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Abstract This paper concerns online learning of ter-

rain properties combining haptic perception with exte-

roceptive sensing to reason about forces needed to pass

through terrains that visually appear as untraversable

obstacles. Terrain learning is studied within the con-

text of autonomous exploration. We propose predict-

ing the traversability of potentially obstructing terrains

by active perception to establish a connection between

the observed geometric environment model and delib-

erately sampled forces to pass through the terrain us-

ing a haptic sensor that probes the terrain in front of

the robot. The developed solution uses a Gaussian Pro-

cess regressor in online learning and force prediction.

The robot is navigated following the information gain

to improve traversability and spatial models. The pro-

posed approach has been experimentally verified in fully

autonomous exploration with a multi-legged walking

robot. The robot is navigated through visually looking

obstacles and explores “hidden” areas while following

the expected information gain to explore the terrain

properties of the mission area.

Keywords Mobile robot · Exploration · Active

perception · Haptic sensing · Gaussian Process

regression

The presented work has been supported by the Czech Science
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1 Introduction

Terrain properties like appearance and geometry can be

used to reason about the traversability of mobile robots

by assigning terrain classes (Bradley et al., 2015), com-

puting a terrain traversal cost function (Sofman et al.,

2006), or discriminating untraversable terrains (Stelzer

et al., 2012). Further, we reason about terrains that ap-

pear untraversable due to their geometrical properties.

These visually appearing obstacles can be traversable,

such as sparse vegetation or a curtain-covered doorway,

which appear as a wall when presumed to be rigid. As-

suming a non-rigid terrain is a rigid obstacle to avoid

leads to safe behavior. However, in autonomous explo-

ration, such behavior might be overly cautious and re-

sults in an incomplete terrain model if the robot is pre-

vented from visiting areas separated by terrain that ap-

pears untraversable yet can be traversed by the robot.

In this paper, we propose to use both exteroceptive

and haptic sensing to actively learn to predict the tra-

versability of potentially obstructing obstacles. A hap-

tic sensor (3D-printed bumper) is used to sample the

force needed to pass through these visually appear-

ing obstacles. A Gaussian Process (GP) regressor (Ras-

mussen and Williams, 2006) exploits the obstacle ap-

pearance in online learning and predicts the forces re-

quired to be generated by the robot to pass through

an obstacle. The proposed method is demonstrated in

a real-world autonomous exploration scenario where a

multi-legged walking robot actively learns terrains that

can be passed through. Besides exploring the unob-

served areas, the robot actively collects information about

the force prediction model driven by the expected infor-

mation gain from interaction with potential obstacles.

An example of the robot decision-making using the pro-

posed model is visualized in Fig. 1.



2 Miloš Prágr et al.

Fig. 1 A visualization of autonomous decision-making in the
proposed terrain learning approach; untraversable terrains
are in the red and orange, while the green and blue areas
can be traversed. For the “blue obstacles”, the robot has al-
ready learned that such visually appearing obstacles can be
traversed through. (top) The circular black targets represent
possible exploration goal locations. The southern (S) goal is
reachable over terrain that appears traversable, while both
the northern (N) and eastern (E) goals are located behind
obstacles. However, the eastern goal is considered reachable,
visualized by the green path from the current robot’s loca-
tion to the possible goal location. (middle) Robot walking
through a traversable obstacle in the form of purple fabric.
(bottom) Projection of the traversability on robot vision a
few moments before traversing the fabric. Since the robot
has learned that the purple fabric (shown at the northeast of
the view) is traversable, the robot plans a path through it.

Regarding the existing work, including our previous

work on terrain learning (Prágr et al., 2018b, 2019), the

main contributions of the presented work are considered

as follows.

– Model characterizing the force needed to pass through

terrains (obstacles), incrementally learnable using

exteroceptive and haptic measurements.

– Proposed model’s capability to exploit observations

about terrain traversability that visually appears to

be rigid, but for which the experienced haptic inter-

action provides evidence of its traversability.

– A robotic system with active haptic perception us-

ing information-theoretic estimation of the expected

information gain of the object touching to ensure

traversability of terrains that visually appear im-

passable.

– Experimental evaluation of the developed incremen-

tal model learning and online prediction in an au-

tonomous robotic exploration scenario with a real

hexapod walking robot. The model’s incremental

learning capacity is exploited in online

decision-making based on the expected information

gain from visiting and interacting with terrain ob-

stacles.

– Experimental evaluation of the developed incremen-

tal model learning with real outdoor vegetation.

The rest of the paper is structured as follows. Sec-

tion 2 provides a brief review of the most related ap-

proaches that concern terrain traversal by unmanned

ground vehicles and mobile robot exploration. Section 3

specifies the problem of mobile robot exploration of the

environment with terrains that appears untraversable

yet can be traversed. The proposed learning and mod-

eling of such environments and the autonomous ex-

ploration framework to build a complete traversability

map of the unknown environment with areas “hidden”

by non-rigid terrains visually appearing as obstacles

are proposed in Section 4. The employed haptic sensor

is overviewed in Section 5, together with the reported

evaluation results from the real experimental deploy-

ment of the proposed system. Section 6 concludes the

paper.

2 Related Work

In this section, a short survey of the related work is pro-

vided. First, we focus on approaches concerned with de-

scribing terrain traversability, and the herein presented

work is placed in their context. Second, we provide a

short overview of robotic exploration.
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2.1 Terrain Traversability

It is not desirable to enter areas that would bar mo-

bile robots from continuing their missions by damaging

the robot, such as by falling off a high cliff or imped-

ing further motion as it happened by getting stuck in

soft sand (Brown and Webster, 2010). Besides, avoid-

ing terrains that do not pose an immediate danger to

the robot but are hard to traverse is desirable. Such

terrains may cause unnecessary energy consumption or

slowly wear the robot body. Thus, autonomous mobile

robots have to consider local terrain properties during

navigation through the operational environment. A rich

body of literature reports on systems concerning ter-

rain traversability. An extensive review and taxonomy

of such approaches can be found in Papadakis (2013).

The terrain traversability can be described either by

classifying the terrains into a set of terrain classes (Bel-

ter et al., 2019; Rothrock et al., 2016; Kragh et al., 2015;

Giguere and Dudek, 2008), or by assigning a continu-

ous traversability score to the observed terrain proper-

ties (Kottege et al., 2015), such as terrain appearance

and geometry (Prágr et al., 2018a; Prágr and Faigl,

2019). A common yet straightforward approach is to

classify terrain either as an untraversable obstacle or a

free traversable space. Stelzer et al. (2012) use geomet-

ric terrain properties to classify terrain as untraversable

or free and compute a continuous index to describe

the traversability of the latter class. In Kragh et al.

(2015), the Support Vector Machine (SVM) classifier

learns three classes (ground, vegetation, and object) in

an agricultural environment; while 40 hand-labeled ter-

rain classes are used in Bradley et al. (2015), where

some of them are denoted as obstacles.

Terrain traversability scores are computed directly

from remotely observed terrain appearance and geome-

try or describe the difficulty or energy consumption pre-

viously experienced by the robot when traversing over

the respective terrain. Sofman et al. (2006) use overhead

imagery to learn traversability log-scale score based on

ground LiDAR data. Overhead features are utilized to

predict the energy required to traverse various outdoor

terrains in Prágr et al. (2020). The cost of transport, an

energy-over-velocity cost originating in biology (Tucker,

1975), is modified for use with battery-powered robots

in Kottege et al. (2015). McGhee and Frank (1968) pro-

pose to measure the stability of a multi-legged robot

in terms of its foothold support polygon. Furthermore,

Prágr et al. (2019) learn to predict stability based on

inertial measurements of the robot shaking in an active

perception scenario.

Terrain geometry, which can serve as a traversability

indicator, can be characterized in terms of its slope

(Gu et al., 2008; Brunner et al., 2013), step height

(Homberger et al., 2016), or roughness (Krüsi et al.,

2016; Belter et al., 2019). The terrain shape is described

based on the Eigen-statistics of the point cloud covari-

ance matrix in Lalonde et al. (2006) and Kragh et al.

(2015). Approaches that consider terrain color use the

HSV (Sofman et al., 2006) or Lab (Otsu et al., 2016)

color space to avoid illumination sensitivity of the RGB

color space. Cunningham et al. (2019) propose to use

thermal imagery to predict slip during Mars rover mis-

sions.

Autonomous robots operating in outdoor environ-

ments might encounter hard-to-traverse-vegetation, and

thus attention is given to such terrains (Sofman et al.,

2006; Bradley et al., 2015). Ünsalan and Boyer (2004)

compared indices that characterize vegetation using a

LiDAR sensor. In Petrou et al. (2015), the vegetation

height is classified using overhead imagery. The eleva-

tion of the supporting terrain occluded by the vege-

tation is estimated using a GP model of the vegeta-

tion height, and foothold supports in Homberger et al.

(2019).

Furthermore, mobile robots may also be deployed

in environments with dynamic obstacles such as clos-

ing doors or moving people. Approaches to handle such

dynamic environments may either filter out dynamic

objects and extract a static map (Burgard et al., 1999),

or use spatial-temporal maps to represent and predict

changes in the environment such as a door being closed

or opened (Biber and Duckett, 2005; Halodová et al.,

2019). However, to the best of the authors’ knowledge,

none of the existing dynamic environment approaches

is designed to handle terrain that appears like a non-

moving obstacle for the whole time while it can be

passed through with sufficient forward force.

In Baleia et al. (2015), a haptic antenna is used to

classify the traversability of visually untraversable yet

possibly traversable objects. The therein proposed tra-

versability predictor is used in a self-supervised man-

ner. Upon encountering a potential obstacle during its

mission execution, the robot recalls the k-nearest ap-

pearing obstacles using a feature similarity metric. The

robot computes its confidence levels regarding the ob-

stacle being traversable and untraversable and decides

whether to move forward or avoid the obstacle. If nei-

ther the obstacle traversability nor non-traversability

can be observed with sufficient confidence, the robot

uses the antenna to assess the obstacle and expand its

memory.

Kahn et al. (2021) present a self-supervised, end-to-

end learning system to navigate potentially traversable

terrains that appear untraversable without relying on a

Simultaneous Localization and Mapping (SLAM) sys-
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tem. The robot uses a random walk policy to collect a

dataset, where it identifies collision, bumpiness, and po-

sition events using its Inertial Measurement Unit (IMU)

and wheel odometry. The robot learns to predict the

events given input image and action. The learned mod-

els can be exploited in navigation with respect to (w.r.t.)

an arbitrary reward function that considers the three

event types.

In the herein presented work, we aim to build both

the observed geometric model of the environment and a

model that predicts the traversability of potentially ob-

structing terrains by a small amount of data provided

by a haptic sensor correlated with exteroceptive sens-

ing. Compared to Baleia et al. (2015) and Kahn et al.

(2021), we characterize the force needed to pass through

potential obstacles, and hence the proposed approach is

robot agnostic. Unlike the method proposed by Baleia

et al. (2015), which focuses on classifying objects en-

countered during the robot mission that can be avoided

when deemed untraversable, we address relatively large,

obstacle-like terrains that might block access to addi-

tional sections of the environment.

Besides, considering the previous work on learning

using collected data (Kahn et al., 2021), the proposed

system is employed in autonomous exploration with the

additional complexity of incremental learning of the

force to pass through obstacles on the robot during

the deployment. Based on the visual appearance, the

force predictions are utilized in online decision-making

to discriminate the objects the robot cannot traverse

and identify unknown obstacles the robot should sam-

ple next. Since our approach is focused on learning the

force, it samples and learns only on terrains that are un-

known and thus informative. We use a learning method

that requires tens of samples and can be used online,

directly on the robot during the exploration. Thus, the

proposed approach uses much less data than general

approaches such as Kahn et al. (2021), which rely on

long-term data collection and offline processing.

Because we employ the proposed approach in the

exploration context, an overview of mobile robot explo-

ration approaches is presented in the following para-

graphs.

2.2 Mobile robot exploration

Mobile robot exploration is an active perception sce-

nario where one or a group of mobile robots build a

model of the mission environment. In frontier-based ex-

ploration (Faigl and Kulich, 2015), the robot follows

frontiers, the boundaries between the observed traversable

and not yet observed areas (Yamauchi, 1997). Alterna-

tively, the probabilistic representation of the cell oc-

cupancy in the occupancy grids (Moravec and Elfes,

1985) can be used in the exploration strategy that max-

imizes the information gain (Bourgault et al., 2002;

Makarenko et al., 2002). Beside grid maps, Gaussian

Processes (GPs) (Vasudevan et al., 2009; Ruiz and Olariu,

2015), Gaussian Mixture Models (GMMs) (O’Meadhra

et al., 2019), or Hilbert maps (Ramos and Ott, 2016)

can be used to create continuous maps that are not

resolution-dependant. Since the GP regressors provide

predictive variance for their queries, they are particu-

larly suited for active perception scenarios. Jadidi et al.

(2018) use a GP-based representation to construct fron-

tier maps, while the GMM is used in Tabib et al. (2019).

Exploration is not limited to building maps and ge-

ometric models but may also concern modeling a phe-

nomenon underlying the spatial environment such as

temperature (Luo and Sycara, 2018). In informative

path planning (Singh et al., 2007), the goal is to find

the most informative path subject to a particular con-

straint, such as the robot energy budget. Hence, the

robot explores as much of the environment as possi-

ble while avoiding battery depletion that would lead

to its immobilization, as noted in Tiwari et al. (2019),

where a framework for operation range estimation is

presented to support robots ranging from multi-rotor

fliers to ground vehicles.

When the goal is to find extrema of the modeled

phenomena, exploration-exploitation tradeoff-based ap-

proaches such as Gaussian Process Upper Confidence

Bound (Srinivas et al., 2010) can be utilized. Further-

more, the active learning of the underlying model can

be combined with the traditional geometric exploration (Prágr

et al., 2019). For example, the robot localization model

can be incorporated into information-based exploration

approaches, such as the localization uncertainty repre-

sented using the differential entropy of the robot posi-

tion distribution by directly adding it to the mapping

uncertainty (Bourgault et al., 2002; Stachniss et al.,

2005). However, since the differential entropy differs

from the Shannon entropy of the binary cell occupancy

distribution in scale, particularly when considering dy-

namic environment size, Carrillo et al. (2018) argue that

it is not desirable to combine them directly and employ

Rényi entropy (Rényi, 1961) to create an uncertainty

utility function.

In this paper, we present a combination of the spa-

tial map exploration with the active building of the ob-

stacle traversability model characterized as the force to

pass through. The proposed approach is demonstrated

within autonomous robotic exploration, in an escape-

like scenario, where the robot first explores all areas ac-

cessible without interacting with obstacles. Only when

no such areas are available does it actively learn the
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obstacle traversability. Consequently, the robot selects

the exploration goals independently for the respective

models. Hence, even though the spatial and prediction

models yield information gains in Shannon’s discrete

and differential entropy, respectively, we circumvent the

need to combine these two quantities.

3 Problem Specification

We address mobile robot exploration in environments

where obstacles can be non-rigid and passable by the

robot. The robot is tasked to explore an environment

modeled as the grid mapM2.5D, where each cell ν cor-

responds to a foothold of the hexapod walking robot

used in the experimental verification. Hence, the cell

size dν corresponds to the foothold size. The robot

moves through the environment along a path ψ that

can be expressed as

ψ = (ν1, ν2, · · · , νn),
s.t.

∀i ∈ 1, · · · , n : p(νi) = 1,

∀i ∈ 1, · · · , n− 1 : νi+1 ∈ 8nb(νi),

(1)

where 8nb(ν) is the 8-neighborhood function on the

grid, and p(ν) returns the probability that the cell ν

is passable, denoted as the robot’s traversability.

Flat areas are considered traversable, and the en-

vironment geometry is used to determine areas that

appear as obstacles. Since obstacles may be non-rigid,

the robot’s traversability through such areas cannot

be determined only by geometry. Rather, an obstacle
is traversable if the robot can exert force sufficient to

pass through. Hence, the robot’s traversability through

a grid cell ν that appears as an obstacle is

p(ν) =

{
0 if F (ν) > Ftrav,

1 otherwise,
(2)

where F (ν) is the force needed to pass through the cell

ν, and the threshold Ftrav is the maximum force that

can be exerted by the robot when trying to pass through

the obstacle.

In the explored environment, the force to pass through

the obstacles is not known for the individual obstacles.

However, it is assumed the force is similar for similar-

appearing obstacles, and thus the robot can predict the

force needed to pass through the obstacles described by

their respective appearance descriptors A as

fpredict : A→ F̂ . (3)

Besides, while we assume that the appearance descrip-

tion is sufficiently discriminative to distinguish the ob-

stacles in each individual explored environment, similar-

appearing obstacles in different deployments may have

different rigidity. For example, dry summer grass is eas-

ier to traverse than wet grass prevalent during spring,

even though they appear similar. Hence, the robot learns

the rigidity predictor fpredict online during the explo-

ration, starting from scratch for each deployment.

Since the task of the robot is to explore the en-

vironment where some areas may be reached only by

traversing through the non-rigid obstacles, the portion

of the environment that is explored is the benchmark

value. The proposed method is thus evaluated and com-

pared to a baseline model that considers the obstacles

untraversable.

4 Proposed Traversability Model

The proposed method to characterize the traversability

of apparent yet potentially traversable obstacles is pre-

sented as a part of the autonomous exploration. The

robot is equipped with a haptic bumper sensor to ex-

perience the possible traversability of particular terrain

areas. The traversability of obstructing obstacles the

robot can walk through is characterized by sampling

the force needed to pass through the obstacle. These

haptic measurements are considered the traversability

ground truth. The robot incrementally learns a Gaus-

sian Process (GP) regressor (Rasmussen and Williams,

2006) employed to predict the force to pass through

from the appearance of the apparent obstacles and thus

to assess the traversability of the obstacles.

The idea of the proposed traversability model is

demonstrated in an exploration-exploitation scenario

set up as a robotic escape mission. The robot first ex-

plores the areas observed by the exteroception that ap-

pear traversable without interacting with apparent ob-

stacles. After all such reachable areas are explored, the

robot actively uses its haptic sensor to learn a model of

obstacle traversability (force model exploration). Fur-

thermore, when the robot learns that some apparent

obstacle is traversable, it reverts to exploring the area

that may lie behind such obstacles (force model ex-

ploitation).

The relation of the proposed terrain model, its learn-

ing based on the measured sensory input, and the

decision-making in the exploration setup is depicted in

Fig. 2. It principally works as follows. The exteroceptive

part is responsible for continuously building an eleva-

tion map of the robot’s surroundings using RGB-D sen-

sory input. Further, the exteroceptive model identifies

the areas that appear untraversable by the robot from
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Fig. 2 Individual modules employed in building the traversability model and its usage in the autonomous exploration.

terrain geometry. The geometric properties of the ter-

rain are then passed to the learning module. The haptic

module accumulates measurements of the force needed

to pass through the apparent obstacles as the force

experienced by the haptic sensor during the mission.

These ground-truth force measurements are also passed

to the learning module, which pairs the respective ap-

pearance characterization from the exteroceptive model
with these experienced haptic observations. The mod-

ule realizes online learning and prediction of the force,

and thus the traversability for the observed yet un-

traversed terrains. The exteroceptive model is updated

with these traversability predictions to allow traversal

through non-rigid obstacles. In exploration, the robot

uses information gain predictions provided by the ex-

teroceptive and learning parts to select the next explo-

ration goal.

The cell traversability p̂(ν) is reported based on

the inputs from the haptic, exteroceptive, and learning

modules. The cells with traversability measurements

phaptic(ν) are considered ground truth and reported as

p̂(ν) = phaptic(ν), regardless of the other modules. If

there is no ground truth traversability reported for the

cell by the haptic model, its geometric traversability

pgeom(ν) provided by the exteroceptive module is used.

If such cell appears traversable, the traversability is set

to p̂(ν) = pgeom(ν) = 1. For cells marked as poten-

tial obstacles with pgeom(ν) = 0, the traversability is

assessed by the learning module, reporting the travers-

ability prediction ppredict(ν). Finally, unobserved cells

are reported as traversable p̂(ν) = punobserved = 1 to al-

low traversal of such areas, which is desirable since cells

hidden directly behind traversable obstacles cannot be

observed before traversal. The traversability assesment

can be summarized as

p̂(ν) =

{
phaptic(ν) if phaptic(ν) is known

ppredict(ν,P) if pgeom(ν) is known and pgeom(ν) = 0

1 otherwise

.

(4)

The individual exteroceptive and haptic models, tra-

versability predictions, and the terrain learning process

are detailed in the following sections. The symbols used

in the description are overviewed in Table 1.

4.1 Exteroceptive Model

Robot’s visual and depth perceptions are utilized to

construct a colored elevation map M2.5D, see Fig. 3a.

The elevation map is a grid map with the squared cell of

the size dν , and its underlying representation is based

on a memory-efficient quadtree data structure (Bayer

and Faigl, 2020). For each cell ν ∈M2.5D, the geometri-

cal traversability model (visualized in Fig. 3b) provides



Autonomous exploration with online learning of traversable yet visually rigid obstacles 7

Table 1 Used symbols.

Description Symbol Description Symbol

First introduced in Section 3

environment gridmap M2.5D gridmap cell ν

cell size dν path ψ
cell traversability p cell grid 8-neighborhood 8nb
force to pass through F maximum force exerted by robot Ftrav

terrain appearance A force prediction function fpredict

First introduced in Section 4

reported traversability p̂ ground-truth haptic traversability phaptic
apparent geometric prediction pgeom predicted traversability ppredict
unobserved-cell traversability punobserved

First introduced in Section 4.1

step height ∆ maximum allowed step height ttrav
information gained by observing a cell Icellgeom information gained by observing from a cell Imodel

geom

cell δ neighborhood δ sensor range δsensor
spatial goal cluster radius dcl spatial goal minimum cluster size nthr

cl
spatial goal set Ggeom
First introduced in Section 4.2

force measurement zforce k-th force measurement at cell zforcek
force reported at cell after k measurements Fk force uncertainty at cell after k measurements σ2

k
bumper sensor measurement uncertainty σ2

sensor

First introduced in Section 4.3

traversability predictor P mono-color appearance descriptor AAB

force prediction mean µF force prediction variance σ2
F

approximated predictor information gain Ipredict

First introduced in Section 4.4
GP model noise variance σ2

n exponential kernel output variance σexp
exponential kernel lengthscale lexp

First introduced in Section 4.5
planning cost c the cheapest path ψ∗

exploration goal ν∗explore spatial exploration goal ν∗geom
predictor exploration goal ν∗predict predictor initialization goal ν∗−Ψ

predict

predictor learning goal ν∗−I
predict minimum prediction goal information Ithrpredict

First introduced in Section 5.3

histogram appearance descriptor Ahist histogram descriptor radius rhist

Some single-use symbols are omitted for simplicity.

pgeom(ν), the probability that the robot can traverse

the cell ν, by comparing local differences of height to

the threshold ttrav

pgeom(ν)

0 if max
ξ∈8nb(ν)

∆(ν, ξ) > ttrav

1 otherwise
, (5)

where 8nb(ν) is the 8-neighborhood of the cell ν, the

particular value of ttrav depends on the kinematics of

the used robot. The step height ∆(νa, νb) is defined as

∆(νa, νb) = |elevation(νa)− elevation(νb)|, (6)

with elevation(ν) denoting the estimated height of the

terrain at the cell ν. Note that all the results presented

in this paper are for ttrav = 12 cm based on the kinemat-

ics constraints and motion gait of the utilized hexapod

walking robot.

The information about the geometric traversability

model gained by observing an unknown cell ξ is ap-

proximated as the entropy of the binary distribution

pgeom that depends on the 8-neighborhood of the cell.

Since the knowledge whether one cell is traversable cor-

responds to one bit, the information gained by observ-

ing ξ with unknown height is approximated as

Icellgeom(ξ) ≈ k(ξ) + 1

9
, (7)

where k(ξ) is the number of the unknown cells in the

neighborhood of ξ. Thus, the expected information gained

by perceiving the terrain from the position of the cell ν

is

Imodelgeom (ν) =
∑

ξ∈δ(ν,δsensor)

{
Icellgeom(ξ) if observable(ν, ξ)

0 otherwise
,

(8)
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Fig. 3 Example of (a) the colored elevation grid map (obstacles colored, the ground is in the light blue); (b) the potential
obstacles determined solely on their geometric properties (obstacles are in the red, traversable terrain in the green, and cells
too close to obstacles in the yellow); and (c) the information gain of the geometric model indicating terrain areas with unsure
spatial traversability because of lack of strong evidence from exteroceptive measurements.

where δ(ν, δsensor) is the neighborhood of ν defined by

the sensor range δsensor, which value depends on the

used sensor, e.g., δsensor = 2m. The function observable(ν, ξ)

returns true if the cell ξ is observable from ν, which is

determined by casting a ray from ν to ξ in the current

elevation map M2.5D. An example of the information

gain of the geometric traversability model is depicted

in Fig. 3c.

In an active perception scenario, the goal locations

Ggeom to improve the geometric traversability model are

selected as a subset of cells with non-zero information
gain according to Algorithm 1.

4.2 Haptic Model

The haptic model uses measurements provided by the

bumper sensor to predict the traversability of the ob-

served obstacles that can be non-rigid. In particular, the

sensor measures the force F (ν) needed to pass through

the obstacle at cell ν. Since the haptic sensor utilizes

a high sampling frequency, multiple different measure-

ments are acquired for a single cell ν. Therefore, each

cell uses a Kalman filter that fuses the measurements

as

Fk(ν) =
σ2
sensorFk−1(ν) + σ2

k−1(ν)z
force
k (ν)

σ2
sensor + σ2

k−1(ν)
,

σ2
k(ν) =

σ2
sensorσ

2
k−1(ν)

σ2
sensor + σ2

k−1(ν)
,

(9)

where Fk(ν) is the value reported by the haptic model

for the cell ν after k measurements were assigned to the

cell, zforcek (ν) is the k-th measurement assigned to the

cell, σ2
sensor is the bumper sensor measurement uncer-

tainty, the initial force at the cell F0(ν) equals the first

measurement assigned to the cell, and the initial filter

variance is σ2
0(ν) = 1. An example of the acquired tra-

versability experience projected onto the elevation map

(visualized in Fig. 3) is shown in Fig. 4a.

The haptic sensor is considered to provide the ground

truth traversability measurements. Therefore, a binary

value of the traversability phaptic is utilized for cells

where the ground truth measurements are available,

with the traversability of the cell ν traversed by the

haptic sensor being determined w.r.t. (2).

4.3 Traversability Prediction

The ground-truth force measurements reported by the

haptic module are limited to the particular obstacles

the robot has interacted with. Hence, the ground truth

traversability is relatively sparse. Therefore, the tra-

versability learning module combines the exteroceptive

and haptic information about the environment and de-

termines the traversability for each observed cell ν where

the ground truth is unavailable. The traversability pre-

dictor P is learned from the haptic experience that is

extrapolated using the appearance A perceived by ex-

teroceptive sensing.



Autonomous exploration with online learning of traversable yet visually rigid obstacles 9

Algorithm 1: Goal locations clustering.

Input:M2.5D– 2.5D grid map with assessed frontiers,
dcl– Cluster radius, nthr

cl – Minimal cluster size.
Output: Ggeom– Clustered cells with non-zero entropy.

A← ∅ ▷ Init. set of clusters.1

for ν ∈M2.5D : Imodel
geom (ν) > 0 do ▷ For each map cell with non-zero entropy.2

if A = ∅ then ▷ If no clusters in set.3

A← {{ν}} ▷ Create a new cluster.4

else5

d← distanceToClosestCluster(ν,A)6

if d < dcl then7

addToClosestCluster(ν,A) ▷ Add point to existing cluster.8

else9

A← A ∪ {{ν}} ▷ Create new cluster.10

11

12

Ggeom ← ∅ ▷ Init. cluster representants.13

for Ai ∈ A do ▷ For each clusters.14

if |Ai| > nthr
cl then15

Ggeom = Ggeom ∪ {cellClosestToAverageCoordinates(Ai)} ▷ Create new representants.16

return Ggeom17

0 2 4 6
Measured Force to Pass Through [N]

0 2 4 6
Predicted Force to Pass Through [N]

-0.5 0.3 0.6 0.8
Differential Entropy of Prediction [nat]

(a) (b) (c)

Fig. 4 (a) Example of haptic based traversability ground truth perceived by the robot as the measured force to pass through
the obstacle. (b) The traversability prediction of the potential obstacles as the predicted force to pass through the obstacle
and (c) the respective prediction of the differential entropy.

The learning module learns to predict the force to

pass through the observed potentially untraversable cell

ν using its appearance. The terrain description A(ν) of

each potentially untraversable cell ν is based on its color

appearance. We advocate the use of simple descriptors,

which are easy to compute and read. In scenarios with

large, mono-color obstacles, we use a pair of the cell’s a

and b colors in the Lab color space computed from the

RGB-colored elevation grid, as shown in Fig. 3a,

AAB(ν) = (a, b). (10)

The traversability predictor P is learned from each ob-

served potentially untraversable cell ν that carriers the

haptic force measurement F (ν) as

P ← learn({(A(ν), F (ν)}{ν}). (11)
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It predicts the force to pass through the potentially

untraversable cell ν distributed as

N (µF (ν,P), σ2
F (ν,P))← predict(ν,P), (12)

where the force prediction mean µF (ν,P) determines

the traversability prediction ppredict(ν,P) considering

the force threshold Ftrav as in (2). Besides, if the pre-

dictor P has not yet been learned, it assesses cells as

untraversable. An example of the traversability predic-

tion over the elevation grid map of the environment is

shown in Fig. 4b.

The predicted distribution is utilized to estimate

the expected information gain associated with sampling

cells of unknown haptic traversability ground truth to

steer the robotic exploration towards collecting the re-

quired information to improve the traversability model.

The information expected from the haptic measure-

ment at the cell ν with unknown haptic traversability

phaptic(ν) is approximated as the differential entropy of

the respective predicted distribution (see Fig. 4c)

Ipredict(ν,P) ≈ H(N (µF , σ
2
F )) =

1

2
log(2πeσ2

F (ν,P)).

(13)

Notice that for cell ν with the known haptic travers-

ability ground truth phaptic(ν), the ground truth with

σ2
F = 0 is considered instead of the prediction, and thus

no additional information can be gained, and the dif-

ferential entropy at any such cell is undefined.

4.4 Gaussian Process Regressor

The traversability prediction is based on a GP regres-
sor, briefly described here to make the paper self-

contained. Given an observed function f(x) with the

noise ϵ

y = f(x) + ϵ, ϵ ∈ N (0, σ2
n), (14)

GP is a distribution over the functions (Rasmussen and

Williams, 2006)

f(x) ∼ GP(m(x),K(x, x′)) (15)

where m(x) and K(x, x′) are mean and covariance, re-

spectively, defined as

m(x) = E [f(x)] , (16)

K(x, x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] . (17)

Given the train data X and the test data X∗, the

latent values f∗ at X∗ are

µ(X∗) = K(X,X∗)
[
K(X,X) + σ2

nI
]−1

y,

(σ(X∗))
2 = K(X∗, X∗)

−K(X,X∗)
T
[
K(X,X) + σ2

nI
]−1

K(X,X∗),

(18)

whereK(X,X ′) is the covariance function. In this work,

the used covariance function is the exponential kernel

K(x,x′) = σ2
exp exp(−

1

l2exp
∥x− x′∥). (19)

In the considered exploration scenario, the model is

learned online using only the available onboard compu-

tational resources of the robot. Hence, it is necessary to

consider the computational requirements as the compu-

tation of GPs can generally be demanding. Therefore,

the GP regressor is relearned from the accumulated tra-

versability observations and terrain appearance with a

fixed rate of 0.03Hz. The real performance of the pro-

posed terrain learning model is reported in Section 5

within the autonomous exploration that is briefly de-

scribed in the following section.

4.5 Exploration Scenario

The proposed terrain traversability approach with hap-

tic and exteroceptive sensing is intended to model the

robot’s operational environment where some parts can

look like obstacles in exteroceptive data but can be tra-

versed. Since the robot environment is represented by

the grid mapM2.5D, the robot plans its paths through

the environment w.r.t. the cost

c(νa, νb) = ∥(νa, νb)∥+ cd(M2.5D), (20)

where νa and νb are two cells that are 8-neighbors, the

norm ∥(νa, νb)∥ is the respective Euclidean distance be-

tween the cells’ centers, and cd is a non-negative cost.

The cost cd decreases with the distance from the clos-

est untraversable cell to penalize robot presence close

to the obstacles as in (Bayer and Faigl, 2019). The path

cost c (20) is used to assess a cost of path ψ, and select

the shortest path in the environment as

ψ∗(νstart, νgoal) = argminψ∈Ψ(νstart,νgoal)
c(ψ),

c(ψ) =
∑|ψ|−1
i=0 c(νi, νi+1),

(21)

where Ψ(νstart, νgoal) is the set of all possible paths

from νstart to νgoal, and the path ψ ∈ Ψ(νstart, νgoal) is
a path starting at νstart and ending at νend. The cheap-

est path ψ∗ is determined using the A* algorithm.

The exploration mission is considered as an escape-

like scenario. The exploration procedure is overviewed

in Algorithm 2, and it works as follows. The robot first

explores the areas accessible without interacting with

apparent obstacles. Only after all reachable areas are

explored, the haptic sensor is actively used to learn the
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Algorithm 2: Learning the proposed traversability model in a robotic escape mission.

Input: zrange
1,...,m – Colored range measurements; zforce1,...,n – Force measurements.

Output: M2.5D – Colored elevation gridmap including traversability assesments for apparent obstacles; P –
Traversability predictor for apparent obstacles.

M2.5D ← ∅ ▷ Initialize gridmap.1

P ← ∅ ▷ Initialize predictor.2

while exploration is running do3

M2.5D ← updateModel(M2.5D, z
range
i,...,i′) ▷ Update the gridmap using the latest range measurements.4

P ← updateModel(P, zforce
j,...,j′ ,M2.5D) ▷ Update the predictor using the force measurements and terrain descriptors.5

M2.5D ← applyPredictions(P) ▷ Apply traversability predictions to the gridmap.6

for ν ∈M2.5D : p̂(ν) = 1 do ▷ For each traversable cell ν (including predicted traversability).7

compute Imodel
geom (ν) ▷ Compute the spatial information gained by observing from the cell w.r.t. (8).8

if ∃ν ∈M2.5D : p̂(ν) = 1, Imodel
geom (ν) > 0 then ▷ Explore the spatial model if any information can be gained.9

Ggeom ← cluster(∀ν ∈M2.5D : Imodel
geom (ν) > 0) ▷ Create the spatial exploration goals.10

ν∗ ← argminνgeom∈Ggeom
c(ψ∗(νrobot, νgeom) ▷ Select the closest goal.11

else if P is not learned then ▷ Start exploring the predictor if it does not exist.12

ν∗ ← argminν∈M2.5D|pgeom(ν)=0 c(ψ
∗(νrobot, ν)) ▷ Select the closest apparent obstacle as goal to start learning.13

else ▷ Otherwise, continue exploring the predictor.14

for ν ∈M2.5D : pgeom(ν) = 0 do ▷ For each potential obstacle ν.15

compute Ipredict(ν,P) ▷ Compute the predictor information gained w.r.t. (13).16

if maxν∈M2.5D|pgeom(ν)=0 Ipredict(ν,P) > Ithrpredict then ▷ If enough information can be gained.17

ν∗ ← argmaxν∈M2.5D|pgeom(ν)=0 Ipredict(ν,P) ▷ Select the most informative cell as goal.18

else19

ν∗ ← ∅ ▷ Otherwise, select no goal.20

if ν∗ ̸= ∅ then21

navigateTo(ν∗) ▷ Navigate to goal if it exists.22

else23

finishExploration() ▷ Otherwise, end exploration.24

returnM2.5D,P25

model of obstacle traversability. The exploration strat-

egy selects the goal as

ν∗explore =

{
ν∗geom if ν∗geom exists

ν∗predict otherwise
, (22)

where the geometric exploration goal ν∗geom is selected if

it is possible to gain any additional information about

the geometric model. The prediction model improve-

ment goal ν∗predict is selected otherwise. In particular,

the robot selects the closest geometry exploration goal

as

ν∗geom = argminνgeom∈Ggeom
c(ψ∗(νrobot, νgeom)), (23)

where νrobot is the cell corresponding to the current

robot position. The goal to improve the prediction is

selected either as the cell with the highest potential

information gain about the prediction model, or the

closest potentially untraversable cell if the prediction

model is not yet learned

ν∗predict =

{
ν∗−Ipredict if P is learned

ν∗−Ψpredict otherwise
, (24)

where the cell with the highest information gain poten-

tial is

ν∗−Ipredict = argmaxν∈M2.5D|pgeom(ν)=0 Ipredict(ν,P), (25)

and the closest potentially untraversable cell is

ν∗−Ψpredict = argminν∈M2.5D|pgeom(ν)=0 c(ψ
∗(νrobot, ν)).

(26)

Note that the area in the vicinity of the prediction goal

is temporarily cleared as traversable in M2.5D to al-

low the robot to approach the sampling location. Fi-

nally, the robot does not pursue prediction goals asso-

ciated with less than Ithrpredict information gained. There-

fore, when there are no geometric exploration goals and

sampling, no potentially untraversable cell is associated

with more than Ithrpredict information gained, the explo-

ration stops.

5 Experimental Results and Discussion

The proposed system for active terrain traversability

learning using visual and haptic cues has been experi-
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mentally verified in two scenarios. First, the robot is de-

ployed in an escape-like exploration scenario to demon-

strate active learning of passing through obstacles and

thus explore areas that would remain inaccessible if only

visual sensing would be used. The robot is deployed

in an indoor office arena containing rigid obstacles the

robot cannot traverse and non-rigid obstacles the robot

can pass through. In the second scenario, we showcase

the predictor in an outdoor setting with realistic vege-

tation.

Prior to the results from each scenario, a brief de-

scription of the utilized robot and its sensors are pre-

sented in Section 5.1. The two deployment scenarios are

individually presented in Section 5.2 and Section 5.3,

respectively. The results are further discussed in Sec-

tion 5.4.

5.1 Robot and Sensory Equipment

(a) (b)

(c)

Fig. 5 (a) The hexapod walking robot used in the experi-
mental deployment, (b) its rear-facing sensor rig, (c) and the
hinge mechanism of its haptic bumper sensor.

The proposed system is deployed on the hexapod

walking robot (Faigl and Č́ıžek, 2019) shown in Fig. 5a.

The robot has six legs attached to its trunk, each com-

prising three Dynamixel AX12 servomotors. The robot,

including its legs, can fit into a square with the side

length of about 40 cm. The robot is equipped with ex-

teroceptive sensor rigs to localize the robot and build

the colored elevation map. The forward-facing rig com-

prises the Intel RealSense D435 RGB-D camera (D435

for short). The rear-facing camera rig holds another

D435 and the Intel RealSense T265 tracking camera

(T265 for short), see Fig. 5b. The localization using

the rear-facing T265 is selected to avoid losing tracked

features when the robot approaches obstacles.

Table 2 System performance.

Component Update Rate [Hz] CPU usage [%]

Exteroception (each
D435)

1 25

Tactile sensing 300 4
Localization 200 7

Map building 2
7

Path planning 5

Feature description 1 6
Learning and prediction 0.03 13
Locomotion 10 3

The robot carries a haptic sensor designed as a bumper

mounted on a parallelogram hinge, see Fig. 5c. The

sensor is based on the Dynamixel XM430 servomotor

that is actuated and set to return to a pre-set position.

The servomotor provides torque measurements that are

paired with the tabulated force values obtained by let-

ting the bumper push on a force sensor prior to the de-

ployment. The measured force values allow us to trans-

form the bumper into a sensor measuring the force to

pass through obstacles. The sensor has been individu-

ally calibrated for each presented experiment to avoid

eventual bumper changes. The traversability threshold

has been set to Ftrav = 2N.

Furthermore, the robot is equipped with two sim-

ple reflexes that help to sample the obstacle rigidity

and traverse through non-rigid obstacles that can im-

pede its visual sensors. First, when the robot gets close,

within 0.25m, to an obstacle, it tries to pass through

by walking forward. The behavior is stopped either 10 s

after leaving the obstacle vicinity or by triggering the

second reflex when the bumper observes values higher

than Ftrav. In such a case, the robot samples the ob-

stacle for 2 s to ensure that the observed value is not

an outlier caused by bumper motion. Then, the robot

engages a backward motion for 8 s to clear the obstacle.

The onboard computational resources are the Nvidia

Jetson TX2 with 8 GB RAM running Robot Operat-

ing System (ROS) Melodic (Quigley et al., 2009) that

demonstrated sufficient computational power according

to the real computational requirements overviewed in

Table 2. The proposed system is parametrized, as in

Table 3. Similar to the exploration strategy proposed

in Karolj et al. (2020), we use fixed values of the kernel
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Table 3 System parametrization.

Symbol Description Value Reasoning

ttrav Obstacle detection step height 0.12m Robot step height
δsensor RGB-D sensor range 2m Properties of the sensor
dν Size of the squared grid cell ofM2.5D 0.05m Size of the robot foothold
dcl Geometric goal cluster radius 1m Twice size of the robot
nthr
cl Geometric goal minimum cluster size 10 Set empirically
σ2
sensor Bumper sensor uncertainty in Kalman fuser 0.01 Bumper sensor calibration
σ2
n Gaussian Process noise variance σexp 0.1 Set empirically
σexp Gaussian Process exponential kernel σexp 1 Set empirically
lexp Gaussian Process exponential kernel (simple features) lexp 1 Set empirically

Gaussian Process exponential kernel (histogram features) lexp 0.4 Set empirically
Ftrav Maximum force to push through obstacle 2N Properties of the robot
Ithrpredict Miminum prediction model MI 0.26 nat Set empirically (σ2

F ≈ 0.1)
rhist Color histogram descriptor radius 0.15m Half of the bumper width

hyper-parameters instead of optimizing them when re-

computing the GP because the optimization process is

computationally costly and thus not suitable for online

deployments. We exploit that the ranges of the feature

descriptors values and measured forces remain the same

between the individual deployments and set the hyper-

parameters empirically. In particular, the feature sen-

sitivity can be adjusted via the kernel lengthscale with

the intuition that it is possible to extrapolate roughly

within the lengthscale distance of the known data. The

kernel output variance is set so that the already sam-

pled terrains report prediction entropies that are con-

sidered known w.r.t. Ithrpredict.

5.2 Exploration Scenario

In the exploration scenario, the robot has been deployed
in an arena split into three sections, see Fig. 6. The ap-

proximate size of the arena is 35m2. The robot cannot

see the other sections of the arena from each section.

The robot starts in a small arena section located in an

office room with rigid brown wooden obstacles, rigid

white walls, and purple fabric. The fabric can be tra-

versed to access a corridor containing the second and

third arena sections. The two sections in the corridor

contain similar obstacles as the first section. The cor-

ridor sections are divided by another purple fabric, en-

abling the robot which has already learned individual

terrains’ rigidity to identify the fabric as a traversable

area. The goal of the experimental deployment is to

explore all three sections and thus prove the ability of

the proposed approach to sample and learn the force to

pass through the individual obstacle types. The force

sensor calibration in the exploration scenario is based

on the values depicted in Table 4, which are used to

compute a cubic spline to create a function of the force

based on the torque measurements.

(a) (b) (c)

(d)

Fig. 6 The robot (a) in the first arena section, (b) leaving
the second section, (c) exploring the third section; and (d)
the map projection of the three respective image vision cones
in the red, green and blue.

Table 4 Bumper Sensor Calibration Values

Torque [Nm] 0 0.17 0.34 0.51 0.60 0.79 10∗

Force [N] 0 1.05 2.02 3.10 4.09 6.34 10× 104

*A limit value used in interpolation; not actually measured.

Particular maps showing the arena before the first

sampling of the traversable fabric in the first section,

during the exploration of the second section, and near

the end of the experiment are shown in Fig. 7, 8, and 9,

respectively. Note, a video of the therein depicted ex-

perimental run is also presented in Online Resource 1.
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(a) (b) (c)

Fig. 7 The traversability (a) as seen from the robot and (b) its overview, and (c) color features in the arena before sampling
the traversable fabric in the first section. Note, an obstacle is cleared as traversable even though the robot has not yet learned
its rigidity because it needs to approach the obstacle to learn its traversability.

(a) (b)

Fig. 8 The (a) traversability and (b) color features in the
arena during the exploration of the second section.

The robot behaved similarly in five deployment runs,

of which we choose two particular runs to report the

robot’s behavior here. After exploring the initial sec-

tion, the robot samples the obstacles. In general, if the

robot has sampled the wall or a wooden obstacle first,

it chooses to sample the purple curtain second, since its

color in the Lab descriptor space is distant from the col-

ors of the rigid obstacles and thus it has a high predic-

tion model uncertainty. Hence, the robot walks through

the curtain and enters the second section of the arena.

There, the robot resumes spatial exploration and may

attempt to traverse obstacles it considers traversable

based on its previous experience. Since the robot has

not necessarily sampled all the obstacles available in

the first area, its traversability predictions might be

too optimistic. It is expected behavior as it is a re-

sult of the incremental nature of the learning process.

Nevertheless, the robot obtains new force ground truth

when it attempts to traverse obstacles erroneously con-

sidered as traversable, thus further aiding the learning

process as demonstrated in the alternative experimen-

tal run where the robot sampled the traversable fabric

first, see Fig. 10.

(a)

(b)

Fig. 9 The (a) traversability and (b) color features near the
end of the experiment.

The differences between the two experimental runs

in the proportional representation of predictions con-

sidered as sure with regards to the uncertainty thresh-

old Ithrpredict, and of the predictions thresholded as ei-

ther traversable or untraversable w.r.t. Ftrav, can be

seen in Fig. 11a and Fig. 11b, respectively. The evolu-

tion of the prediction entropy distribution is depicted

in Fig. 12. It can be seen that although the robot pre-

dicts a large portion of obstacles as traversable after

only sampling the purple fabric in Fig. 11b, a large

portion of these predictions is not sure. After the robot

learns that some terrains are rigid by sampling them in
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(a) (b)

Fig. 10 The predicted traversability in the experimental run
where the robot has sampled the traversable fabric first: (a)
overly optimistic predictions after sampling the fabric and (b)
corrected predictions after the robot has sampled other ob-
stacles due to trying to traverse through them while exploring
the corridor section.

the second area, sure untraversable predictions emerge,

even though some uncertain traversable predictions re-

main, particularly in the first section of the map.

5.3 Outdoor Scenario

In the outdoor scenario, the proposed system has been

deployed in several locations in the Prokop Valley in

Prague, Czech Republic. The bumper is used to col-

lect the haptic data for several terrains in the area,

which are paired with feature descriptors of the re-

spective terrains. The bumper sensor calibration is de-

picted in Fig. 13. The terrains consists of several types

of grass with varying density and appearance (some of

them traversable), and a rigid tree trunk and rocks, see

Fig. 14.

Since the terrains are more complex than in the in-

door exploration, similarly to Belter et al. (2019), we

utilize an alternative terrain descriptor in the outdoor

scenario. The outdoor descriptors Ahist are based on

color histograms, where each cell ν ∈ M2.5D is pro-

vided a 10-bit color by projecting the camera image to

theM2.5D. Then, the color space is shrunk to 8 differ-

ent colors: white, black, grey, blue, green, red, brown,

and magenta. The relative amount of the cell color pro-

totypes within the radius rhist given by the half of the

bumper size is used to build an 8-dimensional color his-

togram for each cell ν ∈M2.5D as illustrated in Fig. 15.

Besides, since the appearance descriptors differ from the

indoor experiment in both scale and dimensionality, we

adjust the kernel lengthscale, see Table 3.

The measurements from each terrain are split into

testing and training sets. The algorithm is incremen-

tally presented with training sets for the individual ter-

rains, simulating a robot learning the terrains in a se-

quence. Table 5 shows the predictions on the respective

testing sets in three alternative training sequences. The

results suggest that after being presented with the par-

ticular terrain, the robot learns the terrain and reports

entropy below the uncertainty threshold Ithrpredict; hence,

marking the terrain as known.

5.4 Discussion

Based on the experimental deployment, we can con-

clude that the proposed robotic system actively learns

traversable obstacles and can explore areas hidden be-

hind such obstacles and thus explore a greater portion

of such environment than a system considering all ob-

stacles as untraversable. Unlike the state-of-the-art ap-

proaches that consider mobile robot interaction with

non-rigid obstacles (Baleia et al., 2015; Kahn et al.,

2021), the herein proposed system concerns mobile robot

exploration, and the reasoning about the traversability

of non-rigid obstacles is done in the context of the envi-

ronment geometric map, which is built online as a part

of the exploration process.

The difference is further manifested in the selected

learning approach, where Kahn et al. (2021) uses an

end-to-end network learned from a large amount of data

gathered using a time-correlated random walk policy.

Besides, visual-tactile sensing considered by Pearson

et al. (2021) combines tactile whisker sensors with vi-

sual perception for place recognition in Multimodal Pre-

dictive Coding Network (MultiPredNet), a bio-inspired

approach that comprises visual, tactile, and multi-sensory

modules. While such approaches provide significant ad-

vantages in the form of navigation policy learning and

crossmodal reconstruction, respectively, the herein pro-

posed approach is focused on the problem of apparent-

yet-non-rigid obstacles in mobile robot exploration. Hence,

it learns only in areas associated with the high infor-

mation gain concerning the prediction model and can

learn online during the mission itself.

6 Conclusion

We present a system for online learning of the force

needed to pass through obstacles employed in autonomous

exploration to assess traversability in an environment

with terrain that appears untraversable yet can be tra-

versed. The robot actively learns the geometric model

of its surroundings with model learning to predict the

traversability of potentially obstructing terrains using

a haptic sensor. Gaussian Process regressor is utilized

for the force prediction representing the traversability

of the potentially obstructing terrains. The robot ac-

tively navigates based on expected information gain



16 Miloš Prágr et al.

Certain, untraversable
Robot in arena section 1

Uncertain, untraversable
Robot in arena section 2

Uncertain, traversable
Robot in arena section 3

Certain, traversable

0 200 400 600 800 1000

Time [s]

0

1000

2000

3000

4000

T
er

ra
in

tr
av

er
sa

b
ili

ty
pr

ed
ic

ti
on

[c
el

ls
]

(a)

0 200 400 600 800 1000

Time [s]

0

1000

2000

3000

4000

T
er

ra
in

tr
av

er
sa

b
ili

ty
pr

ed
ic

ti
on

[c
el

ls
]

(b)

Fig. 11 Evolution of the predictions for potentially untraversable cells (a) in the main presented experimental run and (b) in
the experimental run where the robot has sampled the traversable fabric first.
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Fig. 12 Evolution of the predicted differential entropies for potentially untraversable cells in (a) the main presented experi-
mental run; and in (b) the experimental run where the robot has sampled the traversable fabric first.

Table 5 Outdoor Scenario Predictions: set test mean Prediction, set test mean prediction Entropy, set test RMSE.

S
eq

u
en

ce
1

Sparse Grass Dense Grass Tree Trunk Rock

Ground Truth 1.106± 0.006 2.546± 0.377 13.869± 0.282 12.368± 0.480
Learning Step Prediction Entropy RMSE Prediction Entropy RMSE Prediction Entropy RMSE Prediction Entropy RMSE

Sparse Grass 1.109 −0.552 0.007 1.111 0.902 1.484 1.107 1.418 12.765 1.109 1.398 11.270
Dense Grass 1.224 −0.643 0.270 2.643 −0.534 0.423 1.837 1.410 12.035 2.268 1.350 10.108
Tree Trunk 1.171 −0.643 0.196 2.711 −0.535 0.472 13.495 −0.484 0.749 7.394 1.334 4.999
Rock 1.206 −0.647 0.277 2.707 −0.538 0.428 13.509 −0.488 0.779 12.316 −0.195 0.642

S
eq

u
en

ce
2

Dense Grass Rock Sparse Grass Tree Trunk
Ground Truth 2.543± 0.365 12.430± 0.510 1.110± 0.018 13.356± 0.714
Learning Step Prediction Entropy RMSE Prediction Entropy RMSE Prediction Entropy RMSE Prediction Entropy RMSE
Dense Grass 2.612 −0.468 0.477 2.478 1.329 9.967 2.112 1.207 1.006 2.441 1.411 10.938
Rock 2.641 −0.471 0.509 12.299 −0.216 0.671 3.937 1.201 2.983 7.499 1.389 5.893
Sparse Grass 2.639 −0.517 0.509 12.245 −0.218 0.783 1.114 −0.653 0.105 4.994 1.388 8.400
Tree Trunk 2.666 −0.517 0.542 12.402 −0.226 0.674 1.137 −0.653 0.228 13.566 −0.626 0.839

S
eq

u
en

ce
3

Tree Trunk Rock Sparse Grass Dense Grass

Ground Truth 13.789± 0.522 12.449± 0.534 1.106± 0.003 2.475± 0.360
Learning Step Prediction Entropy RMSE Prediction Entropy RMSE Prediction Entropy RMSE Prediction Entropy RMSE

Tree Trunk 13.746 −0.306 0.742 14.026 1.393 1.641 14.013 1.413 12.909 14.238 1.393 11.769
Rock 13.658 −0.325 0.652 12.844 −0.424 0.933 12.676 1.364 11.574 11.866 1.202 9.414
Sparse Grass 13.400 −0.328 0.770 12.819 −0.432 0.889 1.265 −0.538 0.419 3.521 0.679 1.618
Dense Grass 13.394 −0.333 0.789 12.827 −0.442 0.869 1.245 −0.548 0.375 2.534 −0.666 0.399

The ground truth values are reported including the standard deviation. Each sequence represents a particular order in which the individual training sets (terrains)
are passed to the predictor, and the respective predictions represent values after learning the particular terrain in the sequence. The split into training and testing
sets is done randomly and differs for each sequence. The highligted values signify terrains considered known since their prediction entropy is below Ithrpredict.
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Fig. 13 Calibration data of the bumper sensor for the out-
door experiment. A cubic polynomial is fitted to the collected
torque and force measurements.

(a) (b)

(c) (d)

Fig. 14 The terrains used in the outdoor experiemnts: (a)
sparse grass, (b) dense grass with hay, (c) tree trunk, (d)
rocks.

from both the traversability predictor and the geomet-

ric model. The proposed system has been deployed in

a fully autonomous experiment in an arena where the

robot passed through an occluding non-rigid obstacle

showing that the traversability properties have been

successfully learned. Besides, we also show the perfor-

mance of the predictor in an environment with real

vegetation. The experimental results suggest that the

robot successfully navigates an environment with non-

rigid obstacles and chooses to explore areas that provide

information for the rigidity and spatial models and can

discriminate different natural terrains.

In the future, we aim to develop a unified frame-

work to combine traversal costs of visually traversable

terrains and apparent obstacles, thus adding a class of

exploration goals. Furthermore, we intend to generalize

the proposed robot-terrain interaction modeling to en-

compass traversable obstacles, rigid appearing terrains

Fig. 15 The area (red circle) around a point of interest (red
marker) signifying the cells used to compute the histogram
terrain descriptor, projected on the elevation map with local-
ized color measurements.

that do not support the robot, and terrains that change

appearance after physical interaction. The exploration

could also be focused on constraints such as the robot’s

battery capacity. Such extensions lead to deploying the

proposed approach in non-myopic scenarios, where the

robot considers its plans further than the immediate

next navigation goal (waypoint). Hence, we aim to ex-

ploit multi-goal path planning (Faigl and Kulich, 2013)

for such extended exploration scenarios.
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Prágr M, Váňa P, Faigl J (2020) Aerial Reconnais-

sance and Ground Robot Terrain Learning in Traver-

sal Cost Assessment. In: 2019 Modelling and Simu-

lation for Autonomous Systems (MESAS), pp 3–10,

https://doi.org/10.1007/978-3-030-43890-6 1

Quigley M, Conley K, Gerkey BP, Faust J, Foote T,

Leibs J, Wheeler R, Ng AY (2009) ROS: an open-

source robot operating system. In: ICRA Workshop

on Open Source Software, pp 1–6

Ramos F, Ott L (2016) Hilbert maps: Scalable con-

tinuous occupancy mapping with stochastic gradi-

ent descent. International Journal of Robotics Re-

search 35(14):1717–1730, https://doi.org/10.1177/

0278364916684382

Rasmussen CE, Williams CKI (2006) Gaussian pro-

cesses for machine learning. Adaptive computation

and machine learning, MIT Press, Cambridge, Mass

Rothrock B, Kennedy R, Cunningham C, Papon J,

Heverly M, Ono M (2016) SPOC: Deep Learning-

based Terrain Classification for Mars Rover Mis-

sions. In: AIAA SPACE 2016, American Institute

of Aeronautics and Astronautics, https://doi.org/

10.2514/6.2016-5539

Ruiz AV, Olariu C (2015) A general algorithm for ex-

ploration with Gaussian processes in complex, un-

known environments. In: IEEE International Confer-

ence on Robotics and Automation (ICRA), pp 3388–

https://doi.org/10.1002/rob.21700
https://doi.org/10.1002/rob.21700
https://doi.org/10.1002/rob.21700
https://doi.org/10.1002/rob.21700
https://doi.org/10.1002/rob.20134
https://doi.org/10.1002/rob.20134
https://doi.org/10.1109/ICRA.2018.8460473
https://doi.org/10.1109/ICRA.2018.8460473
https://doi.org/10.1109/ICRA.2018.8460473
https://doi.org/10.1109/IRDS.2002.1041445
https://doi.org/10.1109/IRDS.2002.1041445
https://doi.org/10.1016/0025-5564(68)90090-4
https://doi.org/10.1016/0025-5564(68)90090-4
https://doi.org/10.1109/ROBOT.1985.1087316
https://doi.org/10.1109/ROBOT.1985.1087316
https://doi.org/10.1109/LRA.2016.2525040
https://doi.org/10.1109/LRA.2016.2525040
https://doi.org/10.1109/LRA.2018.2889348
https://doi.org/10.1109/LRA.2018.2889348
https://doi.org/10.1109/LRA.2018.2889348
https://doi.org/10.1016/j.engappai.2013.01.006
https://doi.org/10.1016/j.engappai.2013.01.006
https://doi.org/10.1016/j.engappai.2013.01.006
https://doi.org/10.3389/frobt.2021.732023
https://doi.org/10.3389/frobt.2021.732023
https://doi.org/10.3389/frobt.2021.732023
https://doi.org/10.1109/JSTARS.2015.2409131
https://doi.org/10.1109/JSTARS.2015.2409131
https://doi.org/10.1109/JSTARS.2015.2409131
https://doi.org/10.1007/978-3-030-30487-4_52
https://doi.org/10.1007/978-3-030-30487-4_52
https://doi.org/10.1007/978-3-030-14984-0_30
https://doi.org/10.1007/978-3-030-14984-0_30
https://doi.org/10.1007/978-3-030-14984-0_30
https://doi.org/10.1109/IROS.2018.8593374
https://doi.org/10.1109/IROS.2018.8593374
https://doi.org/10.1109/IROS.2018.8593374
https://doi.org/10.15607/RSS.2019.XV.040
https://doi.org/10.15607/RSS.2019.XV.040
https://doi.org/10.15607/RSS.2019.XV.040
https://doi.org/10.1007/978-3-030-43890-6_1
https://doi.org/10.1007/978-3-030-43890-6_1
https://doi.org/10.1007/978-3-030-43890-6_1
https://doi.org/10.1177/0278364916684382
https://doi.org/10.1177/0278364916684382
https://doi.org/10.1177/0278364916684382
https://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://doi.org/10.2514/6.2016-5539
https://doi.org/10.2514/6.2016-5539
https://doi.org/10.2514/6.2016-5539
https://doi.org/10.1109/ICRA.2015.7139667
https://doi.org/10.1109/ICRA.2015.7139667
https://doi.org/10.1109/ICRA.2015.7139667
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