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Abstract The Generalized Dubins Interval Problem

(GDIP) stands to determine the minimal length path

connecting two disk-shaped regions where the depar-

ture and terminal headings of Dubins vehicle are within

the specified angle intervals. The GDIP is a generaliza-

tion of the existing point-to-point planning problem for

Dubins vehicle with a single heading angle per particu-

lar location that can be solved optimally using closed-

form expression. For the GDIP, both the heading angles

and locations need to be chosen from continuous sets

which makes the problem challenging because of infi-

nite possibilities how to connect the regions by Dubins

path. We provide the optimal solution of the introduced

GDIP based on detailed problem analysis. Moreover, we

propose to employ the GDIP to provide the first tight

lower bound for the Dubins Touring Regions Problem
(DTRP) which stands to find the shortest curvature-

constrained path through a set of regions in the pre-

scribed order.

Keywords Dubins vehicle · Multi-goal planning ·
Generalized Dubins Interval Problem · Dubins Touring

Regions Problem

1 Introduction

Surveillance missions are frequent tasks for unmanned

aerial vehicles in which the vehicles are requested to
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visit a given set of target locations and collect the re-

quired data. If the sequence of visits to the locations is

known a priori, the problem can be formulated as the

Dubins Touring Problem (DTP) Faigl et al. (2017) in

which the movement of the vehicle is restricted by the

motion constraints of Dubins vehicle (Dubins, 1957).

Thus, a solution of the DTP is the shortest curvature-

constrained multi-goal path connecting the requested

target locations in the prescribed order.

Moreover, a target location can be considered vis-

ited if the vehicle is within a specified distance from

it, e.g., using remote data collection or range measure-

ments, and we formulate the problem as the Dubins

Touring Regions Problem (DTRP). The solution of the

problem is described by visiting locations to the given

regions and the corresponding heading angles. The final

path is constructing by the shortest curvature-constrained

segments for Dubins vehicle. Thus, the DTRP is a con-

tinuous optimization problem for which the visiting lo-

cations and heading angles are selected such that the

length of the final path is minimized. However, the op-

timization of locations and headings cannot be sepa-

rated without loss of optimality because both parts are

tightly coupled.

The DTRP is often studied in the literature in its

extended variant called the Dubins Traveling Salesman

Problem with Neighborhoods (DTSPN) (Obermeyer, 2009)

in which the sequence of visits is not known a pri-

ori, and thus the problem also contains a combinatorial

part. Existing approaches, originally developed for the

DTSPN, can also be applied for the DTRP, and there-

fore, a brief overview of the approaches for the related

DTSPN is provided in the following text.

Two main groups of the approaches to the DTSPN

can be found in the literature (Macharet and Cam-

pos, 2018): sampling-based and decoupled approaches.
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Sampling-based methods discretize the continuous do-

mains of the headings and locations and employ existing

routing solvers (Oberlin et al., 2010) to find heuristic

or even optimal solution, but only of the Discretized

Dubins TSP (Cohen et al., 2017). In the decoupled

approaches, the combinatorial sequencing part is ad-

dressed independently on the continuous optimization,

e.g., using a solution of the Euclidean TSP (Savla et al.,

2005; Macharet et al., 2011; Yu and Hung, 2012; Isaacs

et al., 2011). Then, for a given sequence of visits to

the target regions, the problem can be called the Du-

bins Touring Problem (DTP) to distinguish its focus

on determining the optimal headings at the waypoint

locations (Faigl et al., 2017).

Savla et al. (2005) address the DTSP by the de-

coupled heuristic approach and the authors show that

solutions provided by their Alternating Algorithm are

proved to be bounded by the solution of the Euclidean

TSP; however, the gap to the optimal solution is not

tight, and it provides only a rough estimation of the

solution quality. An approximation algorithm for the

DTSP proposed by Le Ny et al. (2007) improves the

worst found solution, especially for high-density instances,

but the bound is still impractically high. A special case

of the DTP with target locations that are more than

four times of the minimum turning radius apart is ad-

dressed by Goaoc et al. (2013). The authors show that

such constrained DTP is reducible to a finite number of

convex optimization sub-problems that can be bounded

by 22n−2 for n locations in the sequence, which is how-

ever computationally challenging.

The major step towards the optimal solution of the

DTRP has been made by Manyam et al. (2017) who

provided the first tight estimation of the solution qual-

ity of the DTP by introducing the Dubins Interval Prob-

lem (DIP). The DIP is a generalization of the point-

to-point trajectory planning where the departure and

terminal headings of Dubins vehicle are prescribed not

as a single heading value, but as an interval. Based on

the DIP, (Manyam and Rathinam, 2018) have proposed

a tight lower bound of the DTSP.

In (Faigl et al., 2017), the optimal solution of the

DIP is employed to quickly find high-quality solutions

of the DTP by steering sampling of the possible heading

values, e.g., finding solutions for a sequence of 50 target

locations with the path length less than 1 % from the

optima in less than 10 seconds. Here, it is worth noting

that an efficient solution of the DTP enables solving

other Dubins routing problems like the Dubins Orien-

teering Problem (Pěnička et al., 2017), where many se-

quences of subsets of the targets need to be evaluated.

The optimal solution of the DIP (Manyam et al.,

2017) and high-quality solutions of the DTP with tight

RSR maneuver

Fig. 1 GDIP instance (P1, Θ1, P2, Θ2) and its solution that
connects the regions P1 and P2 using the departure angle
θ1 ∈ Θ1 and the terminal angle θ2 ∈ Θ2 at the particular
locations p1 ∈ P1 and p2 ∈ P2.

bounds on its quality (Faigl et al., 2017) are the funda-

mental building blocks to address the DTRP and they

represent a systematical way to analyze the problem.

However, the DIP cannot be directly utilized for similar

insights to the DTRP because of lack of the particular

endpoints in the prescribed regions. Therefore, moti-

vated by the achievements enabled by the optimal so-

lution of the DIP, we introduce the Generalized Du-

bins Interval Problem (GDIP) to find the shortest

Dubins path between two regions with heading angles

at the endpoints constrained to the prescribed continu-

ous intervals as in the DIP, see Fig. 1 with an instance

of the GDIP.

Based on the theoretical analysis of the GDIP, we

find its optimal solution. Then, we employ the optimal

solution of the GDIP to establish the first tight lower

bound algorithm for the DTRP. The lower bound not

only bounds the length of the optimal solution, but it

also steers the searching procedure of finding a high-

quality solution of the DTRP. The main contributions

are considered as follows:

1. The introduction of the Generalized Dubins Interval

Problem (GDIP).

2. The reduction of the GDIP instances to its One-

Sided version (OS-GDIP).

3. The optimal solution of the GDIP based on the

transformation to the OS-GDIP.

4. The first tight lower bound of the DTRP.

5. Efficient sampling-based algorithm to iteratively re-

duce the relative gap between the lower bound and

a feasible solution of the DTRP.

The rest of the paper is organized as follows. A brief

description of the DIP and its properties is presented

in the following section, because it is an important part

of the background for the proposed approach. The pro-

posed GDIP is introduced in Section 3 and its transfor-

mation to the One-Sided GDIP (OS-GDIP) is presented

in Section 4 with the proof of its correctness. The op-

timal solution of the GDIP is presented in Section 5.

The proposed deployment of the GDIP in the lower

bound and feasible solution of the DTRP is presented
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in Section 6. Empirical evaluation of the real computa-

tional requirements are reported in Section 7 together

with the evaluation of the proposed GDIP deployment

in the DTRP. The concluding remarks are in Section 8.

2 Dubins Vehicle and Dubins Interval Problem

Dubins vehicle is a curvature-constrained model defined

by the constant forward speed v and the minimum turn-

ing radius ρ. The state of the vehicle q ∈ SE(2) is given

by its position p = (x, y) and heading angle θ ∈ S1. The

motion model can be expressed as

q̇ =

 ẋẏ
θ̇

 = v

 cos θ

sin θ
u
ρ

 , |u| ≤ 1, (1)

where u is the control input.

The closed-form solution of the shortest path be-

tween two configurations q1, q2 ∈ SE(2) has been found

by Dubins (1957), and thus it is called Dubins ma-

neuver. The maneuver is a combination of up to three

straight (S) and arc (C) segments with the radius ρ,

which results in two basic types of the maneuvers: CSC

and CCC. The maneuver length is a piecewise contin-

uous function with discontinuities at the boundary be-

tween these two basic maneuver types, and the transi-

tion may occur only if the endpoints are closer than four

times ρ (denoted as D4) (Bui et al., 1994); otherwise,

the CCC cannot be constructed.

The Dubins Interval Problem (DIP) is a problem

to find the shortest Dubins maneuver from the state

q1 = (p1, θ1) to q2 = (p2, θ2) such that the locations p1
and p2 are fixed but the heading angles θ1 and θ2 are

from the specified closed interval θ1 ∈ Θ1 and θ2 ∈ Θ2.

Problem 1 (DIP)

min
θ1,θ2

L((p1, θ1), (p2, θ2)),

s.t. θ1 ∈ Θ1, θ2 ∈ Θ2,

where L(·, ·) is the length of Dubins maneuver between

two configurations of the vehicle.

The DIP has been introduced by Manyam et al.

(2017), and the authors utilized the Pontryagin’s mini-

mum principle to prove the necessary conditions for the

optimal solution. These conditions are summarized in

Table 1 and the maneuvers can be divided into nine

cases. In this paper, we follow the original notation in

which θmin
i and θmax

i is the rightmost and leftmost head-

ing angle of the particular interval, respectively. An ori-

entation of the turns is distinguish by L (left) and R

(right), and the subscript Cψ denotes the angle of the

turn is greater than π.

Table 1 List of all possibly optimal solutions of the DIP
with its necessary conditions for the terminal and departure
angles proposed first by Manyam et al. (2017)

Case Maneuvers Conditions on θ1 and θ2

1) S or Lψ or Rψ 1

2) LS or LRψ for θ1 = θmax
1 and θ2 ∈ Θ2

3) RS or RLψ for θ1 = θmin
1 and θ2 ∈ Θ2

4) SL or RψL for θ1 ∈ Θ1 and θ2 = θmin
2

5) SR or LψR for θ1 ∈ Θ1 and θ2 = θmax
2

6) LSR for θ1 = θmax
1 and θ2 = θmax

2

7) LSL or LRψL for θ1 = θmax
1 and θ2 = θmin

2

8) RSL for θ1 = θmin
1 and θ2 = θmin

2

9) RSR or RLψR for θ1 = θmin
1 and θ2 = θmax

2

Based on the necessary conditions for the optimal

solution of the DIP, the shortest path can be constructed

separately for each particular case, if it exists. Then,

the final solution is selected as the shortest one. Impor-

tantly, there exists a closed-form expression for each

particular case, because the first case contains only a

single segment and at least one heading angle is fixed

for the remaining types.

The DIP is a crucial building block for developing

algorithms for more complex problems. Manyam et al.

(2017) have used the DIP for a tight lower bound es-

timation of the DTP. The main idea is based on di-

viding possible headings at the target locations into

a set of heading intervals and transforming the prob-

lem into finding the shortest tour on the discrete graph

where particular distances are found as the solution of

the corresponding instances of the DIP. In (Faigl et al.,

2017), the lower bound based on the DIP is employed

in the Iteratively-Refined Informed Sampling (IRIS) of

the heading intervals to support a quick convergence

of the solution to the lower bound. The primary moti-

vation behind the proposed GDIP is to achieve similar

results also for Dubins path visiting a sequence of target

regions, here, formulated as the DTRP.

3 The Generalized Dubins Interval Problem

The Generalized Dubins Interval Problem (GDIP)

can be defined as follows. Let P1, P2 be compact regions

in R2 and Θ1, Θ2 be closed intervals in S1. The GDIP

stands to find the shortest Dubins maneuver from P1 to

P2 such that the heading angles are within the specified

closed intervals Θ1 and Θ2, respectively.

1 LψRψ and RψLψ types are claimed by Manyam et al.
(2017) to be candidates to the optimal solution of the DIP,
but they are not local minima. A formal proof is provided in
Appendix A.
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Problem 2 (GDIP)

minp1,θ1,p2,θ2 L((p1, θ1), (p2, θ2)),

s.t. p1 ∈ P1, θ1 ∈ Θ1, p2 ∈ P2, θ2 ∈ Θ2,

where L(·, ·) is the length of the corresponding Dubins

maneuver connecting two configurations of the vehicle.

In general, the regions P1, P2 can be of any shape

but in the rest of this paper, the regions are restricted

to the disks with the radii r1 and r2 centered at c1 and

c2, respectively. Thus, for the endpoints p1 ∈ P1 and

p2 ∈ P2, it holds

‖p1 − c1‖ ≤ r1, ‖p2 − c2‖ ≤ r2, (2)

where ‖ · ‖ is the Euclidean norm. An example of the

GDIP instance and its solution is depicted in Fig. 1.

Note that contrary to the DIP, the endpoints are not

fixed in the GDIP, and they can be selected arbitrar-

ily from the given regions, which significantly increases

complexity of the problem. On the other hand, a solu-

tion of the GDIP enables to find a tight lower bound

for a more general problem of the optimal Dubins path

passing a sequence of regions, e.g., the DTRP.

A special version of the GDIP (further used to pro-

vide an optimal solution of the GDIP) is a degenerative

case when the departure region P1 is reduced to a single

point p′1. Such a problem is called the One-Sided GDIP

(OS-GDIP).

Problem 3 (OS-GDIP)

minθ′1,p′2,θ′2 L((p′1, θ
′
1), (p′2, θ

′
2)),

s.t. θ′1 ∈ Θ′1, p′2 ∈ P ′2, θ′2 ∈ Θ′2,

where all the variables are distinguished by a prime

from Problem 2 to clarify the OS-GDIP is transformed

from the GDIP. This notation is used in the following

analysis.

4 Analysis of the GDIP

The GDIP is a continuous optimization problem mini-

mizing the length of Dubins maneuver with respect to

the given regions and intervals of the heading angles.

The endpoints of the maneuver are selected from the

compact regions which can be considered as an exten-

sion of the existing DIP. Thus, the optimization prob-

lem has six degrees of freedom as L : SE(2)×SE(2)→
R. Two following ideas are utilized to reduce the com-

plexity of the GDIP and provide its optimal solution.

First, the optimal solution of the GDIP is a path

that is also the optimal solution of the corresponding

DIP where the endpoints are fixed. This property is

crucial because all the conditions for the optimal so-

lution of the DIP summarized in Table 1 are directly

applicable for the GDIP.

Secondly, the GDIP is reducible to the OS-GDIP,

where one of the regions has zero radius, and thus the

region is reduced to a single point. Such a transforma-

tion is possible because the GDIP is independent of the

translation of its solution. The transformation is pro-

vided in the following paragraphs.

4.1 Transformation of the GDIP to the OS-GDIP and

Vice-Versa

The main assumption for transforming an instance of

the GDIP G = (P1, Θ1, P2, Θ2) to a transformed OS-

GDIP instance G′ = (p′1, Θ
′
1, P

′
2, Θ

′
2) is that any trans-

lation of the coordination system does not change the

solution; the heading angles, the given intervals, and

the maneuver length are all preserved. A solution of

the original GDIP instance G is further denoted as τ =

(p1, θ1, p2, θ2) and a solution of the transformed G′ as

τ ′ = (p′1, θ
′
1, p
′
2, θ
′
2). Therefore Θ1 = Θ′1, Θ2 = Θ′2 and

also θ1 = θ′1, θ2 = θ′2, and thus we can focus only on

the transformation of the endpoints and the regions.

To transform G into G′, a solution of G is translated

such that it starts at the origin, which reduces the di-

mensionality of the problem because the region P1 is

reduced to a single point p′1 = (0, 0). The transformed

region P ′1 contains only the origin and the region P ′2
can be determined using the dilation operation ⊕ from

the mathematical morphology, which is also known as

the Minkowski sum,

P ′1 = {p′1} = {(0, 0)}, (3)

P ′2 = P2 ⊕ P̌1 = {pb − pa|pa ∈ P1, pb ∈ P2}, (4)

where P̌1 is the reflection of P1, i.e., P̌1 = {−p|p ∈ P1}.
An example of the OS-GDIP is shown in Fig. 2.

Note the transformations (3) and (4) hold for re-

gions of any shape as none of special properties are

utilized. However, for the disk regions, the transformed

P ′2 is also a disk with the radius r′2 centered at c′2

r′2 = r1 + r2, (5)

c′2 = c2 − c1. (6)

The forward transformation Φ12 of a feasible so-

lution τ of the GDIP instance G to a feasible solu-

tion τ ′ of the OS-GDIP instance G′ is a translation

Φ12(p) : p→ p′ that moves the solution endpoint p1 to

p′1 = (0, 0). The forward transformation is unique and

it translates a point p ∈ R2 to the point p′ ∈ R2 by −p1

Φ12(p) : p 7→ p− p1. (7)
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RSR maneuver

Fig. 2 OS-GDIP instance transformed from the GDIP in-
stance in Fig. 1.

Lemma 1 Any feasible solution τ of the particular GDIP

instance G can be transformed by Φ12 (7) into a feasi-

ble solution τ ′ of the transformed OS-GDIP instance G′
created from G.

Proof To prove the lemma, the endpoints of the trans-

formed solution (Dubins maneuver) have to be in the

given regions, i.e., p′1 ∈ P ′1 and p′2 ∈ P ′2. The first is al-

ways correct by the definition (3). The second endpoint

is transformed to p′2 = p2 − p1 and using (6) it results

into (p′2 − c′2) = (p2 − c2) − (p1 − c1). Using inequali-

ties (2) for the original GDIP instance G, the terminal

position p′2 is constrained by ‖p′2 − c′2‖ ≤ r2 + r1, and

thus p′2 ∈ P ′2. ut

The backward transformation Φ21 is not unique

in general and for a feasible solution of the OS-GDIP

instance G′, there may exist multiple solutions of the

original GDIP instance G. This ambiguity is caused by

different dimensionalities of G′ and G. In the original

instance G, two endpoints and two heading angles need

to be determined, and thus the dimensionality of G is

six; however, the departure point p′1 is fixed in G′, and

thus the dimensionality of G′ is reduced to four. The

backward transformation is unique only if p′2 is at the

boundary of P ′2. Nevertheless, a universal formulation

of the backward transformation Φ21(p′) : p′ → p exists

as follows

Φ21(p′) : p′ 7→ p′ + (c1 − λ (p′2 − c′2)) , (8)

where λ represents the ratio of the region radii in the

original instance G

λ =
r1

r1 + r2
. (9)

Lemma 2 Any feasible solution τ ′ of the transformed

OS-GDIP instance G′ can be transformed by Φ21 (8)

into a feasible solution τ of the original GDIP instance G.

Proof Analogously to the forward transformation, the

back-transformed solution needs to fulfill the original

constraints (2). The first endpoint can be transformed

back by Φ21 as p1 = p′1+c1−λ(p′2−c′2), where p′1 can be

omitted because p′1 = (0, 0). Knowing ‖p′2−c′2‖ ≤ r1+r2

from (5) and by substituting it into the transformation

Φ21 we get ‖p1 − c1‖ ≤ r1, and thus p1 ∈ P1. Similarly,

for the second endpoint, p2 = p′2 + c1 − λ(p′2 − c′2), and

by subtracting c2 = c′2 + c1 (6) from both sides of the

equation, it results in p2 − c2 = (p′2 − c′2)(1− λ). Using

(5), as for the first endpoint, it proves ‖p2 − c2‖ ≤ r2,

and thus p2 ∈ P2. ut

Now, we need to show that the optimal solution

of the transformed G′ is the optimal solution of the

original G.

Lemma 3 Let τ ′∗ be an optimal solution of the trans-

formed OS-GDIP instance G′, then, the solution τ trans-

formed back by Φ21 (8) is an optimal solution of the

original GDIP instance G, i.e., τ is τ∗.

Proof Let τ∗ be an optimal solution of G, then there

exists an optimal solution τ ′∗ of G′ with the same length

because of Lemma 1. If τ ′∗ is transformed back by Φ21

(8) it has the same length of τ∗ because of Lemma 2,

and thus it is an optimal solution of G. ut

The main result of the forward (7) and backward

(8) transformations is that any GDIP instance can be

transformed to its one-sided version OS-GDIP. The trans-

formation significantly reduces the search space of the

original GDIP while all properties of the solution are

preserved. Together with the DIP results Manyam et al.

(2017), the OS-GDIP allows finding the optimal solu-

tion of the GDIP, which is proposed in the next section.

5 Optimal Solution of the GDIP

The main challenge of finding the optimal solution of

a GDIP instance is related to the determination of the

both departure and terminal configurations, i.e., (p1, θ1)

and (p2, θ2), such that the length of the corresponding

Dubins maneuver is minimized. The proposed solution

is based on the transformation of the GDIP instance

to the instance of the OS-GDIP using the transforma-

tions (3) and (4), which reduce the complexity of the

problem as the first region P1 of the GDIP becomes a

single point p′2 in the OS-GDIP.

The OS-GDIP instance is solved using the necessary

conditions for the optimal solution of the DIP summa-

rized in Table 1, which clearly holds even for the GDIP

and its sub-problem OS-GDIP. However, it is still nec-

essary to address the selection of the second endpoint

p′2 ∈ P ′2, which needs to be found optimally. There-

fore, each possible maneuver type is addressed sepa-

rately because their geometrical properties differ sig-

nificantly. Thus, multiple candidate solutions are found
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Table 2 All possibly optimal solutions of the GDIP

Case
Maneuver All possible Closed-form
type maneuvers solution

1 S S YES
2 CS L, R, LS, RS, SL, SR YES
3 Cψ Lψ, Rψ YES
4 CSC LSL, RSR YES
5 CSC LR, RL, LSR, RSL YES
6 CCψC LRL, RLR YES
7 CCψ LRψ, RLψ, LψR, RψL NO

from which the shortest one is selected similarly as for

the DIP.

Finally, the optimal solution of the OS-GDIP in-

stance is transformed to the solution of the original

GDIP instance using the backward transformation (8).

Since neither of the transformations changes the solu-

tion or its length, the proposed approach always finds

the optimal solution. For the rest of this section, we

provide a solution of the OS-GDIP instance.

5.1 Solving the OS-GDIP for Specific Types of

Maneuvers

A solution of the GDIP follows the theoretical results of

the DIP, and there exist 21 possibly optimal GDIP ma-

neuvers that are all listed in Table 2. All maneuvers are

categorized into seven basic types according to their ge-

ometrical properties. The original notation of the DIP

is slightly modified and the arc segment is still denoted

by Cψ if the turning angle is greater than π, but C

stands for an opposite turning direction. This modifica-

tion enables to distinguish between CSC in which both

arc segments have the same orientation and CSC for

the opposite orientation, because the method of find-

ing the optimal solution differs. For each type of the

maneuvers, the optimal solution is provided separately.

The following notation is used in the rest of this

section. The symbol L with a subscript defining the

maneuver type denotes the optimal length of such Du-

bins maneuver. Particular segments of the same type

in a single maneuver are distinguished by the subscript

defining the order of the segment in the maneuver, e.g.,

C1 is the first C segment of the CSC maneuver. An an-

gle defined by two points pi, cj is denoted ∠picj , and

analogously for three points.

5.1.1 S maneuver

The simplest maneuver contains a single straight seg-

ment S and its direction is given by the angle θS at the

intersection ΘS of the both given intervals

θS ∈ ΘS, ΘS = Θ1 ∩Θ2, (10)

where ΘS may contain up to two intervals. If the S

maneuver is the optimal solution, one of the following

cases occurs:

1.A If p′1 ∈ P ′2 and ΘS 6= ∅ then LS = 0.

1.B If the above does not hold and ∠p′1c
′
2 ∈ ΘS then

θS = ∠p′1s
′
2 and LS = ‖p′1 − c′2‖ − r′2.

Fig. 3 An example of the straight maneuver solution of the
OS-GDIP.

All of the cases can be found using basic algebra op-

erations and an example of the 1.B case is shown in

Fig. 3. Notice that S maneuvers for which LS > 0 and

θS 6= ∠p′1s
′
2 cannot be optimal, even if θS is limited by

the intervals Θ1, Θ2.

5.1.2 CS maneuvers

The next possible candidates for the optimal solution

are the maneuvers of the CS type with a non-zero arc

segment to differentiate it from the previous case. There

are six possible combinations of maneuvers {R, L, LS,

RS, SL, SR} of the CS type. But only the R and RS

maneuvers are analyzed because L and LS maneuvers

are analogous and SL and SR maneuvers are symmetric

and can be addressed as follows. For the combinations

SL and SR, an orientation of the solution is reverted and

the original instance of the GDIP is transformed such

that r′2 = 0 and r′1 = r1 + r2. Further, both Θ1 and Θ2

are reverted, and thus the problem is transformed to a

different instance of the OS-GDIP where the solution

is the LS or RS maneuver.

For the R and RS maneuvers, the departure angle

θ1 = Θmin
1 is known a priori. Thus, the center o1 of the

first arc segment is fixed and it remains to choose the

terminal angle such that θ2 ∈ Θ2 and the length LRS

is minimized. Let the length of the circle segment be

LR > 0 and LS be the length of the straight segment.

Then, three following cases can occur:

2.A The terminal angle is θ2 = Θmax
2 and LS = 0.

2.B If ‖o1 − c′2‖ ≤ ρ; the terminal point p′2 is at the

intersection between the arc segment and P ′2, and

thus LS = 0.
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2.C If ‖o1 − c′2‖ > ρ then LS > 0 and the extension

of the straight segment passes through c′2.

A closed-form solution exists for all three cases. The

first two cases 2.A and 2.B are special boundary cases,

which are obviously local optima; however, the opti-

mality of the last case 2.C is proved in the following

lemma.

Lemma 4 If the optimal solution of the OS-GDIP in-

stance is the RS maneuver and LS > 0, a line extension

of the straight segment passes through c′2 (the center of

P ′2).

Fig. 4 RS maneuver of the CS type for various radii of P ′2
depicted as the blue disks which become the blue half-plane
in the limit case.

Proof Let L∗R and L∗S be lengths of the R and S seg-

ments of the RS maneuver for which Lemma 4 holds,

and thus a line extension of the S segment passes through

the center c′2 of the region P ′2. The end location of

the maneuver is denoted as p′∗2 , see Fig. 4. To prove

Lemma 4, we show that there exists no shorter RS ma-

neuver by contradiction. Let assume there exist an al-
ternative RS maneuver with the total length

LRS < L∗R + L∗S, (11)

which ends at p′′2 ∈ P ′2. Then, a line l2 is defined such

that it passes p′∗2 and is perpendicular to the straight

segment. The intersection of the alternative maneuver

with l2 is denoted as pl2 , and the length of the first part

of maneuver up to the point pl2 is denoted as Ll2RS. If

the assumption (11) holds, the first part of the alternate

maneuver is also shorter, i.e., Ll2RS < L∗R + L∗S.

The total length Ll2RS of the alternate maneuver end-

ing at l2 can be determined by

Ll2RS =
L∗S + ρ sin(ε)

cos(ε)
+ L∗R − ρ ε, (12)

where ε is the deviation from the direction towards c′2
(the center of P ′2). The derivative of the length function

with respect to ε can be expressed as

∂

∂ε
Ll2RS =

sin(ε)

cos2(ε)
(L∗S + ρ sin(ε)) . (13)

The alternative RS maneuver can occur only if ε ∈
(−π, π) and L∗S + ρ sin(ε) > 0; otherwise LS ≯ 0. An

unique minimum occurs for ε = 0 for which Ll2RS =

L∗R + L∗S. This is in the direct contradiction to (11),

and thus there exist no shorter RS maneuver than the

unique one for which Lemma 4 holds. ut

5.1.3 Cψ maneuvers

If p′1 and P ′2 are close enough, maneuvers of the Cψ
type may become the optimal solution. The boundary

cases of the heading angles are already covered by the

CS type of the maneuvers, and therefore, such cases are

forbidden for the Cψ type of maneuvers, which can be

expressed as

θ1 ∈ Θ1 \ {θmin
1 , θmax

1 }, θ2 ∈ Θ2 \ {θmin
2 , θmax

2 } . (14)

Lemma 5 If the optimal solution of the OS-GDIP in-

stance is of the Cψ type, then p′2 = arg maxp∈P ′2 ‖p−p
′
1‖.

Fig. 5 Rψ maneuver of the Cψ type in the solution of the
OS-GDIP.

Proof Let LCψ be the length of the Cψ maneuver which

depends on the distance l = ‖p′1− p′2‖, see Fig. 5. Then

LCψ = ρ

(
2π − 2 arcsin

(
l

2ρ

))
. (15)

The length LCψ depends only on the distance l and it is

independent on the specific p′2 location and its deriva-

tive can be expressed as

∂

∂l
LRψ =

−2√
4− l2

ρ2

. (16)

The derivative is always negative for the cases in which

a maneuver of the Cψ type can be constructed, i.e., for

l < 2ρ. Thus, the terminal position p′2 of the optimal

maneuver of the Cψ type is such that the value of l is

maximized. ut

Notice the maneuver of the Cψ type can be optimal

only if the farthermost p′2 location meets l < 2ρ; other-

wise there exists a shorter maneuver of a different type.

Therefore, the necessary condition that a maneuver of

the Cψ type can be optimal is ‖p′1 − s′2‖+ r′2 < 2ρ.
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5.1.4 CSC maneuvers

Maneuvers of the CSC type contain two C segments

C1 and C2 with the same orientation connected by the

central S segment. All three segments are considered to

have a non-zero length; otherwise the maneuver reduces

into one of the above cases. Both the heading angles are

known to be at the limits of the intervals based on the

DIP conditions summarized in Table 1:

CSC

{
LSL : θ1 = θmax

1 ∧ θ2 = θmin
2 ,

RSR : θ1 = θmin
1 ∧ θ2 = θmax

2 .
(17)

The total length of the C maneuvers (LC1
+ LC2

) is

given by θ1, θ2. However, the optimal position of p′2
needs to be found. Let p′′2 be a virtual endpoint of the

maneuver of the CSC type, where the central S segment

is omitted, see Fig. 6. Then, the following lemma can

be formulated.

Lemma 6 If the optimal solution of the OS-GDIP in-

stance is a maneuver of the CSC type and all three seg-

ments have non-zero length, then p′2 = arg minp∈P ′2 ‖p−
p′′2‖.

Fig. 6 RSR maneuver of the CSC type in the solution of the
OS-GDIP.

Proof Since the sum of LC1 and LC2 is known a priori,

the total length is influenced only by the length LS of

the straight segment. The orientation of the S segment

is parallel to p′′2p
′
2 and LS = ‖p′′2 − p′2‖. Therefore, LS

needs to be minimized to get the optimal solution. ut

5.1.5 CSC maneuvers

Maneuvers of the CSC type contain two arc segments

with the opposite orientations and the center S segment

which may have zero length. Similarly to the previous

case, the optimal heading angles are known a priori:

CSC

{
LSR : θ1 = θmax

1 ∧ θ2 = θmax
2 ,

RSL : θ1 = θmin
1 ∧ θ2 = θmin

2 .
(18)

In contrast to the previous CSC type, this type of ma-

neuvers is more complex because the lengths of the arc

segments cannot be determined directly from θ1, θ2.

Therefore, a transformation to a different OS-GDIP in-

stance is considered.

Lemma 7 If the optimal solution of the OS-GDIP is

a maneuver of the CSC type, the problem instance can

be transformed into an OS-GDIP instance where the

solution is of the CS type.

Proof Since θ1, θ2 are fixed, the center o1 of the first

C segment is given by the location of p′1 and θ1. The

second center o2 lies inside the disk region O2 of its pos-

sible locations. The region O2 is determined based on

P ′2 which is translated by the vector g2 perpendicular

to θ2 and with the magnitude of ρ. Orientation of g2

depends on the direction of the last turn:

g2 =

{
ρ (− sin θ2, cos θ2) for L maneuvers,

ρ (sin θ2,− cos θ2) for R maneuvers.
(19)

where stands for an arbitrary path segment. Then,

the region O2 is defined as follows (see Fig. 7):

O2 =
{
p′2 + g2

∣∣ p′2 ∈ P ′2} . (20)

Fig. 7 RSL maneuver of the CSC type in the solution of the
OS-GDIP.

An important point of the CSC maneuver is the

center t of the segment S because it is also the origin of

the point of symmetry for the whole maneuver. Thus,

the origin t is a midpoint between the centers c1 and c2.

The set T of all possible t locations can be determined

based on o1 and O2:

T =

{
o1 + o2

2

∣∣ o2 ∈ O2

}
. (21)

The main idea is that the whole maneuver can be

easily constructed once the origin t is known. Thus,

the problem of finding the shortest CSC maneuver can

be transformed to the problem of finding the optimal

location of t.

Since t is an origin of the center symmetry, it splits

the maneuver to two parts. One of the parts may be

longer to compensate the difference between departure

and terminal heading angles |θ1 − θ2|. The difference is
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constant and not influenced by the selection of t, and

thus the length of the second part is directly propor-

tional to the first one.

Since the lengths of both parts of the maneuver di-

vided by t are proportional, it is sufficient to optimize

only the length of the first part to find the optimal solu-

tion. Thus, the problem is transformed to find the short-

est CS maneuver from p′1 to the region T . The trans-

formed problem is an GDIP instance GCS for which the

departure point and heading angle are fixed, the arrival

point lies in T , and the corresponding heading angle is

arbitrary, i.e., GCS = ( p′1, θ1, T, [0, 2π) ). ut

As a result of Lemma 7, the problem of finding a ma-

neuver of the CSC type is transformed into a relatively

easy problem for which a closed-form solution exists as

it is shown in Section 5.1.2.

5.1.6 CCψC maneuvers

If ‖p′1−p′2‖ < 4ρ, the maneuvers of the CCψC type can

be the optimal solution because one of the maneuvers

of the CSC type cannot be constructed. The optimal

heading angles are known a priori

CCψC

{
LRψL : θ1 = θmax

1 ∧ θ2 = θmin
2 ,

RLψR : θ1 = θmin
1 ∧ θ2 = θmax

2 .
(22)

Similarly to the CSC type of maneuvers, the center o1
of the first C segment is known and the third center

o3 lies inside the disk region O3 derived from P ′2, see

Fig. 8. Then, the third center o3 is determined based

on the following lemma.

Lemma 8 If the optimal solution of the OS-GDIP is a

maneuver of the CCψC type, then o3 = arg maxs∈O3
‖s−

o1‖.

Fig. 8 LRL maneuver of the CCψC type in the solution of
the OS-GDIP.

Proof The length of the maneuver can be determined

based on the angle φ = ∠o1o2o3

LCCψC
= ρ ( |θ1 − θ2|+ 2kπ − 2φ) , (23)

where k ∈ Z is for the angle normalization. Since θ1, θ2,

and k are fixed for the specific maneuver type, the only

remaining variable in (23) is the angle φ which needs

to be maximized to get the shortest solution. Thus, the

distance l = ‖o1 − o3‖ needs to be maximized because
∂φ
∂l > 0 for 0 < l < 4ρ. ut

Notice o3 can be found by a closed-form expression

because O3 is a circular region. Having o1 and o3, the

maneuver is well defined and easy to construct. A nec-

essary condition for CCψC to be optimum is

∀o3 ∈ O3 : ‖o1 − o3‖ < 4ρ. (24)

Otherwise, it would be possible to construct a shorter

CSC maneuver.

5.1.7 CCψ maneuvers

The last type of maneuvers is CCψ which can also oc-

curs only if ‖p′1 − p′2‖ < 4ρ. There may exist up to

four maneuvers for which one of the heading angles is

known:

CCψ


LRψ : θ1 = θmax

1 ∧ θ2 ∈ Θ2,

RLψ : θ1 = θmin
1 ∧ θ2 ∈ Θ2,

RψL : θ1 ∈ Θ1 ∧ θ2 = θmin
2 ,

LψR : θ1 ∈ Θ1 ∧ θ2 = θmax
2 .

(25)

Only the maneuver LRψ of the CCψ type is further

studied because other maneuvers share the same prop-

erties. Let o1 and o2 be the centers of the C segments,

then the length of the maneuver depends on p′2:

LLRψ
= ρ(2π − α+ β + ϕ), (26)

where ϕ = ∠p′1o1p
′
2 and α = ∠o1o2p′2, β = ∠p′2o1o2

which depends on the distance d = ‖o1−p′2‖, see Fig. 9.

The maneuver length from (26) can be expressed in the

Fig. 9 LRψ maneuver of the CCψ type in the solution of
the OS-GDIP.
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polar coordination system of (ϕ, d) as

LLRψ
= ρ

[
2π − cos−1

(
5ρ2 − d2

4 ρ2

)
+ cos−1

(
3ρ2 + d2

4 d ρ

)
+ ϕ

]
. (27)

The derivatives of the maneuver length are

∂

∂ϕ
LLRψ

= ρ,
∂

∂d
LLRψ

=
3ρ2 − 3d2

d
√
−d4 + 10d2ρ2 − 9ρ4

.

(28)

From the domain of the second derivative according

to d, the necessary condition for the CCψ maneuver to

exist is

ρ ≤ d ≤ 3ρ, (29)

which corresponds to a direct geometrical representa-

tion. Thus, the signs of both derivatives are fixed

∂

∂ϕ
LLRψ

> 0,
∂

∂d
LLRψ

< 0. (30)

Based on these preliminaries, the optimality of the ma-

neuver is shown in Lemma 9.

Lemma 9 If the optimal solution of the OS-GDIP in-

stance is the CCψ maneuver, the terminal position p′2
lies at the boundary of the departure region P ′2.

Proof The signs of both length derivatives are fixed,

and thus the minimum of the length function is at the

boundary of P ′2 or a maneuver of the CCψ type is not

optimal. ut

Notice the second derivative of LLRψ
over d can be

expressed as

∂2

∂d
LLRψ

=
3(9ρ4 − 2ρ2d2 + d4)

d2(d2 − 9ρ2)
√
−9ρ4 + 10ρ2d2 − d4

, (31)

for which ∂2

∂dLLRψ
< 0 holds if d is in the interval

from (29). The second derivative over ϕ is always zero,

i.e., ∂2

∂ϕLLRψ
= 0.

Knowing one of the second derivatives is zero and

the other derivative is always negative, the problem can

be seen as an optimization problem which contains an

unique minimum. Furthermore, the position of p′2 in

the optimal solution is known to be at the boundary of

P ′2, which reduces the problem to a convex optimization

problem with a single variable. A closed-form formula

is not known but the problem can be easily solved by a

numerical method, such as hill-climbing.

6 Proposed Tight Lower Bound and Upper

Bound Solutions of the DTRP

The introduced GDIP is motivated to find the opti-

mal solution of the Dubins TSP with Neighborhoods

(DTSPN). Even though this ultimate goal is still open,

we demonstrate the importance of the optimal solu-

tion of the GDIP for solving Dubins routing problems

through a set of regions in a solution of the DTSPN

for which the sequence of visits to the regions is given.

We explicitly call the problem as the Dubins Tour-

ing Regions Problem (DTRP) to distinguish it from

the DTSPN which also includes the sequencing part of

the underlining TSP. Therefore, we formally define the

DTRP in Section 6.1, and in Section 6.2, we propose a

tight lower bound procedure for the DTRP using the

optimal solution of the introduced GDIP. Finally, the

proposed informed sampling-based procedure to itera-

tively refine the lower bound and find a high-quality

solution of the DTRP is presented in Section 6.3.

6.1 Dubins Touring Regions Problem (DTRP)

The Dubins Touring Regions Problem (DTRP)

denotes the problem to find the shortest curvature-

constrained path through a given sequence of regions.

For n compact regions R = {R1, . . . , Rn}, Ri ⊂ R2, the

requested multi-goal path can be defined by a sequence

of configurations Q = (q1, . . . , qn). Then, the DTRP

can be defined as an optimization Problem 4.

Problem 4 (DTRP)

minimizeQ L(qn, q1) +

n−1∑
i=1

L(qi, qi+1)

s.t.

Q = (q1, . . . , qn)

qi = (xi, yi, θi), i = 1, . . . , n for

(xi, yi) ∈ Ri and θi ∈ S1, Ri ∈ R, Ri ⊂ R2,

where L(qi, qi+1) is the Dubins distance between two

consecutive visiting configurations qi and qi+1.

The idea of the introduced DTRP is to separate

the sequencing part of the DTSPN from the continuous

optimization and focus on the continuous optimization.

We can leverage on the existing sampling-based ap-

proaches to the DTP and we can address the DTRP

by sampling of the regions and heading intervals into

a discrete set of the interval samples. The introduced

GDIP can be then employed in solving the instances

defined by the sampled intervals, and we can establish

a tight lower bound of the DTRP.
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6.2 Tight Lower Bound for the DTRP

Both the optimal heading angle and the optimal loca-

tion within the region need to be determined simultane-

ously for each visiting configuration of the DTRP which

makes this optimization problem challenging.

The proposed tight lower bound follows the idea of

Manyam et al. (2017) on the tight lower bound for the

DTP, i.e., the problem of finding the shortest Dubins

path through a sequence of the given locations. The

idea is that the possible heading angles are split into a

discrete set of angle intervals, and the lower bound is

computed as the shortest tour based on the solution of

the DIP connecting the angle intervals by the shortest

Dubins path. Note the lower bound is not a feasible so-

lution of the DTP because it contains discontinuities in

the heading angle. The idea of the DTP lower bound

is extended to the DTRP where a particular location

of the visiting configuration can arbitrarily be selected

within the corresponding region. Therefore, the origi-

nal DIP formulations cannot be utilized, and the intro-

duced GDIP is necessary to address the lower bound of

the DTRP.

We follow the idea to split the possible values of

the heading angle into a discrete set of intervals with

the heading resolution ωH . Thus, the size of the head-

ing interval Θ is ‖Θ‖ = 2π
ωH

, which also represents

the maximum discontinuity in the heading of the lower

bound solution. In addition to the heading intervals, the

possible location of the visiting configuration needs to

be sampled similarly. The regions are two-dimensional

sets, but we consider the particular visiting configu-

ration is at the boundary of the region because any

feasible solution intersects the boundary of the region.

Let a disk-shaped target region Ri with the radius δ be

centered at ci; then, the visiting configuration can be

encoded by a single angle value γ as

(xi, yi) = ci + δ(cos γ, sin γ). (32)

All possible locations can be then divided into a

discrete set of neighborhoods defined by the intervals

Γ which represent arcs on the boundary of the partic-

ular region to be visited. Let the position resolution be

ωP and Γ is an angle interval of γ; then, the size of the

interval is ‖Γ‖ = 2π
ωP

. An example of the sampled inter-

vals of the possible location of the visiting configuration

at the border of the region is depicted in Fig. 10.

Each sampled arc segment is bounded by a disk-

shaped region defined by the circumscribed circle to

directly utilize the found optimal solution of the GDIP.

The center c of the region is in the middle between

two endpoints of the specific circular arc and its radius

(a) Uniform sampling, posi-
tion resolution ωP = 4.

(b) Irregular sampling, posi-
tion resolution ωP ∈ [4, 16].

Fig. 10 An example of location sampling of the original disk-
shaped region shown in the light blue into a set of position
intervals (green) as the arcs on the region boundary defined

by the angle intervals Γ ji for the region Ri.

r equals half of the distance between these two end-

points. The radius r of the circumscribed region can be

expressed as

r =

{
δ sin

(
π
ωP

)
if ωP ≥ 2

δ otherwise
, (33)

where δ is the radius of the original disk-shaped region.

Notice the radius r goes to zero for increasing resolution

ωP (i.e., increasing number of the samples)

lim
ωP→∞

r(ωP ) = lim
ωP→∞

δ sin

(
π

ωP

)
= 0. (34)

Based on the idea of sampling the continuous vari-

ables into finite set of intervals, the space of all possible

visiting configurations for the target region Ri is di-

vided into a discrete set of ki samples Si = {s1i , . . . , s
ki
i }.

Each sample sji = (Γ ji , Θ
j
i ) is defined by the circum-

scribed region of the corresponding position interval

Γ ji and heading interval Θji . The size of the intervals

Γ ji and Θji is given by the specific position resolution

ωP and heading resolution ωH , respectively.

The sampling S = {S1, . . . , Sn} of the DTRP is con-

stituted of all sampled intervals for the specific target

regions. Based on S, lower bound paths can be com-

puted as the optimal solution of the GDIP for each pair

of the consecutive samples corresponding to the con-

secutive regions in the given sequence. The individual

lower bound for the path between two sampled inter-

vals of two consecutive regions can be connected into a

global search graph that is depicted in Fig. 11.

Then, the lower bound of the DTRP can be deter-

mined using the constructed graph structure and find-

ing the shortest tour over the partial lower bound paths

determined as the individual solutions of the GDIP for

the particular sampled intervals corresponding to the
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S1

s11

s21

...

sk11

S2

s12

s22

...

sk22

S3

s13

s23

...

sk33

Sn

s1n

s2n

...

sknn

. . .

For all combinations

Fig. 11 A graph-based structure that represents the sampled
intervals of the regions in the sequence. Finding the shortest
path in the graph corresponds to the lower bound estima-
tion of the length of the shortest Dubins multi-goal trajectory
through the given sequence of regions.

consecutive regions. Notice the determined tour repre-

senting the lower bound is not a feasible solution of the

DTRP because it contains discontinuities in the posi-

tion and heading of the particular sampled configura-

tions of two consecutive regions; moreover, the lower

bound solution is not even guaranteed to intersect the

given regions as a result of the proposed position sam-

pling. The size of the discontinuities is limited by the

utilized resolutions ωP and ωH and the lower bound

is assumed to converge to the optimal solution if the

resolutions go to infinity.

The most straightforward way how to split possible

position and heading intervals of the visiting configu-

rations is to utilize uniform sampling for creation of

the set of the sampled intervals S. Unfortunately, the

number of samples quickly grows with the increasing

resolutions ωP and ωH and finding the shortest path

in the corresponding search graph is computationally

demanding. We can establish bounds on the computa-

tional complexity for the uniform sampling as follows.

Let ωmax be the maximal resolution and ωP = ωH =

ωmax for the uniform sampling. Then each of n regions

in the sequence is sampled by k = ω2
max samples and

the number of needed evaluations of the GDIP between

each pair of the samples corresponding to two consecu-

tive regions can be bounded by O(nk2) or O(nω4
max) in

the term of the maximal resolution. Consecutively, the

final lower bound is computed as the shortest tour in

the search graph depicted in Fig. 11. The complexity of

finding the tour can be bounded byO(nk3) if a dynamic

programming approach is utilized. Thus, a determina-

tion of the lower bound of the DTRP instance with

the n regions and uniform sampling with the resolution

ωmax can be bounded by O(nω6
max).

6.3 Informed Sampling-based Approach to the DTRP

The proposed solution to the DTRP is based on de-

termining a tight lower bound of the DTRP by itera-

tive increasing the resolution ω of the sampled inter-

vals. Although the uniform sampling can be eventually

utilized, it is found to be computationally demanding,

and therefore, we follow the idea of the informed sam-

pling presented in (Faigl et al., 2017) for solution of the

DTP. The idea of the informed sampling is to refine

(split) the sampling S in the most promising sampled

intervals that will tighten the lower bound, i.e., increase

the value of the computed lower bound. It is proceeded

by refining the sampled intervals that are part of the

currently determined the shortest lower bound tour.
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Fig. 12 An example of the informed sampling for the left
bottom region of the DTRP instance shown in Fig. 13.

Each refinement removes the selected sample that

is replaced by its two refined intervals. Although the

refinement of the position and angle intervals can be al-

ternated, the position refinement is prioritized because

a faster convergence has been observed in random in-

stances of the DTRP with δ = 1; however, angle in-

tervals refinement may be more beneficial for δ � 1.

Therefore, the refinement is performed for the position

interval if the position resolution is lower than the cur-

rent desired resolution ω. Here, it is worth noting that

the position and heading resolutions can differ signifi-

cantly for each partial sample not only because of pri-

oritized position intervals but also as a result of the

iterative refinement and convergence to the tight lower

bound estimation. An example of the interval distribu-

tion is shown in Fig. 12.
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The key idea of the informed sampling is to find the

same lower bound value as for the uniform sampling

but using a much smaller number of the samples. The

convergence to the same results can be expressed in the

following lemma.

Lemma 10 Informed sampling provides the same lower

bound for the DTRP as the uniform sampling if the po-

sition and heading resolutions in the final tour are the

same as for the uniform sampling.

Proof The lower bound is computed as the shortest tour

in the graph that is created using the optimal solution

of the corresponding instances of the GDIP. If a specific

sample is divided into two samples (either by splitting

position or heading interval), the optimal solution of the

corresponding instances of the GDIP cannot decrease.

As a result, the lower bound for a lower resolution can-

not be greater than the lower bound for a denser res-

olution. Therefore, if the lower bound for the uniform

and informed sampling differs then; the tour found for

the informed sampling contains samples with a lower

resolution which is in a contradiction with the assump-

tion, and a further refinement should be applied. ut

Even though the lower bound is an important con-

tribution to the solution of the DTRP, the bound itself

does not provide a feasible solution of the DTRP. How-

ever, the proposed informed sampling is expected to

sample the space around the optimal solution densely,

and the distribution of the informed sampling includes

information about the optimal solutions. Hence, we pro-

pose to utilize the samples S generated by the informed

sampling for determining a high-quality solution of the

DTRP. The only modification is that instead of con-

structing the search graph (shown in Fig. 11) using

the optimal solution of the GDIP, the corresponding

Dubins maneuvers to the feasible configurations are

utilized. In particular, the feasible configuration is se-

lected based on the specific sample s = (Γ,Θ) such

that the position is determined by (32) where the angle

γ = min(Γ ) and the heading angle θ = min(Θ). Thus,

the feasible configurations correspond to the corners of

the sampled intervals depicted as small black disks in

Fig. 12. Notice, the computational complexity of find-

ing the shortest tour remains the same as for the lower

bound because the number of samples/configurations

remains the same, and thus a feasible solution of the

DTRP is determined in a similar way.

Both approaches for finding a lower bound and a

feasible solution of the DTRP based on the informed

sampling can be combined in a single iterative pro-

cedure that is summarized in Algorithm 1. The main

benefit of the combined method is that it enables to

Algorithm 1: Informed sampling-based solution

of the DTRP using optimal solution the GDIP.

Input: R – Sequence of the regions to be visited
Input: ωmax – Maximal requested resolution
Output: Q – Visiting configurations of the final tour
Output: LL – Lower bound (unfeasible)
Output: LU – Upper bound (feasible)

1 ω ← 1 // initial resolution

2 S ← sampleIntervals(R) // initial intervals

3 LL ← 0 // init lower bound

4 LU ←∞ // init upper bound

5 while ω ≤ ωmax do
6 (S,LL)← refineLowerBound(R, ω,S)
7 (Q,LU )← findFeasibleSolution(R,S)
8 ω ← 2ω

9 end
10 return Q,LL,LU

compute the relative gap between the lower bound and

the found solution at every iteration of the refinement.

Thus the procedure has any-time property and the gap

is improving with increasing resolution ω. The proposed

iterative algorithm proceeds as follows.

The procedure starts with the lowest possible res-

olution ω = 1 and the samples are gradually refined

to meet the maximal requested resolution ωmax. The

initial samples, created by the procedure sampleInter-

vals, consist of the original regions Ri corresponding to

the position interval Γ 1
i = [0, 2π) and the full heading

angle interval Θ1
i = [0, 2π). Then, the algorithm contin-

ues with the main loop in which the refineLowerBound

procedure finds the shortest lower bound tour and re-

fine the selected samples if their resolution is lower than

the current resolution ω. After that, a feasible path is

found for the current sampling sets S in the procedure

findFeasibleSolution. Thus, both the lower and upper

(feasible solution) bounds are updated in each iteration

of the algorithm, and the optimality gap is determined.

Notice the gap cannot increase for the refined sampling

and it is decreased for most of the cases.

Regarding the particular implementation of the al-

gorithm, the optimal solutions of the GDIP for deter-

mining the lower bound and Dubins maneuvers for the

feasible solution are not computed in each iteration.

Instead, the computed values are stored and utilized in

the next iterations if the specific intervals are not re-

fined to improve real computational requirements of the

algorithm. The results on the computational require-

ments are reported in the following section.

7 Evaluation Results

The proposed optimal solution of the introduced GDIP

and its practical deployment in the solution of the DTRP



14 Petr Váňa, Jan Faigl

have been empirically verified in two evaluation scenar-

ios. In the first scenario, we evaluate the real computa-

tional requirements of the optimal solution of the GDIP

for the overall solution, but also for each possible case

separately to study the optimal solution in more detail.

In the second scenario, the convergence of the proposed

algorithm for the DTRP based on the GDIP is demon-

strated for problems with the increasing number of the

target regions.

The optimal solution of the GDIP and solution of

the DTRP have been implemented2 in C++ and com-

piled by the Clang ver. 6.0.0 with the enabled optimiza-

tions -O3. All the reported results have been computed

using a single core of the Intel Core i5-7600K CPU run-

ning at 3.8 GHz.

7.1 Real Computational Requirements of the GDIP

The optimal solution of the GDIP can be computed

very efficiently because almost all the cases can be found

by a closed-form expression. The only remaining case

(CCψ) is transformable to a convex optimization with

a single variable and thus solved quickly. However, the

number of possible maneuvers is higher than in a so-

lution of the simple point-to-point Dubins maneuver,

and therefore, the average computational time of find-

ing the optimal solution has been measured for three

different problems: Dubins maneuver, DIP, and the pro-

posed GDIP. For each problem, 106 random instances

have been generated with the same generation setting:

the minimum turning radius ρ = 1 and the points p1, p2
are uniformly selected from the box p1, p2 ∈ [0, 10] ×
[0, 10]. The headings angles are uniformly selected as

θ1, θ2 ∈ [0, 2π] for the Dubins maneuver problem and

the boundaries of the angle intervals are arbitrarily se-

lected θmin
1 , θmax

1 , θmin
2 , θmax

2 ∈ [0, 2π] for the DIP. Fi-

nally, the GDIP instances are further specified by the

centers c1 and c2 of the regions P1 and P2, respectively,

that are the same as the points p1 and p2, and the radii

of the regions are uniformly selected as r1, r2 ∈ [0, 1].

Table 3 Average computational time per one solution

Problem Max. # Time [µs] Time ratio

Dubins maneuver 6 0.374 1.0
DIP 23 1.114 3.0
GDIP 26 5.417 14.5

The average computational times are reported in

Table 3. The results show that the computation of a

2 Source codes are available at https://github.com/

comrob/gdip.

single Dubins maneuver takes less than 0.4 µs while the

number of examined maneuvers (Max. #) is only six.

Finding the optimal solution for the DIP is about three

times more computationally demanding because 23 ma-

neuvers are examined in the total. Notice this number

of examined maneuvers is greater then 21 distinguish-

able maneuvers in Table 1 because of implementation

details where some maneuvers need to be examined in

more specific cases. The proposed optimal solution for

the GDIP needs to compute only three more maneu-

vers. However, a computation of the individual cases are

slightly more complex for the GDIP, and thus a com-

putation of a single optimal solution is about 15 times

more demanding than computing the optimal Dubins

maneuver.

The proposed optimal solution of the GDIP is based

on seven cases, each with specific maneuver type, and

a number of possible maneuvers, see Table 2. The solu-

tion is computed such that each maneuver type is con-

structed separately and the shortest path is selected at

the end. Therefore, we can further study specific cases

and analyze how many times each particular maneuver

is the optimal solution. The above results can be thus

divided according to the specific cases, and the results

are provided in Table 4, where the notation of the ma-

neuver types from Section 4 is followed to distinguish all

possible cases clearly. In addition to the maximum num-

ber of the determined maneuvers (denoted Max. #), the

average number of successfully constructed maneuvers

(denoted Avg. #), i.e., the maneuvers that can be con-

structed, the average number of maneuvers which are

the optimal solution (denoted Opt. #), and the aver-

age computational time are reported. The results show

that a feasible solution exists for any GDIP instance

because CSC type can always be constructed, but it

likely not to be the optimum. In contrast, if the S ma-

neuver is successfully constructed no other maneuver

can be shorter. Notice that more than six maneuvers

are constructed to find a single optimal solution on the

average.

7.2 Evaluation of the Proposed Solution to the DTRP

The proposed solution to the DTRP using its tight

lower bound based on the optimal solution of the GDIP

has been evaluated for a set of randomly generated

DTRP instances3 with n ∈ {10, 20, 50, 70, 100}, δ = 1,

and ρ = 1. The sequence of visits to the regions has

3 The instances have been generated with the relative den-
sity d = 0.3 and possibly overlapping regions where the region
centers are randomly placed with the squared bounding box
with the size s = ρ

√
n/d.
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Table 4 Statistics of maneuver types in the optimal solution of the GDIP computed by the provided reference implementation

Case Type Maneuvers Max. # Avg. # Opt. #
Avg.

Max.
[%]

Opt.

Avg.
[%]

Opt.

Max.
[%] Time [µs]

1.A S S 1 0.0272 0.0272 2.72 100.00 2.72 0.03
1.B S S 1 0.2426 0.2426 24.26 100.00 24.26 0.04
2.A C(S) L, R 4∗ 0.1189 0.0146 2.97 12.32 0.37 0.58
2.B C(S) L, R 4∗ 0.2002 0.0317 5.00 15.86 0.79 0.47
2.C CS LS, RS, SL, SR 4 1.9498 0.4531 48.75 23.24 11.33 0.81
3 Cψ Lψ, Rψ 2 0.0026 0.0022 0.13 86.30 0.11 0.02
4 CSC LSL, RSR 2 2.0000 0.1067 100.00 5.34 5.34 0.43
5 CSC LR, RL, LSR, RSL 2† 1.9406 0.1186 97.03 6.11 5.93 1.71
6 CCψC LRL, RLR 2 0.1124 0.0009 5.62 0.84 0.05 0.08
7 CCψ LRψ, RLψ, LψR, RψL 4 0.0335 0.0022 0.84 6.60 0.06 0.91

Total 26 6.6278 1.0000 25.49 15.09 3.85 5.10

∗Maneuvers need to be examined from both sides, and thus the number is twice the number of maneuvers.
†LR and LSR maneuver are examined in a single step and the same for RL and RSL, respectively.

Fig. 13 An example of the DTRP instance with n = 10
target regions each with the radius δ = 1 (visualized as the
light blue disks) and ρ = 1. The lower bound path is 17.68
long (red) and a feasible solution is 22.07 long (blue) both
determined in 0.66 s for ωmax = 16. The green circles are the
samples, and the orange lines correspond to intervals of the
heading angles.

been determined by the optimal solution of the corre-

sponding Euclidean TSP for the centers of the regions

that have been found by the Concorde solver (Apple-

gate et al., 2003). An example of the problem instance

and its solution is depicted in Fig. 13. The instances

have been used to study the convergence of the DTRP

solution to the lower bound and evolution of the opti-

mality gap.

The convergence of the DTRP solution to the lower

bound has been studied for the increasing maximal res-

olution ωmax. The achieved results are depicted in Fig. 14,

where the solution cost is normalized to the best-known

solution of the particular problem instance. Based on

the presented results, the computational time can be
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Fig. 14 Convergence of the solution cost to the lower bound
and the required computational time for increasing ωmax. The
solution cost is normalized by the best-found solution. The
presented results are average values of 20 random problem
instances for n = 10 target regions. The resolution and com-
putational time are presented in logarithmic scales.

approximated by O(nω1.8
max) which is mainly because of

informed sampling of the regions and heading intervals.

An evolution of the relative optimality gap between

the lower bound and the feasible solution cost in the

above described random DTRP instances is shown in

Fig. 15, where ∆ is the relative gap between the lower

and upper bound

∆ = 1− LL
LU

. (35)

The results indicate the solution of problems with n =

100 target regions and the optimality gap around 1%

can be found in 100 seconds, which further support

the hypothesis that the computational time is approx-

imately linear with the problem size n.
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Fig. 15 The optimality gap ∆ of the lower bound solution
and feasible solution for problems with n target regions ac-
cording to the real required computational time. The pre-
sented results are average values of 20 random problem in-
stances, and the results are presented in logarithmic scales.

8 Conclusion

In this paper, we introduce the Generalized Dubins In-

terval Problem (GDIP) and provides its optimal solu-

tion based on the transformation of the GDIP to the

OS-GDIP. Both forward and backward transformations

are provided together with proofs of their correctness.

Moreover, the benefits of the GDIP to the solution of

the DTRP (a variant of the DTSPN with the prescribed

sequence of the visits) are demonstrated by providing a

tight lower bound of the solution cost in the sampling-

based solution of the DTRP that is employed in the

informed sampling. Besides, the provided lower bound

allows determining the solution quality of the DTRP as

the estimated optimality gap. The reported results indi-

cate it is possible to find a solution of the DTRP with
ten overlapping disk regions and the solution quality

around 1% from the optimum in less than 10 seconds

using a single core of a conventional processor.

A Appendix

The Dubins Interval Problem (DIP) was initially proposed
and solved by Manyam et al. (2017), and the authors pro-
vided a list of all possible optimal solutions that are summa-
rized in Table 1. The authors considered originally RψLψ and
LψRψ maneuver types to be the candidates to the optimal
solution of the DIP, but claim here that these types are not
local minima. Although it does not affect the enumeration
of possible cases, we consider it important because we can
exclude these two types in the proposed optimal solution of
the GDIP. Therefore, a formal proof of the following lemma
is provided.

Lemma 11 A maneuver of the CψCψ type with two equally
long turns cannot be an optimal solution of the DIP if heading
angles θ1, θ2 remains unbounded, i.e., θ1 ∈ Θ1 \{θmin

1 , θmax
1 },

θ2 ∈ Θ2 \ {θmin
2 , θmax

2 } .

Proof Let us consider an RψLψ maneuver with two equally
long turns with origins o1 and o2 and corresponding turn
angles α, β ∈ (π, 2π), where w.l.o.g., we assume the minimum
turning radius ρ = 1 for simplicity and better readability.
The distance between the maneuver endpoints is denoted l =
‖p1 − p2‖ and both θ1 and θ2 are not bounded by Θ1 and
Θ2, respectively, see Fig. 16.

Fig. 16 RψLψ maneuver of the CψCψ type as a candidate
solution for the DIP.

To prove the RψLψ maneuver is not a candidate solution,
the problem is considered as a constrained optimization of the
trajectory length

f(α, β) = LCψCψ
= α+ β. (36)

The geometrical constraint is constructed for the distance
between the endpoints (see Fig. 16) such that

l2 = (2− cosα− cosβ)2 + (sinα+ sinβ)2. (37)

The constraint is encoded into a function g(a, b) that equals
to zero, i.e., g(α, β) = 0, that can be expressed as

g(α, β) = 3−
l2

2
− 2(cosα+ cosβ) + cosα cosβ+

+ sinα sinβ.

(38)

Local extremes can be identified using Lagrangian defined
by the functions f , g, and the Lagrange multiplier λ (Bert-
sekas, 2014)

L(α, β, λ) = f(α, β) + λg(α, β). (39)

The necessary condition for a critical point ∇α,β,λL = 0
holds for the case α = β, but the point can be a local min-
imum, local maximum, or a saddle point. The second par-
tial derivative test is utilized to distinguish these three cases.
First, Lagrange multiplier λ is determined based on

λ = −
∂f

∂α

(
∂g

∂α

)−1

= −
∂f

∂β

(
∂g

∂β

)−1

, (40)

and its value for the specific case when α = β is

λ|α=β =
−1

2 sinα
. (41)

The second partial derivative test is based on the Hessian
H̃ of the Lagrangian function, also called bordered Hessian
in the literature

H̃ = ∇2
α,β,λL =


∂2L
∂a2

∂2L
∂a∂b

∂g
∂a

∂2L
∂b∂a

∂2L
∂b2

∂g
∂b

∂g
∂a

∂g
∂b

0

 . (42)
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The elements of bordered Hessians for the case α = β are

∂2L

∂α2

∣∣∣∣
α=β

=
∂2L

∂β2

∣∣∣∣
α=β

= λ(2 cosα− 1), (43)

∂2L

∂α∂β

∣∣∣∣
α=β

= λ, (44)

∂g

∂α

∣∣∣∣
α=β

=
∂g

∂β

∣∣∣∣
α=β

= 2 sinα. (45)

The second partial derivative test states that a point is
a local maximum of function f(α, β) alongside g(α, β) = 0
if (−1)k det(H̃) < 0, where k = 1 stands for the number of
constraints. The determinant for α = β

det

(
H̃
∣∣∣
α=β

)
= 16λ

≥0︷ ︸︸ ︷
(1− cosα)

≥0︷ ︸︸ ︷
(sinα)2 (46)

is positive for α ∈ (π, 2π) based on (41). Therefore, the case
α = β is a local maximum and the trajectory length can be
shorten by a changing θ1 ∈ Θ1 and θ2 ∈ Θ2 angles if the
angles are not bounded by Θ1 and Θ2. The proof for LψRψ
is analogous. ut

Since CψCψ maneuver type can be optimal only if at least
one of the angles need to be bounded, i.e., θ1 ∈ {θmin

1 , θmax
1 },

θ2 ∈ {θmin
2 , θmax

2 }. Therefore, this type can be seen as a
particular case of CCψ for which both turns are larger than
π, and at least one angle is constrained, see Table 1.
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