer planning horizons. Approaches have
been proposed for planning sequences of locations (Becerra
et al. 2016; Atanasov et al. 2014; Hollinger et al. 2011;
McMahon and Plaku 2017), but the formulations have been
limited to restricted cases, such as a single object, sin-
gle robot, simple perception model, or highly-constrained
action space. Recently, Best et al. (2016a) proposed the
decentralised Monte Carlo tree search (Dec-MCTS) algo-
rithm for long-horizon, decentralised, multi-robot planning.
While Dec-MCTS has interesting theoretical properties and
is applicable to general formulations, in this paper, we focus
on developing an efficient heuristic algorithm for a more
specific active perception formulation to quickly produce
high-quality solution paths. Additionally, while Dec-MCTS

@ Springer

is a parallel algorithm for decentralised planning, in this
paper we are interested in scenarios where multi-robot plan-
ning is performed by a centralised processor. Another key
property of our formulation is that we reason over continu-
ous candidate viewpoint regions, which has not previously
been addressed by planning algorithms for object recogni-
tion tasks. We perform an empirical comparison between
our approach and Dec-MCTS in Sect. 6.3.

For active object classification and related scenarios, most
planning approaches assume that the locations of objects
are already known or the objects are discovered opportunis-
tically (Atanasov et al. 2014; Hollinger et al. 2011; Wu
et al. 2015; Patten et al. 2015, 2016). In large-scale envi-
ronments and online planning scenarios it is necessary to
incorporate exploration objectives to directly encourage dis-
covering new objects. Once objects have been discovered,
then additional observations can be made to learn higher-
level semantic properties of the objects. Many approaches
have been proposed for robotic exploration tasks, such as
information-theoretic (Bourgault et al. 2002) and TSP (Zlot
et al. 2002) formulations. Long-horizon planners for explo-
ration typically significantly outperform greedy algorithms
(Kulich et al. 2011; Faigl et al. 2012; Best and Fitch 2016).
In object classification tasks, planners should balance the
trade-off between exploration objectives and the primary
perception task objectives, which may by achieved using a
weighted sum of the objectives (Kriegel et al. 2013; Patten
et al. 2017) or multi-criteria decision making (Quattrini Li
et al. 2016). The formulation we propose in this paper can
naturally encode and balance exploration and primary objec-
tives as sets of continuous viewpoint regions, which are then
jointly considered by the planner.

Our new active perception problem formulation and plan-
ning approach is motivated by the work of Faigl and Hollinger
(2014) for the PC-TSPN problem using an SOM algorithm.
They applied the PC-TSPN to a data collection problem
that requires communicating with a subset of an underwa-
ter sensor network. We generalise this problem formulation
and algorithmic approach to be more suitable for our active
perception formulation. In particular, we address scenarios
with multiple robots, polygonal goal regions (Faigl 2010),
budget constraints, non-uniform observation rewards, and
online replanning. An SOM-based algorithm has recently
been proposed for the orienteering problem with neighbour-
hoods (Faigl et al. 2016); this approach is also related, but
we generalise for multi-robot teams, and differ in how we
address budget constraints.

The orienteering problem (OP) is a type of vehicle routing
problem where the paths are constrained by travel budgets.
Many heuristic algorithms exist for the classic problem and
related variants (Gunawan et al. 2016; Vansteenwegen et al.
2011). The most relevant variants to our formulation include
the team-OP that extends the problem for multi-agent sys-

Autonomous Robots

tems, generalised-OP that defines the objectives as a function
of discrete sets, and the OP with neighbourhoods (OPN)
where rewards are collected by visiting continuous regions.
In our recent work, an SOM-based algorithm was shown to
achieve comparable performance to state-of-the-art solvers
for the standard OP and we extended the algorithm for the
single-agent OPN (Faigl et al. 2016). For the team-OP, sev-
eral approaches have been proposed, such as computationally
demanding exact solvers (Dang et al. 2013a) and power-
ful metaheuristics based on variable neighbourhood search
(Archetti et al. 2007) or particle swarm optimisation (Dang
etal. 2013b). However, to the best of our knowledge, none of
the existing algorithms for team-OP are capable of solving
variants with continuous neighbourhoods. While OP formu-
lations have been applied to many problems (Gunawan et al.
2016; Vansteenwegen et al. 2011), including robotics appli-
cations (Yu et al. 2016; Best and Fitch 2016), the focus has
mostly been on offline planning rather than online settings
where goals are discovered over time.

The generalised-TSP (GTSP) (Noon and Bean 1989;
Smith and Imeson 2017) is a closely related TSP variant
that requires visiting at least one node in every discrete set of
nodes. The GTSP has been applied to robotic path planning
problems for mapping (Charrow 2015) and mobile refuelling
(Mathew et al. 2013) tasks, which are solved using a transfor-
mation to the standard TSP. Related graph-based robot path
planning algorithms include Monte Carlo tree search (Best
et al. 2016a), branch and bound (Singh et al. 2009; Binney
and Sukhatme 2012; Best and Fitch 2016), recursive greedy
(Chekuri and Pal 2005; Singh et al. 2009) and sweep planes
(Best et al. 2017). These formulations restrict the search to
discrete points and the computation time increases with the
number of points. In contrast, a set of continuous regions
are efficiently searched by our proposed algorithm, and the
runtime does not increase with the area of each region.

The m-TSP generalises the TSP to multiple agents, which
requires assigning nodes to agents and finding a path for each
agent. There are several variations of the m-TSP with differ-
ent objective functions and many different approaches (Bek-
tas 2006; Lagoudakis et al. 2005). SOM-based approaches
have been proposed for the minmax m-TSP, where the objec-
tive is to minimise the path of the longest agent. The approach
creates an individual network for each agent, and the adapta-
tion favours neurons from the currently shortest tours when
allocating tasks to individual agents (Somhom et al. 1999). A
similar idea has been considered for multi-agent coverage of
a polygonal world with obstacles (Faigl 2010, 2016a). How-
ever, these problems do not consider budget constraints or
selecting subsets of nodes.

Our formulation is designed for active perception tasks
where the rewards are viewpoint sensitive. This is particu-
larly the case where it is required to observe a set of objects
or landmarks. Our primary motivation is object classification

tasks, however a variety of other tasks can be formulated in a
similar way. Coverage tasks are most similar to our problem,
which require a team of robots to collectively observe every
location in an environment (Galceran and Carreras 2013;
Dornhege et al. 2016; Honig and Ayanian 2016; Bircher et al.
2016). Target tracking and search problems require using the
sensing capabilities of multiple robots to locate and maintain
contact with targets (Robin and Lacroix 2015; Xu et al. 2013;
Charrow 2015). Persistent monitoring tasks require sensing
an environment to reduce the uncertainty of a belief of a
process (Cao et al. 2013; Garg and Ayanian 2014). Active
SLAM requires determining the relative poses of a set of
landmarks (Atanasov et al. 2015). Although our problem is
similar to these, in that we require dividing the workload
and finding paths for multiple robots, we have a different
objective function; therefore, we require a new algorithmic
approach.

3 Problem formulation

This section formally defines the budgeted multi-robot active
perception problem. The objective is to plan the paths for a
team of robots such that they maximally observe a set of
nodes in the environment with varying rewards. Each robot
has an associated travel speed and maximum travel bud-
get. Each node may be observed by visiting any point in
its associated viewpoint region, represented as a polygon.
These nodes, viewpoint regions and rewards may be defined
to meet the objectives of the application; in Sects. 6 and 7
we formulate example problem instances for perceiving 3D
point-cloud objects and incorporating exploration objectives.
In this section we define the problem by considering the
objectives that are currently known at a given time instance.
Though we are interested in solving this problem in an online
setting such that the plans adapt as new information is dis-
covered, and a formulation for these scenarios is developed
further in Sect. 7.

3.1 Multi-robot team

A team of R robotsis denoted R = {rl, P2, rR}. The tra-
jectory of each robot 7/ is defined as a sequence of waypoints
X = (xi, xé, xé, ...), where each waypoint is a position
within a free space environment x; € R?. Each robot 7’
moves along a straight line between waypoints at a constant
speed s?, which may be different for each robot. The cost of
each robot’s path ¢! > 0 is the time taken to travel through
the sequence of waypoints X’. Each robot has a cost bud-
get b' > 0, and a set of robot paths {X'} is deemed to
be feasible if every robot meets its budget constraint, i.e.,
¢l < b',Vrt € R. We address several possible conditions
for the start and end positions of the robots: (1) the start and

@ Springer

Autonomous Robots

end positions are unconstrained and free to be selected by
the planner, (2) the start positions are unconstrained but the
robots must end at their start position, and (3) the start and/or
end position is fixed.

3.2 Viewpoint regions and rewards

The robots aim to observe a set of N nodes N =
{n',n2, ..., n"N} at different locations within the environ-
ment. Every node has a weight w* > 0 that defines the
reward for observing the node. Each node n* has a con-
tinuous set of viewpoints Z* defined as all points on and
within a simple polygon. The robot observes a node if any
waypoint of the robot’s path is within the viewpoint region,
ie., Elx;'. e X' : xj. e Zk. The binary indicator variable
= {0, 1} for each node n¥ is 1 if the node is observed by
one or more robots and 0 otherwise. All robots sense contin-
uously along their paths, which can be taken into account in
the above definition by adding additional waypoints along a
path at no extra cost. Although we assume the regions are the
same for each robot, the algorithm can easily be extended to
robot-dependent observations.

We are particularly interested in formulations for online
tasks, where the robots should aim to observe known objec-
tives as well as discover currently unknown objectives. This
balance can be achieved using our formulation by introduc-
ing new nodes to the set V' that represent regions where the
robots may be expected to discover new objectives. We for-
mulate this concept further in Sect. 7.

3.3 Problem statement

The optimisation problem is to plan the locations of way-
points for each robot and the sequence the waypoints are
visited X*, such that all budget constraints are met and the
sum of the observation rewards for the nodes is maximised.
More formally, we aim to find the set of paths { X'} that opti-
mises:

maximise Z okwk,
nkeN
s.t. ¢ < bi, vri e R.

We are interested in solving this problem by replanning
in an online setting. The robots initially plan based on the
information available offline. After each action is executed,
an observation may result in a change of the nodes, viewpoint
regions or rewards. We assume these changes are small and
therefore the planner should efficiently adapt its previous
solution to address the new objectives.

@ Springer

3.4 NP-hardness

The problem is NP-hard and areduction from the orienteering
problem (Vansteenwegen et al. 2011) with Euclidean costs
can readily be shown by setting the number of robots R to 1
and the viewpoint sets { Z¥} as singleton. This result motivates
the development of a heuristic algorithm to approximately
solve the problem in polynomial time.

4 Self-organising map algorithm

Self-organising map algorithms aim to give a lower-
dimensional representation of an input space, while pre-
serving a given topological graph-based structure of the
representation. For our problem the input space is the set
of viewpoint regions in the environment, and the algorithm
aims to find a set of sequences of waypoints (representing
robot paths) that best fits this input space. The learning proce-
dure is competitive in that each viewpoint region is presented
one at a time, and each waypoint competes to be the win-
ner for representing that region. A winner waypoint moves
towards thatregion, and neighbours of the winner in the graph
topology will also move towards the region by a decreasing
distance. This process is repeated for a fixed number of learn-
ing epochs, when convergence of the paths to a stable state
is guaranteed.

This section details the proposed SOM learning proce-
dure for our problem formulation, which includes addressing
non-uniform observation rewards, node selection satisfy-
ing budget constraints, multi-robot task allocation to nodes
and can efficiently perform online replanning by adapt-
ing previous solutions. We first provide an overview of
the algorithm followed by a detailed explanation of all
components.

4.1 Algorithm overview

An overview of the proposed self-organising map algorithm
is presented in Fig. 3 and Algorithm 1. The algorithm con-
sists of two nested loops and in each iteration, the solution
paths for the team of robots is adapted towards the final solu-
tion. During each iteration of the outer loop (Algorithm 1
line 5), called an epoch, all viewpoint regions are addressed
one at a time (line 7) by adapting the path of one of the
robots towards the considered viewpoint region (line 12).
The path adaptations are performed using an extension of
the standard self-organising map adaptation process for TSP
problems, in combination with a greedy robot-node allo-
cation policy (line 11). This allocation policy divides the
workload between robots while satisfying budget constraints.
Regions with low reward are considered once per epoch while
high-reward regions are considered multiple times. At the

Autonomous Robots

adaptation
towards goal

for each

robot
current

solution

travel
budget
used
9.5/10 robot-node path
allocation regeneration

9.8/10

for each goal region in a random order (duplicated by reward weights)

repeat until convergence (fixed number of iterations)

Fig.3 Overview of the proposed self-organising map algorithm with an example problem instance for three robots

end of each epoch, the paths are regenerated to remove non-
informative waypoints (line 13), and an adaptation parameter
is cooled (line 16). The algorithm continues for a fixed num-
ber of epochs until convergence is guaranteed. During early
epochs the paths typically make large sporadic jumps around
the environment, while small local refinements are made in
later epochs. In our analysis (later in Sect. 5) we show the
runtime complexity of the algorithm is O(N'?), where N’ is
the number of viewpoint regions after duplication to take into
account the rewards {w*}. In the remainder of this section,
we provide a detailed explanation of all components of the
algorithm.

4.2 Graph topology

The graph topology for the SOM is a set of R sequences
of waypoints that directly represent the robot paths. Each of
these paths will transform over time according to the fol-
lowing learning procedure. For problems where each robot
must return to its start position, the topology of each path is a
closed loop. If this is not required, then the topology is a set
of open paths. When performing online replanning, the paths
may be initialised as the previously computed solution. If no
previous solution is available, then we initialise each path as
a small circle (consisting of | N/R| waypoints) around the
centre of a unique arbitrary node (Algorithm 1 line 1). This
initialisation is reasonable since the paths will quickly spread
over the input space and adjust their number of nodes during
the first learning epochs.

4.3 Viewpoint rewards

Each node has an associated reward for being visited. To
ensure that the learning procedure favours visiting the higher
reward viewpoint regions, each node is duplicated accord-
ing to its reward. The node n* is duplicated by a factor of
w* divided by the greatest common divisor of the set of
rewards GCD{w*}. This is performed in Algorithm 1 line 2.
The computation time complexity is dependent on the num-
ber of duplications. Therefore it may be beneficial to reduce
the number of duplications by rounding the rewards to the
nearest multiple of a number greater than GCD{w*}.

The motivation for this approach is that high-reward
regions will be trialled more often in each learning epoch.
This increases the likelihood of a robot path transforming
towards the higher weighted nodes, decreases the likelihood
of the node not being selected due to budget constraints, and
decreases the likelihood of waypoints in high-reward regions
being removed during the regeneration step.

4.4 Learning epochs

In each learning epoch (iteration of Algorithm 1 line 5 loop),
each node is considered one at a time, and one robot is
selected to transform its path towards each viewpoint region,
if it meets its budget constraint. At the end of each learning
epoch, any unnecessary waypoints are removed before start-
ing the next learning epoch. We describe these steps in more
detail as follows.

@ Springer

Autonomous Robots

Algorithm 1 Self-organising map algorithm.

Input: robot speeds {s'} and budgets {b'},
a set of nodes {n*} with associated
viewpoint regions {Z*} and rewards {wf},
adaptation parameters oq and §
Output: planned path for each robot {X?}*
1: X' « circle around arbitrary node n', V¢’ € R
2: N7 < duplicate n* € N by factor w¥ /Gep{w)
3: NV <« N’ U {virtual node for each fixed waypoint}
4: 0 «<—o00;i < 1 > Adaptation parameter
5: while not converged do

6: perm < random permutation of {n*}

7. for each n* € N, in order perm do

8: for each ' € R do

9: X" <« ADAPTATIONX', ZF, &

10: ¢!’ « travel time of path X"’ at speed s’

11: ri < argmin (%) > Robot selection
rreR,c’<b!

12: X\« XV > Update selected robot

13: {X'} < regeneration of {X'}
14 F <« Y ofwk

nkeN))
15: if F > F* then {Xi}* < {Xi}
16: o<« (1—id)o;i<—i+1

> Evaluate objective

> Save best plan

Algorithm 2 Adaptation step of the SOM algorithm.

function ADAPTATION
Input: path X’ of robot 7,
viewpoint region Z* of node n*,
adaptation parameter o
Output: an adapted path X’ for robot r*
1: x4 < closest waypoint in X’ to Z¥
2: zyw < closest point in ZK 10 xy
3 dy < llzw — xwll
4: x, < closest point on edges of X' to Z¥
5: ze < closest point in ZF 0 xe
6
7
8

D de < ||ze — Xell
s if xy € 25 v dy, < d. then
if xy is fixed then

> Winner selection

9: Xy < copy of xy

10: X' < insert xy, into X' next to fixed copy

11: x™ < xy; 25 < 2w > Select waypoint as winner
12: else

13: X' <« insert x. into X’ along edge
14: x* < xe;7" < 2¢

15: for each x§ e X' do

16: if xif is not fixed then

> Select edge as winner

17: &> Adapt waypoints in neighbourhood of x*
18: |« cardinal distance from x* to x}
19: x§ < move x; towards z* by factor f in Eqn. (1)

4.4.1 Permute the nodes

Atthe start of each epoch, the nodes are permuted in a random
order which will determine the order that they are considered
(Algorithm 1 lines 6-7). This ensures the algorithm is less
sensitive to the ordering and the initial conditions, and more
likely to escape from local optima.

@ Springer

4.4.2 Winner selection and adaptation

The key steps in the SOM algorithm are the winner way-
point selection and the adaptation of the position sequences,
as detailed in Algorithm 2. For every node, this is performed
for each robot, but then in the following step a robot alloca-
tion policy ensures only one of the robots gets updated for
each node. The winner waypoint selection is performed by
considering all waypoints and edges in the current robot path
X'. The existing waypoint or a point along one of the existing
edges that is closest to any point within the viewpoint region
2k is considered as the winner (Algorithm 2 line 11 or 14).
If the winner is a point along an edge, then a new waypoint
is inserted into the path at this point (line 13).

The winner waypoint x* is then moved to the closest point
z*in Z¥ . If z* is on the edge of the polygon it is moved slightly
towards the centre to avoid numerical issues and to reduce the
chances of the waypoint being immediately removed in the
next path regeneration phase. The cardinal distance (num-
ber of hops) in the path/loop from x* to every other existing
waypoint is denoted /. Each waypoint in X’ is moved some
fraction towards z* (line 19), such that waypoints with low
cardinal distance to x* will move further towards z* than other
waypoints. This fraction is determined by the neighbourhood
function

2

f(O, = /J,e_ai2 fori < 1/87 (D
otherwise

where i is the current learning epoch and the gain decreasing
rate § is a small constant parameter, e.g., § = 0.002. The
value of o is decreased at the end of each learning epoch as
o <« (1—id)o (Algorithm 1 line 16), which causes the neigh-
bours to adapt less as the algorithm progresses. We define the
learning rate as . = 1 throughout this paper; alternatively,
a cooling schedule could also be defined for i (Zhang et al.
2006).

Forcing f(o,1) to 0 after i = 1/§ is a natural restriction
of the neighbourhood function since 0 = 0 when i > 1/4,
which would cause an undesirable division by zero. Accord-
ing to this definition (1), there is a maximum number of
epochs i,,,, = 1/8 before the adaptations stop and therefore
the network converges. For example, § = 0.002 provides
imax = 500. We discuss the convergence properties further
in our Sect. 5.1.1 analysis and in the “Appendix”.

4.4.3 Robot-node allocation

After adapting each path towards the viewpoint region Z¥,
the algorithm then only allocates one (or none) of the robots
to the node and only this robot keeps their adapted path.
The selection is performed by greedily selecting the robot
that has used the least fraction of its budget after performing

Autonomous Robots

the adaptation (Algorithm 1 line 11). If no robot meets their
travel budget then no paths are adapted. It is important to
note that this allocation of robots to nodes is greedy just
for the currently presented node and the particular learning
epoch; these allocations are often modified in later learning
epochs if a better allocation is found, and thus the overall
SOM algorithm is not a greedy algorithm.

This allocation approach is motivated by the observation
that in most cases an optimal solution should have each robot
using approximately all of its travel budget. This is simi-
lar to what is typically seen in minimax problems. We wish
to divide the work evenly between the robots as the learn-
ing progresses towards the final solution, such that a natural
partitioning is found between the robots. Conversely, unbal-
anced path growth is likely to result in poor partitioning, such
as when planning for the robots sequentially (as seen in the
experiments in Sect. 5.2.1).

Other possible allocation policies could also be appro-
priate here, such as the Hungarian algorithm. However, we
believe it is better to have a fast and simple allocation policy,
such as the greedy policy. This is because the actual reward or
cost of each allocation is difficult to measure due to the flow-
on effect of optimising sequences of viewpoints. Heuristic
approaches are therefore appropriate, and suboptimal allo-
cations can be quickly modified again in later epochs.

4.4.4 Path regeneration

At the end of each epoch (Algorithm 1 line 13), waypoints
that are no longer useful are removed. A waypoint is useful
if it is within at least one of the viewpoint regions. If mul-
tiple waypoints are within a viewpoint region then only one
waypoint is randomly selected to remain, since there is no
additional reward for multiple observations of a node. This
also ensures the cardinal length of the paths do not grow
beyond N and therefore the computation time complexity at
each iteration is bounded (see Sect. 5).

If all waypoints for a robot are removed, then the robot’s
path is reinitialised following the procedure described in
Sect. 4.2 with a new unique arbitrary node. This will not
occur regularly in non-trivial problems since the robot will
typically be allocated at least to its arbitrary starting node.

4.4.5 Start and end conditions

If the problem formulation specifies fixed start and/or end
positions for the robots, then fixed waypoints are added to
each path at these positions. If any of the fixed waypoints are
selected as a winner, then the waypoint is duplicated (Algo-
rithm 2 lines 9-10) and the new waypoint is adapted instead of
the fixed waypoint (line 11). Fixed waypoints are not moved
during the neighbourhood adaptations (line 19). Addition-

ally, during each epoch, an adaptation is performed towards
each fixed node—equivalent to if there was a singleton view-
point region at each fixed waypoint (Algorithm I line 3). This
ensures the waypoints with low cardinal distance to the fixed
nodes maintain a minimal Euclidean distance to neighbour-
ing fixed nodes. Fixed waypoints cannot be removed during
the path regeneration step.

4.4.6 Adaptation parameter

The attraction between neighbouring waypoints during each
adaptation is dependent on the o parameter of the neigh-
bourhood function (Algorithm 2 line 19). When o is large
then several waypoints will typically move a large distance
during each adaption and therefore large global adjustments
are made to the solution paths. Conversely, when o is small
then only waypoints within a small neighbourhood of the
winner will move and therefore only small local refinements
are made to the solution paths. Convergence of the algorithm
is controlled by initialising o to an input parameter oy and
then cooling o after each epoch at a rate determined by an
input parameter § (Algorithm 1 line 16). Therefore, the num-
ber of epochs before the solutions reach a steady state are
determined by ¢ and §.

In online scenarios, new observations will typically cause
minor adjustments to the objective function and therefore
only minor local refinements to the previous solution are
required. Online replanning can therefore be performed more
efficiently by using the previous solution paths as the initial
paths and initialising o to a lower oy value. We demonstrate
suitability for online replanning in the Sect. 7 experiments.

5 Analysis

This section provides a theoretical analysis of the algorithm’s
runtime complexity and convergence, and then empirical
analysis of the behaviour of the algorithm for various ran-
dom environments. Further experiments are shown later in
Sections 6 and 7 that focus on active perception of 3D point
clouds in offline and online scenarios.

5.1 Theoretical analysis
5.1.1 Runtime complexity

The runtime complexity of the algorithm is polynomial in
the number of nodes to be observed and the magnitude of the
relative weighting of rewards. We formally state and prove
this result as follows. Lemma 1 states the runtime complex-
ity for each epoch. Lemma 2 states the maximum number of
epochs is constant, assuming a given cooling schedule. These
results are combined in Theorem 1 to state the runtime com-

@ Springer

Autonomous Robots

plexity of the algorithm. We then remark on implications of
this result. Further analysis of the convergence properties is
provided in the “Appendix”.

Lemma 1 The runtime complexity for each epoch is upper
bounded by

k 2
MAX w
_ o (w2 (axtw))
cep{wk)
where |X'| is the number of waypoints in the path for robot
i, N is the number of viewpoint regions and N' is the number

of viewpoint regions after duplication to take into account
the rewards {w*}.

Proof The ADAPTATION function (Algorithm 2) has runtime
O(|X'), where | X| is the number of waypoints in the current
path for robot . In the inner-loop of Algorithm 1 (lines 8-10),
ADAPTATION is called once per robot, and thus the runtime
for lines 8-10 is (’)(ZiR:] |X|). Since only one waypoint is
allocated to a node during each epoch, and the regeneration
step removes all waypoints not allocated to a node at the end
of each epoch (Algorithm I line 13), itholds that) ,R: 11X i<
N at the end of each epoch. At most N’ new waypoints are
added during each epoch (if all winners are edges), and thus
SR ,1X'| is upper bounded by N + N’. Thus, the runtime
for the line 8 loop is bounded by O(N + N’) = O(N').

In each epoch, this is repeated for each duplicated node
(N’) and any fixed start or end nodes (up to 2R, if appli-
cable). Thus, the runtime for each epoch is bounded by
OE L IXT)(N" + R)) < O(N'(N” + R)). The R term
only exists for problem instances that specify fixed waypoints
for start and end conditions. Furthermore, R < N < N’
for non-trivial problems; therefore, the R term is negligible.
Thus, the runtime for each epoch is bounded by O(N’ 2).

k
Each viewpoint region is duplicated up to ggﬁf;‘)’k}} times
k
and thus N’ < N“égg{{;‘jk}}. Therefore, O(N'?) =
O(N2(daxtw))2y o

GCD{wk}
Lemma 2 The algorithm is guaranteed to converge within
imax = 1/8 epochs, where the gain decreasing rate § is a
fixed parameter of the algorithm.

Proof The neighbourhood function f (o, [), as defined in (1),
will become 0 for all [when the number of learning epochs
i > 1/5. When this occurs, all of the waypoints will remain
at their current positions and therefore the network will not
evolve any further. O

Theorem 1 The runtime complexity of Algorithm lis upper
bounded by

@ Springer

kN 2
MAX{w
_ o2 (Maxtw)
GCD{w*)}
where | X!| is the number of waypoints in the path for robot
i, N is the number of viewpoint regions and N' is the number

of viewpoint regions after duplication to take into account
the rewards {w*}.

Proof Lemma 2 states the maximum number of epochs is
constant, and thus the runtime complexity is a constant mul-
tiple of the epoch runtime given in Lemma 1. O

Remark 1 (Runtime dependence on R) Interestingly, the
derived upper bound on runtime O(N’ 2) does not directly
depend on the number of robots R, and is instead dominated
by properties of the environment. The key to the derivation
of this bound is that each viewpoint region is allocated to a
maximum of one robot during each epoch, and therefore the
maximum total number of waypoints is independent of R.
This results in the line 8 loop having a runtime bounded by
O(N'"), as described in the proof of Lemma 1, which does not
directly depend on R. If, in an alternative algorithm, more
than one robot could be allocated to a node, the line 8 loop
runtime bound would increase to @(RN'), which is instead
linear in R.

However, it is important to note that the tighter bound
OXEIXT)N') is linear in Y% || X?|. Thus, if the team
plans to observe a larger number of nodes, then the run-
time will increase. There are several contributing factors that
affect the number of observed nodes, including the number of
robots R, the travel budgets, the fixed start and end positions,
and the distribution of nodes and rewards in the environment.
Importantly, the number of observed nodes, and therefore the
runtime, will typically be sublinear in R, which we confirm
empirically in Sect. 5.2.5. O

Remark 2 (Early convergence) Lemma 2 defines an upper
bound on the number of epochs; though, in practice,
convergence will typically occur much sooner than iy,
epochs. Early convergence occurs for a number of reasons,
which we summarise here, and elaborate on further in the
“Appendix”. Empirical evidence of convergence is provided
in Sect. 5.2.4. Related discussions of convergence may be
found in Cochrane and Beasley (2003); Faigl and Hollinger
(2017); Tucci and Raugi (2010).

Most importantly, for the neighbours of the winner (i.e.,
! > 0), the neighbourhood function f(o,[) pragmatically
becomes zero much sooner than epoch i,,,,. For example,
when using IEEE 754 arithmetic, with op = 4 and § =
0.002 (therefore i,,4, = 500), the neighbourhood function

Autonomous Robots

becomes zero for / > 0 at epoch i = 68. When this point is
reached, the winners x* are adapted with f (o, 0) = 1, but the
neighbours are never adapted. It is possible for the winners
x* to continue adapting until epoch i,,, however this is
unlikely to occur due to the travel budgets being exhausted.

Furthermore, our SOM algorithm maintains the best solu-
tion {X'}* at the end of each epoch (Algorithm 1 line 15),
which is likely to converge before the network {X'} con-
verges. This is because the network may oscillate between
different nodes due to the random permutation of n* (Algo-
rithm 1 line 6), while the best found solution remains
constant. O

5.1.2 Optimality

Self-organising map algorithms, including ours, are stochas-
tic learning procedures that can guarantee convergence in
polynomial time, but unfortunately cannot guarantee opti-
mality in finite time. These algorithms therefore are heuristic
algorithms for giving approximate solutions to NP-hard prob-
lems in polynomial time. The algorithm does however have
the advantage of being anytime, i.e., the algorithm can be
halted early, since all intermediate solutions are feasible solu-
tions. The parameters o and § can also be tuned to strike a
balance between optimality and computation time, and we
exploit this property in the Sect. 7 formulation for online
scenarios. The computation time can also be reduced, poten-
tially at the cost of solution quality, by reducing 1\042];({{1'5: }} y
rounding the rewards to multiples of a divisor greater than
Gep{wk}.

5.2 Empirical analysis

Simulated experiments were performed to analyse the
behaviour of the algorithm under various conditions. Since
the problem is new, we do not have algorithms for direct
comparison. Therefore, we compare to restricted versions
of our algorithm with some components removed to anal-
yse how the various algorithmic components contribute to
generating high-quality solutions. We compare (1) planning
using the joint multi-robot optimisation compared to sequen-
tial optimisation, (2) planning with and without the viewpoint
rewards, and (3) planning with the viewpoint polygons
compared to singular points. We also demonstrate the con-
vergence and anytime properties. The algorithm plans paths
through 100 random environments consisting of random sets
of polygons. An example environment is illustrated in Fig. 4.

The parameters are as follows, except where varied for
specific experiments. The environments are a continuous
1000 x 1000 space. There are 80 polygons with random
centre points and from 3 to 6 vertices spaced at equal angles
around the centre. The distance from the centre to each vertex

Fig. 4 Example path plans for three robots (blue) through a set of
random viewpoint regions weighted from 1 (black) to 4 (orange). The
robots visit a weighted sum of 155 viewpoint regions out of a maximum
170. Each robot has a budget of 1000 and speed 1 (Color figure online)

is random between 40 and 120. Rewards are exponentially
distributed between 1 and 4 and rounded to the nearest inte-
ger, such that few regions have high rewards. There are 3
robots with budgets 800, speeds 1 and a closed-loop path
topology with free start locations. In all cases, convergence
was reached in 70 epochs. The same sample environments are
used for each pair of methods and a single-tailed paired # test
was performed for each comparison. For these experiments
we use og = 1 and § = 0.001.

5.2.1 Multiple robots

Figure 5a shows the rewards collected by planning using
the proposed method, which jointly optimises multiple
robots, compared to planning for the robots sequentially. The
sequential method performs the SOM algorithm for a single
robot at a time, with each robot ignoring the nodes selected
by previous robots. The two methods were compared for 2
to 6 robots, where the budgets were uniform and summed to
2400. The simulations show the proposed approach has the
best performance in all cases, and these results were statisti-
cally significant (p < 0.01) in all cases except R = 4. The
largest improvements were for planning for smaller teams,
because in these cases the performance is greatly influenced
by effective partitioning of the workspace between the robots,
which can be more effectively optimised when planning for
all robots jointly.

5.2.2 Observation rewards
Figure 5b shows the simulation results for planning using

the proposed duplication approach compared to assuming
uniform rewards. The rewards are exponentially distributed

@ Springer

Autonomous Robots

“ g4 f8 %5 fe

Fraction of total
rewards collected

0.6
04r [Jointly 1
[Sequentially
02
2 3 4 5 6
Number of robots
(a)

A

Fraction of total
rewards collected
(=]
(=2}
—
—

[Polygons
[Points
04 r 1
10 20 40 80 160
Number of nodes
(0

Fig.5 Simulation results for random environments under various sce-
narios and comparison methods. Vertical axes shows performance as
the ratio of the achieved weighted sum of nodes visited to the weighted
sum of all nodes in the environment. Box plots show lower bound,
lower quartile, median, upper quartile, and upper bound for 100 sample
environments. a Jointly planning for all robots following the proposed

Fraction of total
rewards collected

10 20 30 40 50 60
Epochs

Fig.6 Convergence of the best solution found by the algorithm for 10
trials of a single random problem instance

between 1 and w with lower rewards more likely, and w
varied from 2 to 32. For this comparison method, the non-
uniform rewards are not known to the planner, but the
resulting solution paths are evaluated with respect to the non-
uniform reward model. These experiments were performed
with a budget of 600 and an average polygon size of 40. In
all cases, planning with the proposed approach improved the
performance, and these results were statistically significant
(p < 0.01). Greater improvements were achieved when the
maximum reward was large since the proposed approach is
more likely to select nodes with large rewards.

@ Springer

1+]
[Actual rewards
=3 [Uniform rewards
S 508 1
==
=73
=}
2806 1
Q<
IS
s 2
=R
04 1
.
2 4 8 16 32
Maximum rewards
(b)
1r —_]
[Polygons ?
5 E [Points
2 8081 i
b= =
ISS)
=} (5]
2 g 0.6
o 506 i
g =
=2
04 r q
10 20 40 80 160
Average polygon size

(@)

method compared to sequentially planning each robot. b Planning
while considering the actual observation rewards compared to planning
assuming uniform rewards. ¢ Planning while considering the viewpoint
regions compared to planning for only the centroid of the polygons. d
Planning while considering the viewpoint regions compared to planning
for only the centroid of the polygons

5.2.3 Viewpoint regions

We analyse the value of the proposed planning with continu-
ous polygonal viewpoint regions compared to planning with
single points at the region centres. Figure 5¢c compares these
two methods with a varying number of nodes and Fig. 5d has
a varying average polygon size. The proposed planner out-
performed the single point planner for all number of nodes
and when the polygon size > 20, and these results were sta-
tistically significant (p < 0.01). When the polygon size was
very small (10) it was sufficient to plan by approximating the
polygons as single points. The proposed approach achieved
greater improvements when the number of nodes and the size
of the polygons were large. In these cases, the algorithm can
more effectively take advantage of being able to optimise the
waypoint locations.

5.2.4 Convergence

In Fig. 6 we illustrate the convergence of the algorithm for
repeated trials of a single random problem instance. In all
trials, the intermediate solutions made incremental improve-
ments and converged towards the final solution, which was
reached before 45 epochs. This convergence demonstrates

Autonomous Robots

that the algorithm is anytime since each intermediate solu-
tion is a feasible solution. This is an important property in
practical applications where the computation budget is not
known in advance, and therefore the algorithm may need to
be halted early and return the best solution found so far. If the
computation budget is known in advance, then the parameters
may be tuned to meet this requirement; we discuss this idea
further in Sect. 7.2.4. We provide further insight regarding
the convergence of the algorithm in the “Appendix”.

5.2.5 Computation time

The SOM algorithm was implemented in MATLAB and the
simulations were performed on a standard desktop computer
with an Intel i7 processor on a single core. The runtime varied
from 0.5 to 30 s depending on the scenario. The trends agreed
with the theoretical analysis such that runtime increased
with the number of nodes and maximum weight. The run-
time increased sublinearly with the number of robots, which
agrees with our analysis in Remark 1. Runtime was dom-
inated (= 70%) by the winner selection and the waypoint
usefulness evaluation, since these geometric computations
are relatively expensive. Our implementation has not been
thoroughly optimised since our primary focus was on vali-
dating the feasibility of the approach. Therefore, the runtime
can be significantly improved by the implementation, as well
as by using approximations, such as decreasing the number
of polygon vertices or approximating polygons as discs.

6 Active perception of 3D point-cloud
objects

Our primary motivation for the proposed problem formula-
tion and SOM algorithm is active perception tasks that aim
to observe a set of object parts in a large environment. These
problems rely on prior observations or a predefined belief
of the environment, which may have come from a coarse
scan with noisy sensors. The aim is now to perform a more
informative or complete scan of the environment, and this
process may be repeated. In this section, we demonstrate how
the algorithm can be applied to this class of active percep-
tion tasks. For these experiments we assume the observation
regions and rewards are known in advance by an offline
planner, while in Sect. 7 we extend the formulation for closed-
loop scenarios where this information is discovered online.
We consider example scenarios using three variations of
an outdoor scene from a real 3D point-cloud dataset first
presented in Patten et al. (2015). The data was recorded with a
Velodyne laser scanner mounted on a robot pictured in Fig. 7.
Observations were made from several locations and fused
together. The three scenes consist of 12, 15 and 18 objects
spread around a 40m x 40 m environment, including trees,

Fig.7 Therobot moving through the environment and using its onboard
Velodyne laser scanner to collect the 3D point-cloud dataset (Patten et al.
2015)

tables, chairs, bins and a motorbike. The dataset has been
used previously for testing object classification algorithms
(Patten et al. 2015; Best et al. 2016a; Patten 2017).

The environment is represented by a set of parts in a 3D
point cloud with associated viewpoints and rewards. Exam-
ples of the segmentation and viewpoint regions are shown
earlier in Figs. 1 and 2. The point cloud processing is sum-
marised as follows: (1) oversegment the environment into
parts, (2) estimate self-occlusion free viewpoint regions for
each part, and (3) define the rewards as the discriminabil-
ity between parts. We define this point cloud processing in
more details in Sect. 6.1. Empirical validation of this model
is presented in Sect. 6.1.1.

Our general objective function formulation provides a
convenient way of expressing the viewpoint sensitivity of
perception algorithms. The perception model defined here
is an example instantiation of the viewpoint regions and
rewards, and is intended to be generic for the purpose of
evaluating the performance of our proposed planning algo-
rithm. We emphasise that the proposed SOM algorithm is not
limited to this perception model, but rather the model can be
adapted to suit the requirements of a perception task.

6.1 Observation model for 3D point cloud objects

The point cloud of the environment is segmented into parts by
removing the ground plane and then segmenting into objects
using region growing. Each object is oversegmented into 5
parts using k-means clustering on the set of 3D points asso-
ciated with the object.

A viewpoint region is defined for each part by considering
the sensing range, as well as occlusions caused by other parts
of the object. These viewpoint regions could be computed in
many different ways, but we describe our implementation
for these experiments as follows. An illustration is provided
in Fig. 8 for computing the viewpoint region (purple shape

@ Springer

Autonomous Robots

-

Fig. 8 Illustration of a viewpoint region (purple shape) for an asso-
ciated object part (purple point-cloud), defined using the example
sensor model. The point cloud represents observations of a table object,
depicted from above. An object part is highlighted as a purple point
cloud. The black lines are a subset of the vectors representing self-
occlusions between the purple part and the rest of the object. Dashed
red lines define the viewing angle (Color figure online)

on right) associated with an object part (purple point cloud
on left). First, we compute the set of vectors (black lines),
which represent occlusions. These vectors are from all points
within the object part to all points in other parts of the same
object (grey point cloud). Any of these vectors that have a
vertical angle outside the range of —mr /8 to r /8 are removed
since they are unlikely to represent an occlusion. Next, the
horizontal angles of all the remaining vectors are considered
to represent occluded angles. Then, we find the largest win-
dow of angles that contains less than 10% of the occluded
angles. The viewing angle range (between dashed red lines)
is defined as the middle third of this window. The useful sens-
ing range is defined as 1-4 m. The viewpoint region (purple
shape) is defined as the intersection of the horizontal viewing
angle range and the sensing range, measured relative to the
part’s centroid. For efficiency, this region is approximated by
a polygon with 6-8 vertices.

We define the rewards as the discriminability of each part
in a feature space. Parts with a higher discriminability con-
tain more unique features and therefore are more likely to
provide useful information to an object classifier. To mea-
sure discriminability, we perform feature extraction for each
part, calculate the distance to all other parts in feature space,
and normalise for each object. We compare each part to all
other parts in the environment; alternatively each part could
be compared to an object library. For the feature extrac-
tion, we use the ensemble of shape functions (ESF) global
feature descriptor (Wohlkinger and Vincze 2011), which is
commonly used for object classification tasks (Patten et al.
2016; Wohlkinger et al. 2012). Discriminability is measured
as the exponential of the sum of Mahalanobis distances in the

@ Springer

feature space between each part and every other part. Each
object is considered to be equally important, and therefore
the sum of rewards for each object is normalised to 10. Each
reward is rounded to the nearest integer. The rewards for the
datasets ranged from 1 to 10 with 1 or 2 more likely.

6.1.1 Model validation

Here, we provide a short validation of this example model
instantiation by illustrating how it maps to an existing per-
ception technique. In particular, we show how it maps to an
existing object recognition perception model (Patten et al.
2016), which is an instance of the general framework in
Wohlkinger et al. (2012).

We implement a simplified version of the model by Patten
et al. (2016) as follows. First, we build an offline database of
object models, and then an observed object is probabilisti-
cally classified as an instance of an object in the database. The
database is built by making several point cloud observations
of each object from different angles. For each observation,
the ESF global feature descriptor is stored. To classify an
observed object, the ESF descriptor of the observed point
cloud is computed and the Mahalanobis distance is measured
to each database object and viewpoint. For each database
object, the distance to the viewpoint with the closest distance
is stored. A probability distribution is defined over the set of
objects by computing a negative exponential of the closest
distances and normalising. Multiple observations of the same
object from different viewpoints are fused using Bayes’ rule.
The objective function is the total entropy, defined as the
object classification entropy summed over all objects.

For this comparison we use the high-clutter dataset and
generate a set of 100 single-robot paths with varying reward.
The random paths were generated by running the SOM algo-
rithm with randomly varying parameters. The utility of each
path was evaluated using the example objective function in
Sect. 6.1. For the comparison, the recognition performance
is estimated using the point cloud observations in the dataset
at viewpoints that are closest to each path.

The results are shown in Fig. 9. There is a clear corre-
lation between the rewards computed using the proposed
formulation and the comparison model (linear trendline has
r? = 0.67). The correlation is strong enough to indicate there
is areasonable mapping between the two models, and that the
viewpoint region definition is a suitable model for evaluating
the performance of our planning algorithm.

6.2 Results

We analyse four example scenarios illustrated in Fig. 10, for
three environments with varying clutter. In the scenarios, we
plan for: (1) a single robot in the low clutter environment, (2)
two robots in medium clutter, where one robot has double

Autonomous Robots

2
2t
2007 s
18'.' .

.. .‘.\
I6F © el T
14+ : N

i
12f . TS
. S

Entropy using comparison model

10 - . : >

8 1 1 1 1 1 1 1
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Reward using proposed objective

Fig. 9 Comparison of path utility between the example perception
model defined in Sect. 6.1 suitable for the SOM formulation (horizontal
axis) and the total entropy when using an existing object recognition
model described in Sect. 6.1.1 (vertical axis). Evaluated for 100 random
paths generated with SOM algorithm. Linear trendline shown in red

the budget, (3) three robots in high clutter, where the robots
have speeds 2, 1.5 and 1, and (4) five robots in high clutter,
where the robots have equal speeds and budgets. In these
scenarios, the start positions of the robots are unconstrained
but the robots must end at their start position; scenarios with
fixed start positions are trialled later in Sect. 7. Planning was
repeated 100 times each to measure the planning consistency.

In the first scenario, the robot observed a weighted sum
of 132 nodes, averaged over 100 trials, out of the maximum
possible 151 nodes. The performance was consistent over the
100 trials, with a standard deviation of 2.13 weighted nodes.
The worst plan had 124 and the best had 135. The average
runtime was 6s with standard deviation 0.1s. An example
solution is shown in Fig. 10a. All objects have at least one of
its parts observed. The parts not selected were in the bottom
left and top left, which is expected since the time to travel
to these regions is relatively high. The waypoints within the
selected regions naturally found locations near the edges of
the regions and closer to the other regions, which implicitly
minimises the travel time. All of the parts in the top right
were selected, even though they are further from the other
objects, since there is a significant reward to be gained by
visiting two objects in close proximity.

The second scenario was planned for two robots with dif-
ferent budgets. Figure 10b shows that the algorithm finds a
natural partitioning between the robots in the same ratio of
the travel budgets. The implicit partitioning naturally shared
some of the objects between the two robots where the object
parts were closer to a different robot. The planner typically
avoided the object in the bottom left since there is a signif-
icant travel cost to reach those regions. The 100 trials had a

weighted sum of 174 nodes on average, with a standard devi-
ation of 3.4, out of the maximum 189. The worst plan had
156 while the best had 177, showing the distribution of plans
was skewed towards the best performing plans. The average
runtime was 11.7s with the standard deviation 0.2 s.

A similar partitioning was achieved in the third scenario,
shown in Fig. 10c, for three robots with varying speeds in the
most cluttered environment. The size of the implicit partitions
are proportional to the speeds of the robots. The centre was
well covered since several parts are observed at once from
these locations and therefore have high reward. The average
sum of weighted nodes was 199.2 out of the maximum 221,
with standard deviation 9.1, worst case 175 and best case
211. The average runtime was 17.6s with a standard devi-
ation of 0.6s. The performance was almost as consistent in
this more complex scenario, and the solution paths have cred-
ible partitioning between multiple robots, selected lower cost
locations within regions and favoured high-reward locations
with overlapping viewpoint regions.

The fourth scenario trialled five robots in the high clut-
ter environment, shown in Fig. 10d. The robots were given
equal budgets such that it was just enough to be possible to
collect 100 % of the rewards. In the Fig. 10d example trial,
the robots have successfully shared the workload to find 5
approximately equal length paths that collectively visit all
of the goal regions. Over the 100 trials, the average sum of
weighted nodes was 218.8 out of the maximum 221, with
standard deviation 3.6, worst case 206 and best case 221.
Full coverage was achieved by 70 of the trials. For the trials
that achieved suboptimal results, the viewpoint regions in the
bottom left of the environment were more often missed since
there is less incentive to visit that area. The average runtime
was 22.1 s with a standard deviation of 0.65.

6.3 Comparison to Dec-MCTS

In these experiments, we investigate the benefits of plan-
ning over continuous space by comparing the proposed SOM
planner to the recently proposed decentralised Monte Carlo
tree search (Dec-MCTS) algorithm (Best et al. 2016a). Dec-
MCTS is adecentralised planning algorithm thatis applicable
to general multi-robot problem formulations. In Best et al.
(2016a), Dec-MCTS was demonstrated to perform well in
two active perception problem formulation, one of which is
closely related to the formulation addressed in this paper.
There are several important differences between Dec-MCTS
and our SOM approach. In particular, Dec-MCTS is decen-
tralised, applicable to general objective functions and motion
models, provides theoretical guarantees, and requires dis-
cretising the action space. While the SOM approach is
centralised, is an efficient solution for a particular problem
formulation, and effectively plans over continuous space.
While these differences make it difficult to demonstrate a

@ Springer

Autonomous Robots

B
»

",‘
’\ '/' " ..i— "
WeiyS

\ o<

:
B ‘ ' 4

Fig. 10 Four example active perception scenarios and solution paths
(blue) for varying number of robots. Object parts are shown in the
coloured point clouds. Viewpoint regions are coloured black (low
reward), orange (medium) and yellow (high). a Low clutter (12 object)
environment with a single robot. b Medium clutter (15 object) environ-

fair performance comparison, we show experiments here that
highlight the benefit of planning over continuous space for
our problem formulation (as in the SOM algorithm) rather
than requiring a discretisation of the environment (as in Dec-
MCTYS).

These experiment were performed with 3 robots using the
high-clutter dataset shown previously in Fig. 10c, d. In these
experiments, the problem is discretised for Dec-MCTS using
a probabilistic roadmap (PRM) with vertices V' randomly
placed in the viewpoint regions. Also, since Dec-MCTS
requires a fixed start location, these experiments were per-
formed using fixed start positions spread out near the centre
of the environment, and the end positions are variables to be
optimised by the planner. The experiments were performed
with varying number of PRM vertices V for Dec-MCTS.
Each scenario was repeated for 100 trials with this single

@ Springer

ment with two robots. Robot on right has 2x budget. ¢ High clutter
(18 object) environment with three robots. Robot on left has 2 x speed;
bottom right has 1.5x speed. d High clutter (18 object) environment
with five robots. Robots have equal budget and speed. In this scenario,
full coverage is achievable (Color figure online)

problem instance. For each trial, a new set of PRM vertices
V was randomly generated. Dec-MCTS was run until con-
vergence was observed, which was between several seconds
and several minutes depending on the size of V. The SOM
trials took 15s each.

The results are shown in Fig. 11. The rewards collected
by Dec-MCTS clearly improves when using a finer discreti-
sation. This is because having more roadmap vertices V
increases the probability of vertices being placed at valuable
positions, e.g., positions that intersect multiple viewpoint
regions and have relatively low travel-cost to other valuable
vertices. On the other hand, the proposed SOM approach
searches over the continuous space to adaptively find valu-
able positions for the path waypoints. This allowed the SOM
approach to significantly outperform Dec-MCTS in all cases.
Theoretically, Dec-MCTS would achieve the performance of

Autonomous Robots

0.8 o q
0.75 q
—_ 0
s 2
o Q
o o
=] Q
o w
]
S 5065+ .
- 3 .
=B
0.6 - .
[som
0.55 [Dec-MCTS|

100 200 400 800 1600 3200 n/a
Number of graph vertices for Dec-MCTS

Fig. 11 Comparison between the proposed SOM approach and Dec-
MCTS (Best et al. 2016a) with varying discretisation. For 3 robots in
the high-clutter environment

SOM given a sufficient discretisation, but the computation
and memory requirements would be intractable.

7 Online exploration and active perception

In this section, we generalise the active perception scenario in
the previous section to online scenarios for a team of robots.
The robots make long-range 3D point-cloud observations
to learn viewpoint regions and move to selected viewpoint
regions to collect these rewards by observing the object parts
at close range. The robots must plan to balance their work-
load between visiting the currently known viewpoint regions
and making observations to discover viewpoint goal regions.
This is achieved by introducing exploration rewards as new
viewpoint regions in unexplored areas of the environment.
First, we formalise this observation model and planning sce-
nario, then present results that illustrate the behaviour of the
algorithm in online settings and highlight advantages of this
formulation in comparison to short-horizon planning.

7.1 Online planning scenario

For these experiments, each robot has two 3D point-cloud
sensing modalities such that high-quality observations are
made at close range and coarse observations are made at
long range. The close-range sensor is used to fulfil the pri-
mary perception task and has the same observation model as
in Sect. 6.1. The long-range sensor is used to discover new
objects and associated viewpoint regions and rewards. These
two modalities could be provided by two separate sensors or
by a single sensor where a close range is required to achieve
a desired resolution. The viewpoint regions for the primary
perception task are generated as described in Sect. 6.1 based

on the point clouds that have been observed by the long-
range sensor. Exploration is encouraged by introducing new
viewpoint regions and rewards. This is achieved by placing
a uniform grid of goals in the unexplored areas. The den-
sity of goals and their rewards can be selected to achieve a
desired balance between exploration and exploitation. Each
exploration goal has an associated circular viewpoint region
with radius equal to the close sensing range and the rewards
are uniformly set to 1. We use the close range rather than
the long range for the exploration nodes since this results
in a more accurate prediction of the travel distance required
to observe discovered objects at close range. In these experi-
ments, we use the above definition for exploration goals since
it avoids making strong assumptions about the environment.
However, if more prior knowledge were available, such as a
belief of non-uniform density of objects, then more elaborate
formulations could be used instead.

The simulations cycle between four phases: (1) compute
the viewpoint regions for both the primary perception task
and exploration, (2) plan the paths for the team of robots
with the SOM algorithm, (3) drive the robots a fixed distance
along the planned paths, and (4) make new point-cloud obser-
vations with the long-range and short-range modalities. A
team of five robots move through the 140 x 50 m environment
shown in Fig. 12, which consists of the medium-, low- and
high-clutter 3D point-cloud datasets (from Sect. 6) placed
side-by-side from left to right in an enlarged environment.
The long-range sensing range is 15 m and the close range is
4m. These observations are simulated using the dataset by
truncating the Velodyne measurements. All robots have an
initial travel budget of 100 m travel distance, make observa-
tions at 1 m intervals along the path and replan after every
15 m. After each replanning phase, the remaining travel bud-
get is reduced by 15 m. Each robot has a fixed start position
and known current position for each replanning phase.

The planner uses an open-path graph topology with fixed
start positions (as defined in Sect. 4.2). For the first planning
round we set o) = 4 and use arbitrary initial plans around the
start positions. Online replanning is performed more effec-
tively by adapting the previously planned paths and using
oo = 2. We use § = 0.002 for most experiments, and anal-
yse the effect of these parameters in Sect. 7.2.4.

7.2 Results

The following results demonstrate: (1) the algorithm achieves
better performance when using a long planning horizon
compared to a short horizon, (2) the effect of exploration
reward density on performance, (3) the algorithm achieves
comparable performance when planning online with partial
information to when planning offline with full information,
and (4) the algorithm efficiently adapts previous solutions
when replanning.

@ Springer

Autonomous Robots

Fig. 12 Example run of the online experiments. Dotted lines are exe-
cuted paths and solid lines are planned paths. Yellow regions have been
explored. Point-clouds are observed at close-range (brown) and long-
range (pink). a Initial plans. Plan observes 254/330 weighted nodes. b
15 m travelled. Plan observes 274/362 weighted nodes. ¢ 45 m travelled.
Plan observes 202/294 weighted nodes. d 75 m travelled. Plan observes
183/262 weighted nodes. e Final executed paths (100m). The robots
observed 309/330 exploration goals and 344/420 primary nodes (Color
figure online)

@ Springer

Fig. 13 Example paths executed for a—c different planning horizons,
c—d exploration reward densities and e offline full-observability. a 15 m
planning horizon. Medium exploration density. The robots observed
267/420 primary nodes. b 45 m planning horizon. Medium exploration
density. The robots observed 303/420 primary nodes. ¢ Full planning
horizon. Medium exploration density. The robots observed 332/420 pri-
mary nodes. d Full planning horizon. Low exploration density. The
robots observed 255/420 primary nodes. e Full point-cloud is available
offline. Full planning horizon. The robots observed 376/420 primary
nodes (Color figure online)

Autonomous Robots

Figure 12 illustrates an example of the behaviour of the
algorithm when replanning. (a) Initially, only a single object
has been observed from the start positions. Robots 1 and 2
cooperate by planning to observe both sides of this object at
close range before proceeding to explore the top left of the
environment. Robots 3, 4 and 5 evenly spread out to explore
the right side of the environment. (b) After 15m has been
travelled by each robot, more objects are discovered by the
long range sensor. Robots 1, 2 and 3 make minor refinements
to their plans to make close-range observations of the new
objects. (c) After 45 m, robot 3 discovers several more objects
in the middle. Rather than robot 3 visiting these discovered
goals itself, it instead decides to continue exploring to the
right since robot 2 plans to visit these goals later. (d) A large
number of objects are discovered on the right and robots 3, 4
and 5 cooperate to share these goals. (¢) Once the budgets are
exhausted, the robots have explored nearly all of the environ-
ment while also visiting 344 out of 420 close-range weighted
goals. The robots successfully cooperated by rarely crossing
paths or making duplicated observations.

7.2.1 Planning horizon

Figure 14 compares online planning with the entire mis-
sion (100m) as the planning horizon to when planning with
shorter horizons. The longer planning horizons resultin a sig-
nificantly improved performance over the shorter horizons.
The reason for this is illustrated in Fig. 13. For the shortest
horizon (a), the objects on the left are discovered first and
since these discovered goals cannot be satisfied by a single
robot with a 15 m budget, the other robots also decided to visit
these objects. As aresult, the right side of the environment is
never explored. As the mission progressed, the robots were
left with no goals reachable within their budgets since they
were already visited by other robots. Conversely, the longer
planning horizons (b, ¢) enabled the robots to cooperate to
explore the rest of the environment and visit the discovered
objects. The longest planning horizon (c) achieved the best
results since two robots managed to reach the dense group
of objects on the right.

7.2.2 Exploration reward density

The algorithm generates paths that naturally balance between
exploring the environment to discover new objects and
visiting the objects at close-range to make high-quality obser-
vations. This balance can be influenced by selecting the
density of exploration goals. If the density is low, as in
Fig. 13d, then the robots have little incentive to visit unex-
plored regions and will instead focus on observing discovered
objects. The robots in (d) did not perform well since they
only just reached the objects on the right. However, if there
were no objects in the right of the environment, then (d)

—_

<
©

<
e

=

Fraction of primary
rewards collected
o o
IS RN

<
o

=

15m 30m 45m
Planning horizon

==

<
=

Budget

Fig. 14 Comparison of planners with different planning horizons. The
‘budget’ horizon optimises the entire remaining budget of each robot.
Each scenario was performed 10 times

==l Sl

Il

Low Medium High
Exploration reward density

1

<
©

<
@

<
>

Fraction of primary
rewards collected
o
=

<
N

<
'y

Offline

Fig. 15 Comparison of planning performance for different densities
of exploration rewards. The full information scenario shows the per-
formance of an offline planner with all primary viewpoint regions and
rewards known in advance. Each scenario was performed 10 times

would have outperformed the higher-density planners since it
achieved better coverage of the discovered objects. This trend
is also illustrated in Fig. 15: the higher exploration density
scenarios outperformed the lower density scenarios in most
trials for this environment. We note that a similar behaviour
of balancing between exploring and exploiting occurs if the
exploration goal rewards are varied rather than the density.

7.2.3 Partial information

For the scenario in Fig. 12e and the yellow column of Fig. 15,
the planner had full knowledge of all of the goals offline and
the algorithm is able to exploit this information to outper-
form the other scenarios. In Fig. 12e we see the robots do not
need to spend their budget exploring empty space and instead
take the most direct routes to their selected viewpoint regions.
However, the partial-information scenarios still achieved rea-
sonable results, despite not having access to this valuable
information upfront. The high exploration density scenario
collected on average 95% of the reward collected by the full-
information scenario.

@ Springer

Autonomous Robots

09t
53
£ 508
8=
« °
S 207
SR
25
8 506}
o=] reuse X
[Jrestart X
5 . . : n
(1,0.002) (2,0.002) (1,0.004) (2,0.004)

(09,6) when replanning

Fig. 16 Comparison between adapting the previous solution when
replanning to clearing the path and starting again. Larger o¢ param-
eter values result in more proportion of time is spent making global
adaptations. Larger § parameter values result in fewer epochs and faster
planning time. Each scenario was performed 10 times

7.2.4 Adaptive replanning

We now analyse the benefits of adapting the previous solu-
tion when replanning compared to restarting the algorithm
from the beginning. The results are shown in Fig. 16 for var-
ious combinations of parameter values. The parameter § has
the largest effect on computation time since this parameter
directly influences the number of iterations before o reaches
the termination threshold; the § = 0.002 scenarios had an
average runtime of 12 s during each replanning step and the
8 = 0.004 scenarios performed replanning more efficiently
with a runtime of 3s. The o parameter directly affects the
ratio of the time spent making large global changes (when o
is large) to the time spent making smaller local refinements
(when o is small).

In all of the scenarios, reusing the previous solutions
helped the algorithm perform replanning and made a sta-
tistically significant improvement to the collected rewards
(t test p < 0.001). There was no significant difference
between the rewards collected for the different combinations
of parameters when adapting the previous solution, even for
cases with much fewer epochs (§ = 0.004). When restarting
the solution, the performance was poorer when the num-
ber of epochs was reduced, since it requires more iterations
to adapt from the initial solution to a reasonable solution.
There was a significant improvement (p < 0.001) for the
(09 = 2,6 = 0.004) case over the (g = 1,5 = 0.004) case
when restarting the solution since the larger o values result
in more global adaptations for reaching an initial reasonable
solution. Overall, these results highlight that the algorithm
can effectively adapt previous solutions so that replanning
can be performed more efficiently. This is particularly advan-
tageous in online scenarios where the plans need to adapt to
small changes in the objectives as the robots make observa-
tions.

@ Springer

8 Conclusion

We have proposed a new formulation and approach for multi-
robot active perception problems. The objectives are defined
as a set of continuous viewpoint regions, and the robots
coordinate to maximise coverage of these regions. Self-
organising maps is a fitting choice for developing solution
algorithms; they can select favourable observation locations
within continuous regions, while simultaneously optimis-
ing the full paths of the robots. Optimising the full paths,
i.e., planning over a long time horizon, results in significant
performance improvements over greedy and short-horizon
planning. Our new SOM formulation addresses scenarios
with non-uniform observation rewards, budget constraints,
polygonal observation regions and multiple robots. The algo-
rithm has polynomial time-complexity, converges towards
a final solution, and is anytime. Additionally, we demon-
strated that the formulation is suitable for online scenarios
where the objectives change over time and the planner needs
to efficiently adapt the plans to meet the new requirements.
We also showed how the planner can be used to balance
between exploring the environment to obtain new informa-
tion and making high-quality observations of known objects.
Our implementation achieved reasonable clock time perfor-
mance of milliseconds to seconds. Overall, our results show
that the proposed method enables multi-robot planning for
budgeted active perception tasks with continuous sets of can-
didate viewpoints and multi-step planning horizons.

8.1 Future work

The formulation, approach and results motivate several
avenues of future work. We discuss several ideas as follows:
problem variants with different travel cost functions, variants
to the sensor model formulation, decentralised extensions,
and future hardware experiments.

The SOM algorithm is designed particularly for environ-
ments with Euclidean-distance costs. We are interested in
extending the approach for scenarios with obstacles or non-
holonomic constraints. Several ideas have been proposed for
extending SOM algorithms for such scenarios, typically by
combining an SOM approach with other planning algorithms,
such as RRT (Faigl 2016b). In non-holonomic scenarios, it
would be an interesting challenge to incorporate orientation-
dependent observations; a promising approach may be to
approximate the problem in a high-dimensional Euclidean
space (Kulich et al. 2016). Inter-robot collision avoidance is
likely to be challenging to incorporate into an SOM algorithm
due to the temporal constraints, but a decoupled approach
could be an appropriate solution. However, we note that the
SOM approach tends to find solutions where the robots’ paths
do not cross; therefore additional collision avoidance plan-
ning may not be necessary. It would also be interesting to

Autonomous Robots

design revised approaches for the most challenging instances
of the considered problem; for example, instances with large
variances in the spatial-density of nodes or robot budgets
could require unusual robot partitioning that may not emerge
from our current approach.

Our formulation is motivated by the fact that the perfor-
mance of perception algorithms is sensitive to the choice
of viewpoints. Viewpoint correlations can be conveniently
expressed in our formulation such that all viewpoints within
a region are considered correlated, and partial correlation
can be expressed with overlapping regions. While this for-
mulation is generally applicable, it may also be convenient to
express correlations by varying the rewards for each polygon,
which may be addressed with a modification to the adapta-
tion procedure (Faigl and Véana 2016). Other modifications
to the reward function formulation could include extensions
for teams of robots with heterogeneous sensing, which could
readily be addressed by defining a different set of viewpoint
regions and rewards for each robot. Other interesting problem
generalisations include time-varying objectives for moving
targets (Best et al. 2017; Honig and Ayanian 2016), and per-
ception models with probabilistic viewpoint regions (Best
et al. 2017; Best and Fitch 2016). Also, while our experi-
ments used a generic perception model to define the regions
and rewards, this data processing can be adapted for the per-
ception task at hand, such as by using other formulations for
modelling 3D objects and predicting observations (Martens
etal.2017). A potential limitation for our algorithm is the run-
time complexity dependence on the relative reward weights.
In our recent work (Faigl 2017) we avoid the node dupli-
cation by proposing an alternative adaptation function that
results in smaller adaptations in each epoch, but is likely to
be more efficient in cases where there is a large variance in
rewards.

In many practical scenarios, such as farms and warehouses
with permanent infrastructure, multi-robot coordination can
be performed by a centralised server. However, in other sce-
narios it is necessary to decentralise the planning efforts
and consider communication constraints, which presents new
algorithmic and practical challenges (Best et al. 2016a; Corah
and Michael 2017; Kassir et al. 2015; Xu et al. 2013). A
decentralised version of our SOM algorithm may be formu-
lated by combining decentralised robot-node allocation with
single-robot SOMs or small teams of multi-robot SOMs.
These two components could interact in a similar way to
Dec-MCTS (Best et al. 2016a) to optimise the joint-action
space.

While we have performed extensive simulated experi-
ments, in the future we would like to run our SOM approach
onboard real robots in real-world scenarios. This would
require addressing additional multi-robot challenges, such
as dealing with decentralised data fusion, localisation uncer-
tainty, and being robust to unreliable communication.

Appendix: Convergence of SOM

In this appendix, we elaborate on the convergence properties
discussed in Remark 2 of Sect. 5.1.1 to provide insight into
the behaviour of the algorithm.

There are two key phases of the algorithm to consider
when analysing the convergence properties. After epoch
imax = 1/8, the neighbourhood function definition (1)
ensures that no further adaptations occur, and thus the algo-
rithm is guaranteed to have converged (Lemma 2). However,
the algorithm will typically converge prior to iy, but after
the neighbourhood function (1) reaches O for / > 0. Because
such a convergence depends on the spatial configuration of
the viewpoint regions, it is not possible to prove convergence
prior to i,,,, for all possible cases. In fact, it is possible to
show that for certain configurations, a particular waypoint of
the network may oscillate between viewpoint locations dur-
ing the learning epochs. However, these are specific cases
and do not occur frequently; therefore, faster convergence
occurs with a high probability. Furthermore, these oscilla-
tions do not occur to the best found solution, which is what
is actually returned by the algorithm. In the remainder of
this appendix, we discuss the intuition behind these claims
of convergence. For simplicity and without loss of gener-
ality, we suppose a single robot problem (R = 1) and the
viewpoint regions are defined as discrete points.

The crucial property for determining convergence is that,
after some epoch, only the winner is moved towards the view-
point location while the neighbours of the winner are not
adapted. This occurs when f(o,l) = 0 for [> 0, and thus
only the waypoints with the cardinal distance / = 0 to x*
can be adapted, i.e., only the winner waypoint x* is moved.
In the case of og = 4 and § = 0.002, this occurs at learning
epoch i = 68; this agrees with our empirical analysis of the
convergence of solutions in Fig. 5.

The main intuition behind the convergence is related to
the limited travel cost budget b'. The adaptation is per-
formed only if the sequence of waypoints satisfies the budget
constraint after the adaptation. Let the value of the neighbour-
hood function be non-zero only for the winner waypoint, as
described above. In cases where the winner is a new way-
point x, on an edge (Algorithm 2 line 13), the length of the
path (sequence of waypoints X’) must increase, as illustrated
in Fig. 17. Thus, if edge nodes are selected as winners, the
network will stop adapting once the budget limit is reached.

The other case to consider is when the winner is an existing
waypoint x*. Let the neighbouring waypoints to x* be xj.

and xj.,. This scenario is illustrated in Fig. 18. The shaded
area represents possible locations for z* that would result
in the existing waypoint x* being selected as the winner.
This area is defined as the intersection of the half-planes
with boundaries perpendicular to (x} ,x*)and (x*, xj.,). Inthe

@ Springer

Autonomous Robots

possible new path

X! L a new winner waypoint
. on the edge

Fig. 17 Illustration of a scenario where the winner is on an edge of the
path. All possible adaptations result in an increased path length

area where Z 4
can be located

G777/
77/ /4

possible location™~
of the viewpoint

Fig. 18 Illustration of a scenario where the winner is an existing way-
point. The path after the adaptation to z* is shown as the dashed lines
connecting x’ with z* and z* with xj.,. This adaptation results in an
increased path length

Fig. 18 adaptation scenario, the length of the path increases
in a similar way to the edge waypoint x, winner case. Thus,
this type of adaptation can only occur up until the cost budget
is met.

However, when an existing x* waypoint is selected as the
winner, it is possible for the length of the path to decrease
as a result of the adaptation. A simple example of such a
situation is visualised in Fig. 19 with two fixed waypoints at
z1 and z». Assume the travel cost budget is such that the path
can visit either z3 or z4, but it is impossible to visit both z3
and z4 without exceeding the budget. If the network is in the
configuration shown in Fig. 19a, and the random permutation
of the viewpoints be such that the node z3 is presented as the
first node, then the winner waypoint at z4 will be adapted
to z3. When z4 is presented, the network adapts back to z4
(Fig. 19b). In this configuration, the waypoint may continue
to oscillate between z4 and z3 until f(o, 0) finally reaches
zero. However, it is rare for such a configuration of viewpoint
locations to occur. Also, the network may also adapt towards
other viewpoints, which will increase the path length until the
cost budget is reached, causing the oscillations to eventually
cease.

@ Springer

@)
Z] Z1
Z4 Z3 Z4 Z3
Zz ZZ

@)

(@) (b)

Fig. 19 An example scenario that may cause the network to oscillate
between two viewpoint locations z3 and z4

We also note that the algorithm maintains the best found
solution (Algorithm 1 line 15). When the network is oscil-
lating as described above, the best found solution is likely to
remain constant. This is the solution that is returned by the
algorithm. An empirical verification of the presented intu-
ition behind the solution convergence is reported in Fig. 6,
where the solution does not change after 50 learning epochs.
The network itself does not change after 70 epochs, which
further supports the presented idea that the network typically
converges much sooner than i,,,, = 1/8 learning epochs.

References

Angéniol, B., de la Vaubois, C. G., & Texier, J. Y. L. (1988). Self-
organizing feature maps and the travelling salesman problem.
Neural Networks, 1(4), 289-293.

Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the
team orienteering problem. Journal of Heuristics, 13(1), 49-76.

Atanasov, N., Ny, J. L., Daniilidis, K., & Pappas, G. J. (2015). Decen-
tralized active information acquisition: Theory and application
to multi-robot SLAM. In Proceedings of IEEE ICRA (pp. 4775—
4782).

Atanasov, N., Sankaran, B., Le Ny, J., Pappas, G., & Daniilidis, K.
(2014). Nonmyopic view planning for active object classification
and pose estimation. /[EEE Transactions on Robotics, 30(5), 1078—
1090.

Bargoti, S., Underwood, J. P, Nieto, J. I., & Sukkarieh, S. (2015). A
pipeline for trunk detection in trellis structured apple orchards.
Journal of Field Robotics, 32(8), 1075-1094.

Becerra, 1., Valentin-Coronado, L. M., Murrieta-Cid, R., & Latombe, J.
C. (2016). Reliable confirmation of an object identity by a mobile
robot: A mixed appearance/localization-driven motion approach.
The International Journal of Robotics Research, 35(10), 1207—
1233.

Bektas, T. (2006). The multiple traveling salesman problem: An
overview of formulations and solution procedures. Omega, 34(3),
209-219.

Best, G., Cliff, O., Patten, T., Mettu, R., & Fitch, R. (2016a). Decen-
tralised Monte Carlo tree search for active perception. In Proceed-
ings of the WAFR.

Best, G., Faigl, J., & Fitch, R. (2016b). Multi-robot path planning for
budgeted active perception with self-organising maps. In Proceed-
ings of IEEE/RSJ IROS (pp. 3164-3171).

Autonomous Robots

Best, G., & Fitch, R. (2016). Probabilistic maximum set cover with
path constraints for informative path planning. In: Proceedings of
ARAA ACRA.

Best, G., Martens, W., & Fitch, R. (2017). Path planning with spa-
tiotemporal optimal stopping for stochastic mission monitoring.
IEEE Transactions on Robotics, 33(3), 629-646.

Binney, J., & Sukhatme, G. (2012). Branch and bound for informative
path planning. In Proceedings of IEEE ICRA (pp. 2147-2154).

Bircher, A., Kamel, M., Alexis, K., Burri, M., Oettershagen, P., Omari,
S., et al. (2016). Three-dimensional coverage path planning via
viewpoint resampling and tour optimization for aerial robots.
Autonomous Robots, 40(6), 1059-1078.

Bourgault, F., Makarenko, A., Williams, S., Grocholsky, B., & Durrant-
Whyte, H. (2002). Information based adaptive robotic exploration.
In Proceedings of IEEE/RSJ IROS (pp. 540-545).

Cao, N., Low, K. H., & Dolan, J. M. (2013). Multi-robot informative
path planning for active sensing of environmental phenomena: A
tale of two algorithms. In Proceedings of AAMAS (pp. 7-14).

Charrow, B. (2015). Information-theoretic active perception for multi-
robot teams. Ph.D. thesis, University of Pennsylvania.

Chekuri, C., & Pal, M. (2005). A recursive greedy algorithm for walks
in directed graphs. In Proceedings of IEEE FOCS (pp. 245-253).

Chen, S.,Li, Y., & Kwok, N. M. (2011). Active vision in robotic systems:
A survey of recent developments. The International Journal of
Robotics Research, 30(11), 1343-1377.

Cochrane, E. M., & Beasley, J. E. (2003). The co-adaptive neural
network approach to the euclidean travelling salesman problem.
Neural Networks, 16(10), 1499—-1525.

Corah, M., & Michael, N. (2017). Efficient online multi-robot explo-
ration via distributed sequential greedy assignment. In Proceed-
ings of robotics: science and systems.

Cunningham-Nelson, S., Moghadam, P., Roberts, J., & Elfes, A. (2015).
Coverage-based next best view selection. In Proceedings of ARAA
ACRA.

Dang, D. C., El-Hajj, R., & Moukrim, A. (2013a). A branch-and-cut
algorithm for solving the team orienteering problem. In Proceed-
ings of CPAIOR (pp. 332-339). Springer.

Dang, D. C., Guibadj, R. N., & Moukrim, A. (2013b). An effective PSO-
inspired algorithm for the team orienteering problem. European
Journal of Operational Research, 229(2), 332-344.

Dornhege, C., Kleiner, A., Hertle, A., & Kolling, A. (2016). Multirobot
coverage search in three dimensions. Journal of Field Robotics,
33(4), 537-558.

Faigl, J. (2010). Approximate solution of the multiple watchman routes
problem with restricted visibility range. /IEEE Transactions on
Neural Networks, 21(10), 1668-1679.

Faigl, J. (2016a). An application of self-organizing map for multi-
robot multigoal path planning with minmax objective. Compu-
tational Intelligence and Neuroscience. https://doi.org/10.1155/
2016/2720630.

Faigl, J. (2016b). On self-organizing map and rapidly-exploring random
graph in multi-goal planning. In Advances in self-organizing maps
and learning vector quantization (pp. 143—153). Springer.

Faigl, J. (2017). On self-organizing maps for orienteering problems. In
Proceedings of IICNN (pp. 2611-2620).

Faigl, J., & Hollinger, G. (2014). Unifying multi-goal path planning for
autonomous data collection. In Proceedings of IEEE/RSJ IROS
(pp. 2937-2942).

Faigl, J., & Hollinger, G. A. (2017). Autonomous data collection
using a self-organizing map. /EEE Transactions on Neural Net-
works and Learning Systems. https://doi.org/10.1109/TNNLS.
2017.2678482.

Faigl, J., Kulich, M., & Preucil, L. (2012). Goal assignment using dis-
tance cost in multi-robot exploration. In Proceedings of IEEE/RSJ
IROS (pp. 3741-3746).

Faigl, J., Pénicka, R., & Best, G. (2016). Self-organizing map-based
solution for the orienteering problem with neighborhoods. In Pro-
ceedings of IEEE SMC (pp. 1315-1321).

Faigl, J., & Vira, P. (2016). Self-organizing map for data collection
planning in persistent monitoring with spatial correlations. In Pro-
ceedings of IEEE SMC (pp. 3264-3269).

Galceran, E., & Carreras, M. (2013). A survey on coverage path plan-
ning for robotics. Robotics and Autonomous Systems, 61(12),
1258-1276.

Garg, S., & Ayanian, N. (2014). Persistent monitoring of stochastic
spatio-temporal phenomena with a small team of robots. In Pro-
ceedings of robotics: science and systems.

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering
problem: A survey of recent variants, solution approaches and
applications. European Journal of Operational Research, 255(2),
315-332.

Helsgaun, K. (2000). An effective implementation of the Lin—Kernighan
traveling salesman heuristic. European Journal of Operational
Research, 126(1), 106-130.

Hollinger, G., Singh, S., Djugash, J., & Kehagias, A. (2009). Efficient
multi-robot search for a moving target. The International Journal
of Robotics Research, 28(2), 201-219.

Hollinger, G. A., Mitra, U., & Sukhatme, G. S. (2011). Active clas-
sification: Theory and application to underwater inspection. In
Proceedings of ISRR.

Honig, W., & Ayanian, N. (2016). Dynamic multi-target coverage with
robotic cameras. In Proceedings of IEEE/RSJ IROS (pp. 1871-
1878).

Kassir, A., Fitch, R., & Sukkarieh, S. (2015). Communication-aware
information gathering with dynamic information flow. The Inter-
national Journal of Robotics Research, 34(2), 173-200.

Kriegel, S., Brucker, M., Marton, Z. C., Bodenmuller, T., & Suppa,
M. (2013). Combining object modeling and recognition for active
scene exploration. In Proceedings of IEEE/RSJ IROS (pp. 2384—
2391).

Kulich, M., Faigl, J., & Preucil, L. (2011). On distance utility in the
exploration task. In Proceedings of IEEE ICRA (pp. 4455-4460).

Kulich, M., Sushkov, R., & Preucil, L. (2016). Speed-up of self-
organizing networks for routing problems in a polygonal domain.
In Proceedings of IEEE/RSJ IROS 10th international workshop on
cognitive robotics.

Lagoudakis, M. G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt,
A. J., Koenig, S., Tovey, C. A., Meyerson, A., & Jain, S. (2005).
Auction-based multi-robot routing. In Proceedings of robotics:
science and systems.

Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., & Thrun, S.
(2005). Anytime dynamic A*: An anytime, replanning algorithm.
In Proceedings of ICAPS (pp. 262-271).

Martens, W., Poffet, Y., Soria, P. R., Fitch, R., & Sukkarieh, S. (2017).
Geometric priors for Gaussian process implicit surfaces. /IEEE
Robotics and Automation Letters, 2(2), 373-380.

Mathew, N., Smith, S., & Waslander, S. (2013). A graph-based approach
to multi-robot rendezvous for recharging in persistent tasks. In
Proceedings of IEEE ICRA (pp. 3497-3502).

McMahon, J., & Plaku, E. (2017). Autonomous data collection with
limited time for underwater vehicles. IEEE Robotics and Automa-
tion Letters, 2(1), 112-119.

Noon, C. E., & Bean, J. C. (1989). An efficient transformation of the
generalized traveling salesman problem. Technical report 89-36,
Department of Industrial and Operations Engineering, University
of Michigan.

Patten, T. (2017). Active object classification from 3D range data with
mobile robots. Ph.D. thesis, The University of Sydney.

Patten, T., Kassir, A., Martens, W., Douillard, B., Fitch, R., & Sukkarieh,
S. (2015). A Bayesian approach for time-constrained 3D outdoor

@ Springer

https://doi.org/10.1155/2016/2720630
https://doi.org/10.1155/2016/2720630
https://doi.org/10.1109/TNNLS.2017.2678482
https://doi.org/10.1109/TNNLS.2017.2678482

Autonomous Robots

object recognition. In: Proceedings of IEEE ICRA workshop on
scaling up active perception.

Patten, T., Martens, W., & Fitch, R. (2017). Monte Carlo planning for
active object classification. Autonomous Robots. https://doi.org/
10.1007/s10514-017-9626-0.

Patten, T., Zillich, M., Fitch, R., Vincze, M., & Sukkarieh, S. (2016).
Viewpoint evaluation for online 3-D active object classification.
IEEE Robotics and Automation Letters, 1(1), 73-81.

Peng, C., Roy, P, Luby, J., & Isler, V. (2016). Semantic mapping of
orchards. IFAC-PapersOnLine, 49(16), 85-89.

Quattrini Li, A., Cipolleschi, R., Giusto, M., & Amigoni, F. (2016). A
semantically-informed multirobot system for exploration of rele-
vant areas in search and rescue settings. Autonomous Robots, 40(4),
581-597.

Robin, C., & Lacroix, S. (2015). Multi-robot target detection and track-
ing: Taxonomy and survey. Autonomous Robots, 40(4), 729-760.

Singh, A., Krause, A., Guestrin, C., & Kaiser, W. J. (2009). Efficient
informative sensing using multiple robots. Journal of Artificial
Intelligence Research, 34(2), 707.

Smith, S. L., & Imeson, F. (2017). GLNS: An effective large neigh-
borhood search heuristic for the generalized traveling salesman
problem. Computers and Operations Research, 87, 1-19.

Somhom, S., Modares, A., & Enkawa, T. (1997). A self-organising
model for the travelling salesman problem. Journal of the Opera-
tional Research Society, 48(9), 919-928.

Somhom, S., Modares, A., & Enkawa, T. (1999). Competition-based
neural network for the multiple travelling salesmen problem with
minmax objective. Computers and Operations Research, 26(4),
395-407.

Toth, P., & Vigo, D. (2001). The vehicle routing problem. New Delhi:
SIAM.

Tucci, M., & Raugi, M. (2010). Stability analysis of self-organizing
maps and vector quantization algorithms. In Proceedings of ICNN
(pp. 1-5).

van Hoof, H., Kroemer, O., & Peters, J. (2014). Probabilistic segmenta-
tion and targeted exploration of objects in cluttered environments.
IEEE Transactions on Robotics, 30(5), 1198-1209.

Vansteenwegen, P., Souffriau, W., & Oudheusden, D. V. (2011). The
orienteering problem: A survey. European Journal of Operational
Research, 209(1), 1-10.

Wohlkinger, W., Aldoma, A., Rusu, R. B., & Vincze, M. (2012). 3DNet:
Large-scale object class recognition from CAD models. In Pro-
ceedings of IEEE ICRA (pp. 5384-5391).

Wohlkinger, W., & Vincze, M. (2011). Ensemble of shape functions
for 3D object classification. In Proceedings of IEEE ROBIO (pp.
2987-2992).

Wu, K., Ranasigne, R., & Dissanayake, G. (2015). Active recognition
and pose estimation of household objects in clutter. In Proceedings
of IEEE ICRA (pp. 4230-4237).

Xu, Z., Fitch, R., Underwood, J., & Sukkarieh, S. (2013). Decentralized
coordinated tracking with mixed discrete-continuous decisions.
Journal of Field Robotics, 30(5), 717-740.

Yu, J., Schwager, M., & Rus, D. (2016). Correlated orienteering problem
and its application to persistent monitoring tasks. /[EEE Transac-
tions on Robotics, 32(5), 1106-1118.

Zhang, W. D., Bai, Y. P, & Hu, H. P. (2006). The incorporation of
an efficient initialization method and parameter adaptation using
self-organizing maps to solve the TSP. Applied Mathematics and
Computation, 172(1), 603-623.

Zlot, R., Stentz, A., Dias, M., & Thayer, S. (2002). Multi-robot explo-
ration controlled by a market economy. In Proceedings of IEEE
ICRA (Vol. 3, pp. 3016-3023).

@ Springer

Graeme Best completed his B.E.
in Electrical and Computer Sys-
tems Engineering and B.Sc. in
Computer Science at Monash Uni-
versity, Melbourne, Australia, in
2014. He is currently a Ph.D. can-
didate at the Australian Centre
for Field Robotics (ACFR) at the
University of Sydney. His research
interests include planning algo-
rithms, multi-robot coordination
and active perception problems.

Jan Faigl received the Ph.D.
degree in artificial intelligence and
biocybernetics and the Ing. degree
in cybernetics from Czech Tech-
nical University in Prague (CTU),
Prague, Czech Republic, in 2010
and 2003, respectively. In 2013
and 2014, he was a Fulbright Visit
Scholar with the University of
Southern California, Los Ange-
les, CA, USA. He is currently an
Associate Professor of Computer
Science with the Faculty of Elec-
trical Engineering (FEE), Czech
Technical University in Prague.
Since 2013, he has been the Head of the Computational Robotics
Laboratory with the Artificial Intelligence Center, FEE, CTU. His cur-
rent research interests include unsupervised learning, self-organizing
systems, navigation of mobile robots, and path and motion planning
techniques. Dr. Faigl was awarded the Antonin Svoboda Award from
the Czech Society for Cybernetics and Informatics in 2011.

Robert Fitch received the Ph.D.
degree in computer science from
Dartmouth College, Hanover, NH,
in 2005. He is currently an Asso-
ciate Professor in the Centre for
Autonomous Systems (CAS) at
the University of Technology Syd-
ney, Australia. Previously, he was
a senior research fellow at the
Australian Centre for Field
Robotics (ACFR) at the Univer-
sity of Sydney. His research inter-
ests include systems of outdoor
robots and their application to key
problems in agriculture and envi-
ronmental monitoring.

https://doi.org/10.1007/s10514-017-9626-0
https://doi.org/10.1007/s10514-017-9626-0

	Online planning for multi-robot active perception with self-organising maps
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	3.1 Multi-robot team
	3.2 Viewpoint regions and rewards
	3.3 Problem statement
	3.4 NP-hardness

	4 Self-organising map algorithm
	4.1 Algorithm overview
	4.2 Graph topology
	4.3 Viewpoint rewards
	4.4 Learning epochs
	4.4.1 Permute the nodes
	4.4.2 Winner selection and adaptation
	4.4.3 Robot-node allocation
	4.4.4 Path regeneration
	4.4.5 Start and end conditions
	4.4.6 Adaptation parameter

	5 Analysis
	5.1 Theoretical analysis
	5.1.1 Runtime complexity
	5.1.2 Optimality

	5.2 Empirical analysis
	5.2.1 Multiple robots
	5.2.2 Observation rewards
	5.2.3 Viewpoint regions
	5.2.4 Convergence
	5.2.5 Computation time

	6 Active perception of 3D point-cloud objects
	6.1 Observation model for 3D point cloud objects
	6.1.1 Model validation

	6.2 Results
	6.3 Comparison to Dec-MCTS

	7 Online exploration and active perception
	7.1 Online planning scenario
	7.2 Results
	7.2.1 Planning horizon
	7.2.2 Exploration reward density
	7.2.3 Partial information
	7.2.4 Adaptive replanning

	8 Conclusion
	8.1 Future work

	Appendix: Convergence of SOM
	References

