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Abstract. In this paper, we propose an integrated biologically inspired visual

collision avoidance approach that is deployed on a real hexapod walking robot. The

proposed approach is based on the Lobula Giant Movement Detector (LGMD) that is

a neural network for looming stimuli detection that can be found in visual pathways

of insects, such as locusts. Although a superior performance of the LGMD in the

detection of intercepting objects has been shown in many collision avoiding scenarios,

its direct integration with motion control is an unexplored topic. In our work, we

propose to utilize the LGMD neural network for visual interception detection with

a Central Pattern Generator (CPG) for locomotion control of a hexapod walking

robot that are combined in the controller based on the Long Short-Term Memory

(LSTM) recurrent neural network. Moreover, we propose self-supervised learning of

the integrated controller to autonomously find a suitable setting of the system using a

realistic robotic simulator. Thus, individual neural networks are trained in a simulation

to enhance the performance of the controller that is then experimentally verified with

a real hexapod walking robot in both collision and interception avoidance scenario and

navigation in a cluttered environment.
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1. Introduction

Timely detection of looming stimuli and sub-

sequent collision avoidance are vital survival

abilities for many animals. Similarly, for a mo-

bile robot moving from one place to another,

the contact with a fixed or moving object may

have fatal consequences. An abundant source

of inspiration to develop a system for avoid-

ing such situations can be taken from biologi-

cal systems that nurtured by millions of years

of evolution. In particular, we are focused on

modeling artificial visual systems for collision

avoidance as such dedicated neural structures

to detect looming stimuli have been found

in visual pathways of insects and vertebrates.

The most studied examples of the looming-

sensitive neurons that selectively reacts to the

divergence of image edges are the Lobula Gi-

ant Movement Detector (LGMD) described by

Wilson (1961), Directional Selective Neurons

(DSN) (Judge & Rind 1997) of the locusts,

and Mauthner cell (Preuss, Osei-Bonsu, Weiss,

Wang & Faber 2006) of goldfish. Besides, cor-

relational motion detectors of fruit flies have

been recently discovered by Zabala, Polidoro,

Robie, Branson, Perona & Dickinson (2012)

whose work has been adopted by Chalupka,

Dickinson & Perona (2016) to provide a geo-

metrical analysis of the observed behavior.

Further studies reveal similar looming

detectors in the neural structure of other

animals which approve that the dedicated

neural pathways for the detection of looming

stimuli are common in biological systems.

However, in the biological systems, the

exact mapping between the looming stimuli

perception and muscle action is most elusive.

Works by Fotowat, Fayyazuddin, Bellen &

Gabbiani (2009) and De Vries & Clandinin

(2012) suggest the looming stimuli mediate

the escape behavior in Drosophila; however,

the escape behavior is distinct to collision

avoidance (Chalupka et al. 2016) where the

visual stimuli are used directly in the sensory-

motor connection. The direct sensory motor

connection to achieve the collision avoidance

behavior has been suggested by Blanchard,

Rind & Verschure (2000) and Preuss et al.

(2006); however, the underlying biological

mechanisms are yet to be discovered.

In mobile robotics, the problem of colli-

sion avoidance has been studied since the mo-

bile robots appeared. Hence, there are many

different approaches using a variety of sen-

sors and processing techniques (Hoy, Matveev

& Savkin 2015). The importance of low-

complexity collision avoidance grows as fields

such as drone flight control are rapidly de-

veloping while the traditional techniques of-

ten require significant computational power.

Due to its simplicity and superior perfor-

mance, the LGMD has been modeled and pro-

moted (Blanchard et al. 2000, Yue & Rind

2013, Salt, Howard, Indiveri & Sandamirskaya

2017), and deployed on various robotic plat-

forms including wheeled (Yue & Rind 2006, Fu,

Yue & Hu 2016), legged (Č́ıžek, Milička &

Faigl 2017, Č́ıžek, Faigl & Bayer 2017) and fly-

ing (Salt et al. 2017, Badia, Pyk & Verschure

2005, Zhao, Hu, Zhang, Wang & Yue 2018)

robots, but also considered for bio-inspired

vehicle collision detection system (Hartbauer

2017). However, the existing approaches are

focused on the ability of the system to de-

tect looming stimuli and only trigger the es-

cape behavior, omitting the underlying loco-

motion control which drives the robot. In

our approach, we follow the hypothesis of the

direct sensory motor connection (Blanchard

et al. 2000, Preuss et al. 2006) and combine the

LGMD with a bio-inspired locomotion control

in a fully mobile robot navigation stack relying

on visual stimuli only. The proposed approach
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Figure 1. Utilized hexapod walking robot with

mounted wide-angle lens stereo camera.

is supposed to drive a real hexapod walking

robot shown in Figure 1 through cluttered en-

vironments while avoiding static and dynamic

obstacles based on visual stimuli only.

The proposed approach forms an end-to-

end neural network that maps the visual per-

ception represented by the stereo camera im-

age on the control command given as the robot

joint angles. For that, it utilizes a pair of

LGMD neural networks for visual interception

detection (Blanchard et al. 2000) with a Cen-

tral Pattern Generator (CPG) (Szadkowski,

Č́ıžek & Faigl 2018) for locomotion control of

a hexapod walking robot. The LGMD net-

works and CPG locomotion control are com-

bined in the controller (Č́ıžek, Faigl & Bayer

2017) based on the Long Short-Term Memory

(LSTM) recurrent neural network. The abil-

ity to reliably avoid obstacles in the environ-

ment is enabled by the herein proposed learn-

ing approach that uses self-supervised learning

based on the evaluation of the Braitenberg ve-

hicle (Braitenberg 1986) behavior which con-

stitutes the basic cognitive AI sensory-motor

model. The controller is learned in a realis-

tic simulation of the utilized hexapod walking

robot (Nguyenová, Č́ıžek & Faigl 2019) to imi-

tate the behavior of a type 3c Braitenberg vehi-

cle, and its performance is verified in real-world

experiments.

In comparison to our previous work (Č́ıžek,

Milička & Faigl 2017, Č́ıžek, Faigl & Bayer

2017) we have reconsidered the previously em-

ployed locomotion control that relies on inverse

kinematics to provide the desired joint angles

and developed a new CPG-based locomotion

control that provides the desired joint angles

directly. Besides, the herein proposed self-

supervised learning improves the real world be-

havior of the robot. In particular, the contri-

butions of the presented work regarding the

previous work and the related approaches are

considered as follows.

• Novel complete biologically-inspired vi-

sual collision avoidance system.

• Self-supervised learning of the developed

biologically-inspired visual collision avoid-

ance system using a cognitive model of the

sensory-motor connections.

• Experimental evaluation of the proposed

system in real-world experiments,

• particularly, with a deployment of the

LGMD collision avoidance in cluttered

environments.

The remainder of the paper is organized

as follows. An overview of the most related

neural-based collision avoidance approaches is

summarized in Section 2. Section 3 details

the individual building blocks of the proposed

control architecture. A detailed description of

the proposed self-supervised learning approach

together with the description of the real and

simulated hexapod robot is presented in Sec-

tion 4. Section 5 reports on the performed sim-

ulated and real-world verification experiments.

Concluding remarks and suggestions for future

work are dedicated to Section 6.
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2. Related Work

In the presented work, we propose a

biologically-inspired control system that drives

the hexapod walking robot through an envi-

ronment while avoiding obstacles using only

the visual perception. The proposed architec-

ture consists of the looming stimuli detector

and the locomotion controller connected in a

learnable navigation system. Therefore, we re-

port on the most related work on the looming

stimuli detectors and also multi-legged locomo-

tion control.

Reported biological findings support that

there are neural pathways explicitly dedicated

to the detection of the looming stimuli. Such

neural networks that have also been promoted

in robotics are the LGMD (Wilson 1961)

and DSN (Judge & Rind 1997). Although

the DSN better estimates the direction of

the interception, the LGMD has shown to

provide superior ability in overall looming

stimuli detection (Yue & Rind 2013). The

problem of direction estimation from the

LGMD has been solved by splitting the visual

perception between the left and right visual

pathways with separate LGMDs (Fu et al.

2016). Similarly, Chalupka et al. (2016) have

shown the importance of the division of the

perception between the left and right hemifield

in the Generalized Regressive Motion (GRM)

approach. Hence, in our work, we utilize

a stereo camera with a wide field of view,

with two LGMDs to provide the robot with

direction sensitivity to collision detection.

Multi-legged locomotion control is an-

other field that builds on the biological findings

to a great extent. In particular, approaches

based on the CPGs (Ijspeert 2008) and loco-

motion templates (Miller & Clark 2015) are

getting increasing attention in robotics, due to

their robustness and unnecessity to construct

the kinematic model of the robot. On the other

hand, the major drawback of the most bio-

inspired approaches is difficult parametriza-

tion which we have solved recently by intro-

ducing the backpropagation into the learn-

ing of the network of Matsuoka CPG oscilla-

tors (Szadkowski et al. 2018) that we use to

drive our hexapod walking robot. It is a ma-

jor improvement in comparison to our previous

work (Č́ıžek, Faigl & Bayer 2017) that utilizes

single CPG and inverse kinematics to trans-

form the CPG output to joint commands.

Moreover, the crucial part of the proposed

approach is the learnable navigation controller

that provides coupling between the visual

perception and locomotion of the robot. In

the previous approaches utilizing LGMD with

different robotic platforms such as (Yue &

Rind 2006, Fu et al. 2016, Salt et al. 2017,

Badia et al. 2005, Zhao et al. 2018), the LGMD

has been used only to trigger the collision

evasion maneuver, while in the herein proposed

approach, we are following the continuous

mapping approach suggested by Blanchard

et al. (2000) and Preuss et al. (2006).

The end-to-end mapping of the visual per-

ception on the robot control command using

neural networks has been utilized in multi-

ple methods, mainly with imitation learning

where neural networks learn from human op-

erated trials (Muller, Ben, Cosatto, Flepp &

Cun 2006, Loquercio, Maqueda, del Blanco &

Scaramuzza 2018, Kelchtermans & Tuytelaars

2017). Different architectures including a

six-layer convolutional neural network (Muller

et al. 2006), deep convolutional neural net-

work (Loquercio et al. 2018) or recurrent neu-

ral network (Kelchtermans & Tuytelaars 2017)

have been presented, which are not strictly bio-

inspired. However, all of these methods re-

quire a large amount of learning data that are

usually provided by human-guided examples.
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In (Gandhi, Pinto & Gupta 2017), the authors

tackle the particular problem of the impor-

tance of the correct selection of the learning

examples as the positive human guided trajec-

tories are the bottleneck in the machine learn-

ing of steering policies. It is because there

is not usually enough training data for high-

capacity learning of the convolutional neural

networks and the provided trajectories mostly

contain only positive examples. Besides, the

human operator exploits a high-level semantic

knowledge of the environment, which is usually

unknown to the robot.

In contrast to the listed approaches such

as (Muller et al. 2006, Loquercio et al. 2018,

Kelchtermans & Tuytelaars 2017, Gandhi et al.

2017), we are exploiting biologically-inspired

detection of the looming stimuli by utiliz-

ing the LGMD neural network that simpli-

fies the architecture of the proposed controller

and which only needs a fraction of train-

ing examples to learn a proper control pol-

icy. In our previous work (Č́ıžek, Faigl &

Bayer 2017), imitation learning is also used

to learn the collision avoiding behavior; how-

ever, imitation learning has shown to be in-

effective for the herein presented full naviga-

tion task. Therefore, we investigated learning

in the realistic robotic simulator and propose

a self-supervised learning approach based on

the cognitive model of the Braitenberg vehi-

cle (Braitenberg 1986), which has also been

used by Chalupka et al. (2016) for collision

avoidance in simulated GRM experiments.

3. Neural-based Control Architecture

The proposed interception detection and col-

lision avoidance system is considered with a

hexapod walking robot, and it comprises of

three building blocks: locomotion controller,

detection of intercepting objects, and neural-

Stereo camera

Left LGMD Right LGMD Environment

Lleft Lright

uleft uright

LSTM controller

CPG locomotion controller

Actuators

vleft, vright 18×joint angles

Figure 2. Overview of the proposed control

architecture.

based navigation controller. The locomotion

control is based on a network of interconnected

chaotic oscillators (Matsuoka 1987) that pro-

duce a rhythmic patterned output that resem-

bles the joint angles values to control the lo-

comotion of the hexapod robot. The CPG lo-

comotion controller is parametrized by differ-

ential steering commands vleft and vright that

represent the velocities of the left and right

legs, respectively. The direction of the inter-

ception is determined from the visual stimuli

using the LGMD neural network (Blanchard

et al. 2000) that responds selectively to objects

approaching the robot on a collision course.

Two LGMD networks are utilized for separate

processing of the signals to detect interception

in the left and right hemifield, respectively, and

thus determine the direction of the intercep-

tion selectively responding to looming stimuli

by the excitation of the uleft and uright out-

puts. Finally, the LGMD outputs uleft and

uright are fused in a neural-based navigational

controller which is implemented using the Re-

current Neural Network (RNN). The controller

affects the behavior of the CPG locomotion

controller and drives the robot through the

environment by setting appropriate values of

the steering commands vleft and vright. The

RNN-based approach is utilized as it follows

on the idea of the direct sensory-motor map-
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(a) (b)

Figure 3. (a) Real hexapod robot in the default

configuration with the mounted wide-angle lens stereo

camera and (b) model of the hexapod robot in the

realistic robotic simulator V-REP. The model of the

robot is equipped with the simulated stereo camera

and simulated laser-scanner utilized in the proposed

self-supervised learning.

ping (Blanchard et al. 2000) and it has already

shown superior performance in comparison to

the simple feed-forward solution (Č́ıžek, Faigl

& Bayer 2017). The controller is learned using

a self-supervised approach presented in Sec-

tion 4. The overall schema of the proposed sys-

tem is depicted in Figure 2. Following sections

describe the utilized robotic platform together

with the simulation model, which is essential in

the proposed self-supervised learning, and in-

dividual building blocks of the proposed neural

architecture.

3.1. Robotic Platform and Simulator

In the proposed self-supervised learning of

the collision avoidance behavior, we consider

a small and affordable electrically actuated

hexapod walking robot built of off-the-shelf

components. The robot is approx. 45×40 cm

large when standing in the default configu-

ration, see Figure 3a. The robot has six

legs, each with three actuators, attached to

the trunk that hosts the controller and sen-

sors. The robot is equipped with a wide-angle

lens (170◦) stereo camera with 6.5 cm baseline,

320×240 resolution, and 30 fps that provides

the visual input (Lleft, Lright) to the left and

right LGMD networks.

A high-fidelity model of the hexapod

robot (see Figure 3b) has been devel-

oped (Nguyenová et al. 2019) in the realis-

tic simulator V-REP (Rohmer, Singh & Freese

2013). The simulated robot is equipped with

a wide-angle lens stereo camera with the same

parameters as the real camera and a 2D laser

scanner sensor with the scanning angle 170◦

and scanning density 2 points per 1◦ that is

placed 3 cm above the geometric center of the

simulated robot. The simulated laser scan-

ner plays a crucial role in the proposed self-

supervised learning approach, detailed in Sec-

tion 4 because it provides the learning feedback

as a distance of the robot to nearby obstacles.

3.2. CPG-based Locomotion Control

The hexapod walking robot employs a CPG-

based controller for the locomotion control.

The CPGs are biologically-inspired locomo-

tion controllers (Ijspeert 2008) that gener-

ate synchronized rhythmic signals to control

locomotion of multi-legged robots. In our

work, we used the CPG based on (Szadkowski

et al. 2018) with backpropagation learning of

the CPG network parametrization.

The controller consists of a set of N =

6 symmetrically interconnected CPGs, where

each CPG (per each of the six robot legs)

is a pair of Matsuoka’s (Matsuoka 1987)

adaptive neurons: extensor neuron and flexor

neuron. Each CPG is connected through

a simple output shaping network to shape

the CPG oscillations directly to the desired

joint angle values as every leg consists of

three actuators. Hence, the CPG network is

designed to maintain stable oscillations and

inter-leg synchronization (Frigon & Rossignol

2006) whereas the output shaping network is
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CPG1

CPG2

CPG3

CPG4

CPG5

CPG6

out1

out2

out3

out4

out5

out6

vleft

vleft

vleft

vright

vright

vright

Figure 4. The overall scheme of the CPG-based

locomotion controller. Individual CPGs are connected

with symmetric inhibitive connections. The output of

each CPG is shaped using a simple neural network

to produce joint angle values directly used to control

the robot actuators. The shaping networks are

parametrized by the steering command.

responsible for the control of the leg joints

and allows a simple differential steering by

the requested vleft and vright velocities for left

and right half of the body, respectively. In

comparison to the approaches based on the

inverse kinematics for the output shaping of

the CPG network outputs (Yu, Gao, Ding,

Li, Deng & Liu 2016, Zhong, Chen, Jiao, Li

& Deng 2018), the utilized solution supports

greater motion capabilities (Xiong, Wörgötter

& Manoonpong 2016) and does not require

identification of the robot kinematic model.

The proposed differential steering is mainly

utilized to verify the feasibility of the presented

self-supervised learning of the locomotion

controller. The scheme of the locomotion

controller is depicted in Figure 4.

The dynamics of the CPG network

containing N units can be described by the

following equations.

Tru̇
e
i = −uei − wfeg(rfi )− βvei −

N∑
j=1

wijg(uej) + cei , (1)

Tav̇
e
i = g(uei )− vei , (2)

Tru̇
f
i = −ufi − wfeg(rfi )− βvfi −

N∑
j=1

wijg(ufj ) + cfi , (3)

Tav̇
f
i = g(ufi )− vfi , (4)

where i ∈ N is an index of the particular

CPG. The variables uei and vei represent the

activation and self-inhibition of the extensor

neuron, respectively. Besides, ufi and vfi
describe the dynamics of the flexor neuron.

The function g is the rectifier activation

function

g(x) = max(0, x). (5)

Each neuron inhibits itself through the variable

vi scaled by the parameter β > 0. The

extensor-flexor pair (i.e., the CPG unit)

mutually inhibits itself through the symmetric

connection with the weight wfe > 0. Besides,

each two CPG oscillators i and j in the CPG

network are interconnected with symmetric

inhibitive connection of the weight wij ∈ W

(wij ≥ 0, wii = 0), where W is a symmetric

matrix. Hence, the matrix W is responsible

for synchronization of the individual CPGs to

produce the desired gait pattern. The only

source of excitation for the CPG network is

the tonic input cei , c
f
i (≥ 0) which is given

externally and in our work, it is set to cei =

cfi = 1. Tr > 0 and Ta > 0 are the

reaction times for their respective variables.

The structure of a single CPG unit is visualized

in Figure 5a.

The output of the i-th oscillator is given as

the difference between the extensor and flexor

neuron activation

CPGi = uei − ufi . (6)
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Extensor neuron Flexor neuron

vei

uei

vfi
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to other CPGs

wij wij

from other CPGs

cei cfi

β β

Ta
d

dt

Tr
d

dt

Ta
d

dt

Tr
d

dt

wfewfe

(a)
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itu
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CPG1
CPG2

CPG3
CPG4

CPG5
CPG6

(b)

−0.02 0.00 0.02
x [m]

0.00

0.02

0.04

y 
[m

]

vleft=0.5
vleft=1.0

vleft=2.0

(c)

Figure 5. (a) The scheme of a single CPG unit. (b) CPG oscillations for a tripod gait when three legs swing

at a time. Note, due to a random state initialization, there is a transition effect before the CPG network enters

stable oscillations. (c) Leg foot-tip trajectory of the first leg for velocities vleft ∈ {0.5, 1.0, 2.0}. Notice the CPG

transition effect on the leg foot-tip trajectory.

For the CPG network weight matrix

W =



0 0.04 0.40 0.04 0.40 0.04

0.04 0 0.04 0.40 0.04 0.40

0.40 0.04 0 0.04 0.40 0.04

0.04 0.40 0.04 0 0.04 0.40

0.40 0.04 0.40 0.04 0 0.04

0.04 0.40 0.04 0.40 0.04 0

 ,

Tr = 1.7, Ta = 1.5, β = 7 and wfe = −4;

the CPG network produces stable oscillations

that resemble a tripod locomotion gait with

two opposite waves produced per three CPGs

as it is visualized in Figure 5b.

The CPG output signal has to be further

shaped to be directly used as the desired

values of the joint angles to control the

robot actuators. Besides, in the presented

work, we are simplifying the learning of

the proposed end-to-end locomotion controller

by allowing simple differential steering given

by the velocities of the left and right legs,

respectively. Hence, there is a signal-shaping

neural network that takes the output (6) of

a single CPG unit and the respective vleft or

vright velocity on the input, and produces the

triplet of joint angle values to be directly fed

to the actuators on its output. The signal-

shaping network has a single fully connected

layer with six neurons, and it uses a rectifier

activation function.

The output-shaping network is learned

by the back-propagation algorithm to gener-

ate tripod gait motion pattern (Szadkowski

et al. 2018) based on the regular locomotion

gait (Mrva & Faigl 2015). The resulting tra-

jectory of the leg foot-tip is visualized in Fig-

ure 5c for a single leg and velocities vleft ∈
{0.5, 1.0, 2.0}. It can be observed that with a

larger velocity, the stride length extends which

results in differential steering of the robot.

3.3. LGMD Interception Detection

The LGMD is a neural network found

in the visual pathways of insects, such

as locusts (Wilson 1961), which response

selectively to objects approaching the animal

on a collision course. The computational

model of the LGMD as presented by Blanchard

et al. (2000) is composed of four groups of

cells: Photoreceptive, Excitatory, Inhibitory,

and Summation arranged in three layers; and

two individual cells: Feed-forward inhibitory

and Lobula Giant Movement Detector, as it is

visualized in Figure 6a.



Self-Supervised Learning of Bio-Inspired Obstacle Avoidance and Locomotion Control 9

P P P P P

I I I I IE E E E E

S S S S S

F

LGMD

Photoreceptive
layer

Inhibitory/Excitatory
layer

Summation
layer

LGMD cell

FF
cell

(a) LGMD network scheme

1 2

3 4

(b) LGMD layer responses

Figure 6. (a) LGMD neural network model. (b) Visualization of responses of the LGMD layers to visual

stimuli with particular responses: 1. the input image; 2. a response of the Excitatory layer; 3. a response of the

Inhibitory layer; and 4. a response of the Summation layer. It can be observed that closer obstacles to the right

of the image cause a stronger response in the Summation layer that further influences the LGMD cell output.

The Photoreceptive layer processes the

sensory input from the camera. Its output is

the difference between two successive grayscale

camera frames with the size (w, h) and it is

computed as

Pf (x, y) = Lf (x, y)− Lf−1(x, y), (7)

where Lf is the current frame, Lf−1 is the

previous frame, and x ∈ [1, w], y ∈ [1, h]

are the pixel coordinates. The Photoreceptive

layer forms the input to the following two

groups of neurons – the Inhibition layer and

Excitatory layer.

The response of the Inhibition layer can

be computed as

If (x, y) =
n∑

i=−n

n∑
j=−n

(Pf−1(x+ i, y + j)·

wI(i+ n, j + n)) , (8)

where n = 2 and wI represents the inhibition

weights set with respect to the LGMD

description in (Blanchard et al. 2000) as

wI =



0.06 0.12 0.25 0.12 0.06

0.12 0.06 0.12 0.06 0.12

0.25 0.12 0 0.12 0.25

0.12 0.06 0.12 0.06 0.12

0.06 0.12 0.25 0.12 0.06

 . (9)

The main purpose of the Inhibition layer is to

provide lateral inhibition of the stimuli to the

neighboring cells.

The Excitatory layer is used to delay the

output of the Photoreceptive layer and it is

calculated as

Ef = |Pf (x, y)| . (10)

The response of the Summation layer is

computed as

Sf (x, y) = Ef (x, y)− |If (x, y)|WI , (11)

where WI = 0.4 is the global inhibition weight.

The output of the Summation layer is then

thresholded using a given threshold Ts as

S ′f (x, y) =

{
Sf (x, y) if Sf (x, y) ≥ Ts,

0 otherwise.
(12)

The threshold Ts influences the sensitivity of

the LGMD network that depends on the image

resolution, structure of the environment (in

more cluttered environment the LGMD has

to be less sensitive), camera frame rate, and

velocity of the robot. Therefore Ts has to

be set experimentally in such a way to avoid

saturation of the LGMD output.
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The excitation of the LGMD cell can be

computed as

Uf =
w∑
x=1

h∑
y=1

∣∣∣S ′f (x, y)
∣∣∣ . (13)

Finally, the LGMD cell output is expressed as

uf = (1 + e−Ufn
−1
cell)−1, (14)

where ncell is the total number of the cells (i.e.,

the number of pixels). Note, the output of uf
is in the interval uf ∈ [0.5, 1].

The Feed-forward cell suppresses the

output of the LGMD cell in a case of fast

camera movements.

FFcell =
1

ncell

w∑
x=1

h∑
y=1

Pf−1(x, y). (15)

Hence, when there is a high excitation in the

Photoreceptive layer caused by a rapid camera

movement, the LGMD output is suppressed

given

uf =

{
uf if FFcell > Tf
0.5 otherwise

, (16)

where Tf is the suppression threshold.

In our setup, two LGMD neural networks

are utilized in parallel to distinguish the

direction of the interception, and thus steer the

robot in the opposite direction to achieve the

desired obstacle avoidance behavior. A stereo

camera is utilized to feed the image pairs

Lleft and Lright into the respective LGMD

network. Each of the LGMDs provides the

output denoted uleft and uright for the left and

the right LGMD, respectively, that are passed

to the LSTM-based controller to produce the

desired steering command.

3.4. LSTM-based Navigational Controller

The outputs from the individual LGMDs are

combined in the controller based on the Long

Short-Term Memory (LSTM) (Hochreiter

IN1 IN2

uleft uright

...

OUT1 OUT2

vleft vright

Input layer

Hidden layer

Output layer

Figure 7. The scheme of the LSTM-based neural

network controller.

& Schmidhuber 1997) RNN to continu-

ously provide suitable desired values for the

parametrization of the CPG network that

steers the robot. The controller is neces-

sary mainly for two reasons. First, the out-

puts of the LGMD are noisy and has to be

filtered as a direct translation to the steer-

ing command (Č́ıžek, Milička & Faigl 2017)

has shown to be error-prone and works well

only in artificially prepared experimental are-

nas (Blanchard et al. 2000, Zhao et al. 2018).

The second reason is that the memory effect

provided by the LSTM allows the robot to

continue on the avoiding maneuver and suc-

cessfully pass the obstacle that is not directly

visible because of the avoiding maneuver.

The utilized LSTM has two inputs uleft

and uright, a single fully connected hidden layer

with 32 neurons, and two outputs vleft and

vright that is visualized in Figure 7. The

sigmoid function is used as the activation

function for the LSTM. Finally, the LSTM is

learned using the Back-propagation through

time (Sutskever 2013) from the labeled data

obtained using the control model based on

cognitive sensory-motor model of Braitenberg

vehicles (Braitenberg 1986) in the realistic

robotic simulator. The description of the self-

supervised learning process is presented in the

following section.
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4. Controller Learning

The LSTM-based navigational controller has

to be learned prior deployment; hence, the

mapping Φ between the looming stimuli detec-

tion (uleft, uright) provided by the pair of the

LGMD networks and the differential steering

command (vleft, vright) that parameterize the

CPG locomotion controller has to be learned

according to

Φ : χ(uleftf , urightf , sχf ))→ (vleftf , vrightf , sχf+1),(17)

where χ is the mapping learned by the LSTM-

based controller. Note, the mapping depends

on the time f because, for the LSTM-based

controller, the consecutive steering actions are

assumed to be dependent based on the internal

state sχ of the controller.

The time dependence is very important as

it allows filtering of the noisy LGMD outputs

and avoiding obstacles that are not directly

visible because of the avoiding maneuver.

Besides, it has already shown a superior

performance (Č́ıžek, Faigl & Bayer 2017)

in comparison to the deterministic control

law (Č́ıžek, Milička & Faigl 2017).

The mapping is learned using train-

ing data that comprise sequences T =

{(ulefti , urighti , vlefti , vrighti ), i ∈ 0, . . . , n} of the

length n containing the output of the LGMDs

and desired steering commands. A self-

supervised approach has been developed based

on the robot control using Braitenberg vehicles

model for collecting the training data in the

realistic robotic simulator. In particular, au-

tonomous collision-free navigation of the robot

in the simulator, which measures the distance

of the robot to the obstacles, has been em-

ployed to enable a deterministic control rule

based on the behavior of the Braitenberg ve-

hicles to collect the training data. In the fol-

lowing section, the Braitenberg vehicles model

is introduced that is followed by the detailed

description and discussion of the derived sim-

ulation model.

4.1. Braitenberg Vehicles Model

Braitenberg vehicles (Braitenberg 1986) are

employed in the robotic simulator to provide

smooth control commands and support the

learning process of the proposed controller

without the drawbacks of using human-guided

trajectories for the learning. Braitenberg

vehicles are simple autonomous agents that use

basic sensory-motor connections to produce

seemingly cognitive behaviors (Braitenberg

1986). The robots exhibit different behavior

according to the sensory-motor connections.

The connections can be based on inhibition

and excitation, and four basic behaviors can

be achieved, which have been evaluated in the

proposed approach. The individual behaviors

are visualized in Figure 8 and are as follows.

+ +

(a) Vehicle 2a

++

(b) Vehicle 2b

– –

(c) Vehicle 3a

––

(d) Vehicle 3b

Figure 8. Braitenberg vehicles (Braitenberg 1986)

utilized in the proposed self-supervised learning of the

collision controller.

Vehicle 2a and Vehicle 2b represent

a basic excitatory stimulation, see Figure 8a
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and 8b, where both actuators speed up when

exposed to the stimuli. The control rule for

the Vehicle 2a is

vl = vbase + k2a u
l,

vr = vbase + k2a u
r,

(18)

which makes the robot turn away from the

stimuli, and for the Vehicle 2b

vl = vbase + k2b u
r,

vr = vbase + k2b u
l,

(19)

makes the robot intercept the stimuli. The

variable vl and vr are the speed of the left

and right wheel, respectively, ul and ur are the

strength of the stimuli perceived by the left

and right sensor, respectively, k2a and k2b are

the stimuli strength multipliers, and vbase is the

base forward velocity of the robot.

Vehicle 3a and Vehicle 3b use the

inhibitory connections when exposed to the

stimuli, see Figure 8c and 8d. Therefore,

Vehicle 3a orients towards the stimuli and

come to rest facing it, whereas Vehicle 3b

will come to rest facing away from the stimuli

which resemble exploration behavior. The

control rule for the Vehicle 3a is

vl = vbase − k3a ul,
vr = vbase − k3a ur,

(20)

and for the Vehicle 3b

vl = vbase − k3b ur,
vr = vbase − k3b ul,

(21)

where k3a and k3b are the stimuli strength

multipliers.

4.2. Self-supervised Learning

The main purpose of the proposed self-

supervised learning schema is to automate the

collection of the training data necessary for

learning the Φ mapping between the LGMD

outputs and the differential steering command.

As the objective of the robot is to avoid

collisions when navigating the environment,

the main idea is to turn away from the

approaching obstacles. In principle, the

LGMD responds to the divergence of the image

edges (Chalupka et al. 2016) which depends

on a combination of the camera properties,

the robot velocity, and the structure of the

environment. Hence, there is not a direct

mapping between the stimuli strength and

the distance to the obstacle. Therefore, a

simulated laser scanner has been used to

provide the robot with the information about

the distance to the obstacles which allows using

a deterministic control rule that drives the

robot away of the closest obstacle, regardless

the structure of the environment.

The deterministic control rule is based

on the Vehicle 2a and Vehicle 3b rules that

are combined in a single control rule with

the parametrization that has to be tuned

according to the performance of the robot. The

minimal distances of the robot to obstacles in

the left hemifield dl and the right hemifield dr
are computed from the measurements provided

by the laser scanner The distances are further

utilized in the computation of the steering

command.

vl = vbase + k2a
1

dl
− k3b

1

dr

vr = vbase + k2a
1

dr
− k3b

1

dl

, (22)

where vl and vr are the differential steering

velocities simulating the behavior of the

Braitenberg vehicle that are fed to the CPG

locomotion controller The parameters k2a and

k3b are the collision avoidance weights for the

respective vehicle type determining the speed,

with which the robot turns away from the

obstacles, and vbase is the base locomotion

speed of the robot. An appropriate values of

k2a = 0.8 and k3b = 0.6 have been determined

experimentally.

The value of the base locomotion speed
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Figure 9. Mean LGMD response in the relation to the

robot velocity for the scenario with the direct obstacle

interception with different velocities.

vbase has been set concerning the mean

LGMD response in the simulated environment.

For a given camera configuration, we have

experimentally determined that there is a

given range of the robot velocities where the

LGMD is selectively sensitive to the looming

stimuli. The relation of the mean LGMD

response and the robot velocity is depicted

in Figure 9. The results have been obtained

in a simulated experimental scenario where

the robot approaches towards the obstacle,

pass the obstacle in a close distance and then

continues to the free area in cluttered parts of

the environment. The forward velocity of the

robot has been selected from the range 0.1 and

5.0 of the nominal robot velocity (0.05 m s−1)

that has been identified in (Nguyenová et al.

2019). The results showed in Figure 9 indicate

that the obstructed and free paths of the robot

are best distinguishable for the robot velocities

in the range 1.0–1.4 of the nominal velocity.

Therefore, the value of the base locomotion

speed has been set to vbase = 1.2m s−1.

The proposed control rule (22) has been

used to autonomously navigate the robot in

a cluttered simulated room inside the V-REP

simulator that is visualized in Figure 10a. The

robot navigates the used environment ran-

domly. The navigation rule (22) ensures that

the robot does not collide with the environ-

ment, but also provides a way how to tune the

particular performance of the developed sys-

tem. During the navigation, the LGMD re-

sponses (uleft, uright) together with the steer-

ing command (vl, vr) have been collected and

used in the learning of the LSTM-based con-

troller using the Backpropagation through

time (BPTT) algorithm (Sutskever 2013). In

particular, Keras (Chollet et al. 2015) BPTT

implementation in Python has been utilized

with the mean squared error and RMSprop op-

timizer. The learning results are reported in

Section 5.

Here, it is worth noting that in our ex-

perimental evaluations, we have also consid-

ered control rules based solely on the Vehicle

2a and Vehicle 3b rules that are both feasible

for the collision avoidance based on the dis-

tance data. However, in comparison to the

proposed combined rule, the performance of

the learned controller was poor. The main in-

sight is that for the rule based on the Vehicle

2a, the collision avoidance accelerates the re-

spective side of the robot closer to the obstacle,

which further boosts the LGMD network out-

put on that side. Because the field of view in

the left and right hemifields partially overlaps,

the LGMD outputs uleft and uright are depen-

dent, and thus the difference between the left

and right sensory inputs are not sufficient to

make the robot turn away from the obstacle

fast enough. On the other hand, the Vehicle

3b slows down the entire locomotion that neg-

atively influences the selectivity of the LGMD

network to looming stimuli. By the proposed

combination of the both rules, we get the de-

sired behavior in which the rule of the Vehicle

2a accelerate the respective side of the robot

(the one that is closer to the obstacle) while
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the speed on the opposite side is suppressed

and can be even negative, which means that

the robot can quickly turn on a spot.

5. Experimental Results

The feasibility of the proposed end-to-end

controller and the proposed learning scheme of

the novel biologically-inspired visual collision

avoidance system has been verified in a set

of experimental scenes. First, the system

has been learned and also verified in a

realistic robotic simulator, and the results are

reported in the, following section. After that,

a set of four real-world collision avoidance

experiments has been conducted, including

three experiments with the static obstacles

in both indoor and outdoor environments

and a single indoor experiment to examine

the controller behavior with obstacles. The

experimental environments are visualized in

Figures 10c-e. The detailed description of

the real-world experiments and the achieved

results are reported in Section 5.2 and

Section 5.3. The found insights and properties

of the proposed solution are discussed in

Section 5.4.

5.1. Collision Avoidance in Robotic Simulator

The performance of the controller has been

verified in the realistic robotic simulator which

has also been used for the controller learning.

First, the training environment visualized in

Figure 10a has been used to collect data

for the learning of the navigation controller.

The robot collects the LGMD responses

together with the steering command given

by the deterministic control rule (22) while

it autonomously navigates the environment,

see Section 4.2 for the detail description of

the unsupervised learning. Altogether 15

minutes of continuous collision free locomotion

in the simulator that equals 48 m of crawled

distance has been recorded and used for the

controller learning. The proposed controller

with two inputs, single fully connected LSTM

hidden layer with 32 neurons, and two outputs,

has been learned using BPTT in Python

Keras (Chollet et al. 2015) implementation

with the mean squared error as the loss

function and RMSprop optimizer using the

collected data. The collected data has

been split in half to training and testing

data, and the controller has been learned

for 1000 epochs. An evolution of the

learning loss and validation loss is presented

in Figure 11. The graph of both the training

loss and testing loss indicate the ability

of the proposed controller to generalize the

learned behavior. Further, it suggests the

LGMD output contains information about the

distance to the closest obstacles, and thus

its adoption for the collision avoidance in the

end-to-end continuous mapping sensory-motor

controller is feasible.

Figure 12 shows a subset of the learning

data and the predicted steering command for

a part of the learning sequence. From the top

to the bottom, the figure shows the LGMD re-

sponses (uleft, uright), the distances to the clos-

est obstacle (dl, dr) measured using the sim-

ulated laser scanner, the corresponding steer-

ing command (vl, vr) given by the rule (22),

and the output of the learned LSTM-based lo-

comotion controller (vleft, vright). The results

indicate the controller can learn a policy that

resembles the behavior of the simulated Brait-

enberg vehicle with the proper direction and

magnitude of the steering command based on

the looming stimuli only. Together with the

validation loss graph in Figure 11 the results

suggest the learned controller can generalize

the learned behavior.
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(a) (b)

(c) (d)

dx

dy

(e)

Figure 10. Environments for learning and testing of the proposed LSTM-based controller. (a) The simulated

training environment. (b) The simulated testing environment. (c) The cluttered laboratory environment. (d)

The outdoor environment. (e) Testing laboratory environment with single obstacle in lateral distance dy to the

heading of the robot.
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Figure 11. Controller learning and validation loss.

Next, the robot has been deployed in a

more cluttered environment (see Figure 10b) to

perform validation experiments of the collision

avoidance behavior. Five trials have been

performed in which the total traveled distance

by the robot has been measured to 235.3 m.

In these trials, the robot has started at

the identical location (x = 0.0, y = 2.5) and

randomly wanders inside the environment

while avoiding collisions. The resulting

trajectories are shown in Figure 13 and support

the feasibility of the proposed approach and

the learning scheme. Therefore, to further test

the learned system, it has been deployed on a

real robot.

5.2. Collision Avoidance in Uncluttered

Environment

We deploy the proposed system in real-world

environments to make a step forward the main

motivation of the presented system that is to

explore the full integration of a neural and

motor systems in a physical robot to construct

an end-to-end neural network control system.

The proposed controller has been learned in

the simulated environment, and our goal is

to verify that the system is ready for real-

world deployed without further adjustments,

modifications, or relearning of the controller

using real-world data. Therefore we have

set up an initial experiment, where the robot
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Figure 12. Training data. From top to bottom

the LGMD responses (uleft, uright), the distances to

the closest obstacle (dl, dr) measured by the simulated

laser scanner with the clipping range of 5 m, the

corresponding steering command (vl, vr) given by the

rule (22), and the output of the learned LSTM-based

locomotion controller (vleft, vright).

is supposed to avoid a single obstacle in an

uncluttered environment to verify the learned

behavior and benchmark the performance of

the controller before testing it in cluttered

environments where the overall appearance of

the scene can influence the robots’ behavior.

In particular, we prepared a test trail with

the robot placed three meters away from a

plain white wall with a poster tube in the

dx = 1.25 m, dy ∈ {0, 0.03, 0.06, . . . , 0.42}m

distance away from the robot, which is visu-

alized in Figure 10e. During the evaluation,

the robot has been placed at the same position

with the same heading perpendicular to the

white wall at the beginning of the experiment.

Afterward, the locomotion controller has been

turned on to steer the robot motion based on

the visual input from the stereo camera. The

−2.5 0.0 2.5
x[m]

−4

−2

0

2

4

y[
m

]

trajectory obstacle

Figure 13. Robot trajectories in collision avoidance.

Five testing trials in the simulated scenario.

robot movement in the environment has been

tracked by a visual localization system based

on the AprilTag fiducial marker (Olson 2011)

attached to the robot. Individual test trails

have been performed with the increased lat-

eral distance dy of the obstacle, and the robot

position from the localization system has been

recorded together with the minimum distance

to the obstacle encountered during the trail

run. Altogether fifteen experiments have been

performed with the robot always successfully

avoiding the obstacle. The results are visual-

ized in Figure 14a and Figure 14b which show

the individual trajectories and the minimum

clearance between the robot and the obsta-

cle for each trajectory respectively. The re-

sults indicate that the controller learned in the

simulation can selectively react to approach-

ing obstacles and avoid the collision, and does

not need further tuning or relearning to be de-

ployed in the real-world conditions. Therefore,

further testing in cluttered environments have
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Figure 14. The results of the experimental evaluation

of the collision avoidance with a single obstacle.

Individual trails corresponding to the increasing lateral

distance dy of the obstacle are color coded from blue

to yellow for increasing dy.

been performed, and the achieved results are

reported in the following section.

5.3. Collision Avoidance in Cluttered

Environment

A set of three experiments in the indoor lab-

oratory and outdoor environments have been

performed to verify further the learned con-

troller can be directly deployed in a real-world

scenario. The evaluation scenario consists of

two experiments with static obstacles and a

single experiment with dynamic obstacles.

The indoor experiment with the static

obstacles consists of a box placed directly in

front of the robot at the distance 1.2 m, a box

placed to the right of the robot, and a table to

the left side of the robot, see Figure 10c. The

outdoor experiment with the static obstacle

has been performed at the front-yard of the

university with a grass surface, multiple trees

and bushes directly in the field of view of

the robot together with a facade of a historic

building at the background, see Figure 10d.

The experiment with dynamic obstacles

has been performed in the laboratory, where

the robot has crawled straight, and when it

reaches a given location, an obstacle has been

placed in front of it from the left side. After the

robot reacts to that obstacle, a second obstacle

has been placed to its field of view from the

right side. The scenario is intended to examine

the robot ability to respond to dynamically

changing environment.

In all the experiments, the robot has been

placed approximately at the same place at

the beginning of each experiment. Then the

locomotion controller has been turned on to

steer the robot motion based on the visual

input from the stereo camera. The robot

position from the localization system (Olson

2011) together with the left and right LGMD

responses (uleft, uright), and the differential

steering commands (vleft, vright) have been

recorded. Twelve experiments in the indoor

scenario with static obstacles, ten trials in the

outdoor scenario, and ten trials in the scenario

with dynamic obstacles have been performed

in the total. In all the cases, the robot has

been able to avoid collisions with the obstacles

successfully.

The robot trajectories are shown in

Figure 15. Typical responses of the LGMD

together with the corresponding steering

commands are visualized in Figure 16a for
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Figure 15. Robot trajectories in collision avoidance. (a) Twelve trajectories in the laboratory experiment with

the static obstacles. (b) Ten trajectories in the outdoor experiment. (c) Five trajectories in the laboratory

experiment with dynamic obstacles.
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Figure 16. Example of LGMD and controller response in (a) static obstacle indoor test, (b) dynamic obstacle

indoor test, and (c) dynamic obstacle indoor test with observed retreating behavior.

the static obstacles and in Figure 16b for

the dynamic obstacles. It can be seen that

the LGMD is less sensitive for the static case

and the steering commands are less abrupt in

comparison to the dynamic collision avoidance

that induces a larger excitation of the LGMD

given by a larger divergence of the image edges.

The shape of the steering command provided

by the proposed LSTM-based locomotion

controller corresponds to the learned behavior

given by Braitenberg vehicle steering rule (22),

i.e., the base speed corresponds to vbase =

1.2m s−1 and the response to obstacles is

approximately symmetric.

An interesting behavior of the robot has

been observed in the experiment with the

dynamic obstacles. In two out of ten trials, the

robot has exhibited retreating behavior which

can be noticed in the robot’s steering command

depicted in Figure 16c. The robot stopped

when it is exposed to the second obstacle, and

it did a few steps back which correspond to

the situation at the time around 28 s when

both the differential steering commands vleft

and vright are negative for a while. The

observed behavior needs further investigation

as it originates in the learned LSTM-based

locomotion controller and it cannot be learned
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using the rule (22) as the distance to the

obstacles would have to be negative to produce

negative velocities for the differential steering.

Nevertheless, the herein presented results

support the proposed controller can be learned

to exhibit different collision avoidance and

escaping strategies with a continuous mapping

function between the looming stimuli detection

and motion control. Besides, the simulation

and real laboratory experiments support that

the control scheme learned in the realistic

robotic simulator using the proposed method

is feasible and can be directly deployed in a

real-world scenario. We leave the learning of

more complex locomotion control and escaping

behaviors to our future work.

5.4. Discussion of the Results

The feasibility of the proposed control system

consisting of the LGMD neural network

to detect the looming stimuli, CPG-based

locomotion controller, and the LSTM-based

navigation controller has been experimentally

verified with the proposed learning approach

using the realistic robotic simulator. Even

though the robot successfully operated in

the real experimental setup, the LGMD

relies on the divergence of the scene edges;

hence, a collision may occur in the case

of a poor scene contrast on the objects,

e.g., when walking towards a white wall.

Further, the proposed system is purely reactive

without path planning layer that can be

utilized to guide the robot along prepared

collision-free paths. Without such high-level

planning, the navigation rule (22) with the

vbase base locomotion speed inevitably leads to

a situation, where the only possible forward

movement is towards an obstacle. Hence, the

learned controller may fail to guide the robot

out of corners, where the robot gets stuck

and collide. Therefore, such behavior requires

further improvement of the navigation layer

and its combination with path planning that

is considered for future work.

6. Conclusion

In this work, we report on the developed

fully autonomous agent capable of collision

avoidance using an end-to-end pipeline of bio-

inspired neural networks. We have shown

that the proposed self-supervised training of

the neural networks in the realistic robotic

simulator (using the control model of simple

cognitive machines) is sufficient for a reliable

real-world deployment.

In our future work, we aim to exploit the

enhanced traversability capabilities of the uti-

lized multi-legged platform to enable omnidi-

rectional movement, and thus address reliable

collision-free locomotion in the dynamic envi-

ronments using self-supervised learning tech-

niques. As such, the herein proposed end-to-

end pipeline of neural networks is well suited

for such deployment, as the individual build-

ing blocks allow learning based on the gradient

backpropagation, which significantly simplifies

the learning process.
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Szadkowski, R. J., Č́ıžek, P. & Faigl, J. (2018).

Learning central pattern generator network

with back-propagation algorithm, Informa-

tion Technologies - Aplication and Theory

(ITAT), CEUR Workshop Proceedings, Vol.

2203, pp. 116–123.

Wilson, D. M. (1961). The central nervous control

of flight in a locust, Journal of Experimental

Biology 38(47): 471–490.

Xiong, X., Wörgötter, F. & Manoonpong, P. (2016).

Adaptive and energy efficient walking in a

hexapod robot under neuromechanical control

and sensorimotor learning, IEEE Transactions

on Cybernetics 46(11): 2521–2534.

Yu, H., Gao, H., Ding, L., Li, M., Deng, Z. & Liu, G.

(2016). Gait Generation With Smooth Transi-

tion Using CPG-Based Locomotion Control for

Hexapod Walking Robot, IEEE Transactions

on Industrial Electronics 63(9): 5488–5500.

Yue, S. & Rind, F. C. (2006). Collision detection

in complex dynamic scenes using an LGMD-

based visual neural network with feature

enhancement, IEEE Transactions on Neural

Networks 17(3): 705–716.

Yue, S. & Rind, F. C. (2013). Redundant neural vision

systems – competing for collision recognition

roles, IEEE Transactions on Autonomous

Mental Development 5(2): 173–186.

Zabala, F., Polidoro, P., Robie, A., Branson, K.,

Perona, P. & Dickinson, M. H. (2012). A

simple strategy for detecting moving objects

during locomotion revealed by animal-robot

interactions, Current Biology 22(14): 1344–

1350.

Zhao, J., Hu, C., Zhang, C., Wang, Z. & Yue, S. (2018).

A bio-inspired collision detector for small

quadcopter, arXiv preprint arXiv:1801.04530 .

Zhong, G., Chen, L., Jiao, Z., Li, J. & Deng, H. (2018).

Locomotion control and gait planning of a novel

hexapod robot using biomimetic neurons, IEEE

Transactions on Control Systems Technology

26(2): 624–636.


