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Abstract

Problems of cooperative multi-robot inspection and ex-
ploration play an important role in many practical appli-
cations. This paper presents an algorithm for inspection
planning based on decomposition of the problem into two
subproblems - Art Gallery Problem (AGP) that finds guards
(sensing locations) and Multiple Traveling Salesmen Prob-
lem (MTSP) that connects the found guards by routes. While
standard approaches for Art Gallery Problem try to mini-
mize a number of guards, the proposed method is designed
to optimise lengths found by a MTSP solver and therefore
to minimise time needed by a team of robots to inspect the
working environment. The proposed algorithm has been im-
plemented and tested. Influence of the method to quality of
the inspection planning solution and comparison with the
Randomized Dual Sampling Schema are discussed.

1. Introduction

Many path-planning tasks including motion planning

from the start to goal position, obstacle avoidance, plan-

ning with constrains, coordinate planning are studied in mo-

bile robotics domain. If the working environment is a pri-

ori known (a map of the environment is available), one of

common problems is an inspection task. The problem is to

find a route such that a robot surveys whole working space

(i.e. sees every point of the environment) while it is mov-

ing along the route. Recently, with growing importance of

multi-robot systems, the problem has been extented for a

team of robots. Using multiple robots can reduce total exe-

cution time, but on the other hand, it needs novel algorithms

for coordinating robots’ movements. Typical application of

the inspection task is a search and rescue mission in case of

emergencies or catastrophes [4], where the goal is to find

(and rescue) insured people or other objects of interest (fire

alarms, seats of fire, places, where dangerous materials are

placed, etc) as fast as possible .

A typical environment is a building with offices con-

nected by corridors. Nowadays, a map for many such build-

ings (especially for strategic buildings like hospitals, air-

ports, nuclear plants, etc.) exists in the form of architecton-

ical plans or electronic CAD model. Such a model is easily

convertible to a polygonal map, that is one of the common

used representations suitable for planning.

The inspection task for a team of mobile robots can be

formulated as Multiple Watchmen Routes Problem (MWR).

Having a polygonal map of the environment (represented by

a polygon with holes P ), the aim is to find in an optimal way

a route for each of m mobile guards such that each point of

P is visible from at least one route. There are two crite-

ria mentioned in the literature evaluating optimality of the

found routes. In case of the MinSum criterion, the aim is to

minimize the sum of lengths of watchmen routes, while the

length of the longest watchman route is to be minimized for

MinMax criterion. Nilsson [5] proved that both problems

are NP-hard even for a simple polygon.

Approaches commonly used in robotics solving (i.e. try-

ing to find an optimal solution) MWR problem decompose

the original problem into two subproblems: determination

of sensing locations (points such that every point of the en-

vironment is visible from at least one such point) and plan-

ning a route over found locations. The first problem is also

known as Art Gallery Problem (AGP), while the second

one is Multiple Traveling Salesman Problem (MTSP). Both

problems are known to be NP-hard.

The Art Gallery Problem for a polygon (with holes) P is

to find an optimal set of points G (guards) in P such that

every point in P is visible from some point of G (we say

that two points in polygon P are visible, iff the straight line

segment between them entirely lies in P ). A polygon with

n vertices and h holes can always be guarded with �n+h
3 �

point guards [1]. If visibility is restricted to distance d two

points in P are d-visible if they are visible and their distance

is less than d.

The theoretically achieved bound for a polygon with

holes is too high in many practical situations, so there is
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effort to research algorithms that find a lower number of

sensing locations than this theoretical bound. An algorithm

based on randomized dual sampling of the environment is

described in [3]. Another approach is introduced in [2].

One of the main issues of problem decomposition is that

both problems are solved separately without any interaction.

Specifically, AGP solvers minimize the number of sensing

locations, but an optimal solution for the inspection task

might have more points that are compact, i.e. a path con-

necting them is shorter than for the optimal AGP solution.

We present a concept of AGP solver generating a com-

pact set of sensing locations especially for large office envi-

ronments and a relatively small visibility distance in com-

parison to dimensions of the environment. The proposed

method is compared with a Randomized Dual Sampling
Schema algorithm. Instead of dual sampling, we use single

sampling of a boundary of not covered regions. The sec-

ond sampling is replaced by a heuristic function that uses

already found sensing locations. New locations are placed

close to that already found. Although the number of sens-

ing locations can be higher, they are placed in order to min-

imize lengths of routes travelled by particular robots during

inspection.

The rest of this paper is organized as follows. Section 2

contains description of an algorithm based on dual sampling

schema 2.1 and proposed algorithm to find sensing loca-

tions 2.2.

Related MTSP with MinMax criterion problem is solved

by a self-organizing neural network algorithm, which is de-

scribed in section 3. Experimental results are shown and

discussed in section 4 followed by conclusion in section 5.

2 Determination of sensing locations

The first step of an approximative solution of Multi-

ple Watchmen Routes Problem is to find sensing locations

”guarding” whole working environment. Suppose P be

a map of the environment represented as a polygon with

holes. The aim is to find a set of points (sensing locations)

so that every point of the environments is visible from at

least one sensing location. Moreover, visibility is limited,

which means that only points closer than a specified thresh-

old are mutually visible. This limitation is very practical

because of characteristics of current sensors. For exam-

ple, having camera resolution and a size of objects to be

detected, we can easy determine a maximal distance from

which the objects are recognizable. Visibility distance is

limited by conditions in the scene like darkness or smoke.

In the next sections we describe two different algorithms

finding sensing location. The first one is our implementa-

tion of the Randomized Dual Sampling Scheme introduced

in [3]. This algorithm is designed to solve the Art Gallery

Problem, i.e. it tries to find a minimal set of sensing lo-

cations. On the other hand, a novel Boundary Placement
algorithm described in section 2.2 places sensing locations

in order to minimize lengths of routes that connect them.

2.1 Randomized Dual Sampling Scheme

The algorithm was developed by Gonzáles-Bañoz and

Latombe. It incrementally adds points to the solution while

the volume of not covered region A is larger then zero. The

algorithm therefore proceeds as a loop:

1. Denote A an area to be guarded.

2. A random point p lying on the border of the area A is

chosen.

3. A polygon Vp is found, which consists of points visi-

ble from the point p (this is equivalent to the polygon

from which p is visible). All the visibility constrains

as defined above are applied.

4. k random samples pk are placed into the polygon Vp.

5. For each point pk a visibility polygon (polygon from

which pk is visible) is determined.

6. The guard (point) that can see the most still unguarded

area (i.e. the point for which |A − Vpk
| is smallest) is

chosen as a next guard.

7. Set A = A − Vpk
.

8. If A is not empty (there exists a point which is not

guarded) then go to step 2).

Figure 1. Found guards by RDS algorithm for
visibility 200.
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2.2 Boundary Placement algorithm

As mentioned above, the main motivation for the Bound-

ary Placement algorithm is to place sensing locations more

intelligently, with respect to the inspection task. The idea is

not to place the locations close to walls. Instead of this, new

locations are placed near to the ones found in the previous

steps of the algorithm.

The algorithm consists of three main steps, where each

step is an iterative process. First of all, structure of the envi-

ronment is determined by computation of a cover boundary.

The cover boundary Bc is a boundary blown up by a prede-

fined value db. More precisely, the cover boundary is a set

of points of the environment, which distance to the nearest

obstacle boundary is db. Bc divides the environment into to

sets of regions - exteriors and interiors (see Fig. 2). The in-

ternal region is a connected set of points having a distance to

a nearest obstacle higher than dm, while points having this

distance smaller than dm form external regions. In other

words, internal regions lie inside the area bounded by the

cover boundary, while external regions lie outside.

After the cover boundary as well as internal and external

regions are determined, points (guards) covering them are

generated for each component separately:

1. Cover Boundary: The cover boundary is represented

as a set of linear rings (i.e. borders of polygons). The

boundary is covered in an iterative process, where in

each step a point lying on it is chosen randomly. Then

the region visible from the point is subtracted from

the boundary. This process is repeated until the whole

boundary is covered.

2. Internal regions: Regions visible from the points cov-

ering the cover boundary are subtracted from each in-

ternal region (represented by a polygon) which are

then covered by an iteration process. If the area of

a particular region is small enough then a new guard

covering it is placed as close as possible to two nearest

guards. In case the region is large, the following steps

are performed:

(a) A random point g at the region boundary is se-

lected and a circle with a center g and a radius 2d
is constructed.

(b) The center c of the arc defined as intersection of

the circle and the region is determined.

(c) A new guard is defined in the middle of the line

gc.

Regions can split during the iterative process. If this

happens, each of the split parts is covered separately.

3. External regions: Similarly to the previous step, vis-

ibility regions of the already found guards are sub-

tracted from all external regions. If the region is large

enough (i.e. its area is larger then a predefined value)

then the process is similar to covering internal bound-

aries. Otherwise, the following steps are performed

until the whole region is covered:

(a) Select a random point p on the region boundary,

which is not an obstacle (i.e. a boundary created

as a subtraction of some visibility polygon).

(b) Find a closest guard g to p and determine the

shortest path from g to p. This path is a polyline

v1v2vn so that v1 = g and vn = p.

(c) Find a point lying on a line vn−1p and covering

a largest part of the region. This point is a new

guard.

bd

E
I

Bc

map boundary

obstacle

Figure 2. Cover Boundary (Bc) and internal (I)
and external (E) regions.

Figure 3. Guards found on the cover bound-
ary.
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Figure 4. Guards found in internal regions
(red dots).

Figure 5. Guards found in external regions
(red dots).

Figure 6. Guards found by BP algorithm for
visibility 200.

3 Multiple Traveling Salesmen Problem

The second step of the Multiple Watchmen Route Prob-

lem is to connect the guards with m paths in an optimal way

in order to form inspection paths. This problem is NP-hard

and therefore no polynomial algorithm exists. Our approach

extends Somhom’s algorithm described in [6]. The idea

of the algorithm is to represent a path of each particular

robot by a chain of neurons, where neighbouring neurons

are connected [4]. At each iteration, a nearest neuron to

a randomly selected guard is determined and together with

its’ neighbours moved closer to the guard. The algorithm

can be described as follows:

If we denote n as the number of guards (cities) and m
as the number of salesmen, then m chains can be created so

that each consists of M = 2n/m neurons. Initially, the

on-chain neurons are positioned on a small ring close to

a starting point (depot) for each salesman. The next steps

then choose random permutations of the guards and exist-

ing neuron chains, i.e. Cpi is the i-th city in a permutation,

for which the nearest neuron to the Cpi
is determined. To

select the nearest neuron, the guard-to-neuron distance is

defined as their Euclidean geodesic distance weighted by:

weight(r) = ((length(r) − AV G)/AV G)4. This sup-

presses those neurons, which overshoot AV G and prefers

those, which are bellow AV G, where AV G stands for the

average length of chains in the task.

Whenever determining the minimum distance neuron,

the winner and its nearest neighbours on the chain are at-

tracted to the guard. The value of the winner movement

towards the guard is proportional to its’ distance to the

guard and additionally weighted by exponential function of

the distance and the iteration number. This ensures rapid

changes in the network topology for larger neuron-to-guard

distances and more precise and slow convergence at final

phases of the iteration process.

The process of the permutation choice, nearest neuron

selection and shifting towards proper guard is executed un-

less a termination criterion is achieved. This can be defined

as a maximum distance between a guard and a nearest neu-

ron to this guard being satisfied if the distance is smaller

than a certain threshold.

Finally, found paths of particular entities are optimized

by 2-opt heuristics, which is commonly used in TSP-like

tasks. The heuristics generates so-called 2-optimal tour, i.e.

tour in which there is no possibility to shorten the tour by

exchanging two arcs.

4 Experimental Results

The proposed Boundary Placement algorithm (BP) as

well as Randomised Dual Sampling (RDS) were imple-

mented in order to compare their behaviour. Compari-
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Figure 7. Found routes for 4 salesmen, Incre-
mental Dual Sampling Algorithm.

Figure 8. Found routes for 4 salesmen,
Boundary Placement Algorithm.

son was performed for three different office-like environ-

ments: A, B, C. The maps were created semi-automatically

from the paper maps of real buildings.

The map A represents a corridor with a free space and

many offices (Fig. 6), B stands for a corridor with three

large offices (Fig. 9) and C contains several long corridors

(Fig. 10).

Both algorithms are randomised, therefore 20 solutions

were found for each map. After that the neural network-

based algorithm connecting the found guards was per-

formed 20 times for each set of guards and for a different

number (2,3, and 4) of robots. db of the Boundary Place-

ment was set to 100, while visibility distances varied from

200 to 500. A number of points in the second sampling in

RDS was set to 50. 1

1The implementation of Boundary Placement algorithm is written in

An average number of found guards with a standard de-

viation is shown in Table 1. However BP was not designed

to minimize a number of guards and in some cases the

guards are close to each other, the number of guards is com-

parable with results obtained by RDS. Results generated by

BP for the environment A are even better. Moreover, BP

is faster, because many guards are placed on boundary line

and interior region that is straightforward, while RDS uses

dual sampling.

Name Visiblity RDS BP

Avg Dev Avg Dev
A 200 117 2.70 114 3.11

300 63 3.31 60 2.40

400 46 2.32 47 1.61

500 41 1.41 42 1.20

B 200 169 3.32 170 4.92

300 84 3.13 88 2.32

400 52 2.87 57 2.45

500 41 2.17 41 1.94

C 200 349 5.99 334 5.61

300 177 5.11 179 4.14

400 121 3.75 124 3.93

500 91 3.15 96 2.46

Table 1. Comparison of a number of guards
found by RDS and BP.

Quality of found solutions is shown in Tables 2, 3 and

4. The first column d stands for a visibility distance, the

second one for the number of robots, and others describe

quality of the algorithms. First of all, the longest tour of

each particular solution (remember that MinMax criterion

is used to evaluate MTSP solutions) is computed and the

average length over all 400 MTSP solutions Avg as well as

their standard deviation Dev is presented. The last column

RL describes percentage of a maximal route length of the

proposed algorithm compared to RDS (RDS has 100%).

Although BP is designed especially for small visibilities,

experimental results show that found solutions for higher

visibilities (comparing to a size of the environment) are not

excessively worse. For a visibility distance 200, solutions

found by BP are approximately about 5% better than solu-

tions generated by RDS. The best results are generated by

BP for the environment A, for which BP gives about 15%
shorter lengths than RDS. This results significantly show

that guards are placed more intelligently.

5 Conclusion and Future Work

The paper deals with a problem of placing sensing loca-

tions (guards) for multi-robot inspection planning. A novel

C++ using CGAL and in absolute precision. Polygon operations are very

slow therefore solution cost is not compared.
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d n RDS BP

Avg Dev Avg Dev RL %
200 2 148.28 5.39 124.45 3.27 83.9

3 108.61 5.59 91.21 3.80 84.0

4 91.45 4.46 78.88 2.81 86.3

300 2 109.04 6.65 107.54 4.62 98.6

3 82.12 5.20 79.84 3.94 97.2

4 73.23 3.84 71.76 2.91 98.0

400 2 95.63 4.52 101.91 3.75 106.6

3 74.27 4.23 77.22 3.41 104.0

4 67.33 2.76 70.58 2.26 104.8

500 2 94.61 4.35 99.27 3.54 104.9

3 73.65 3.43 76.16 2.76 103.4

4 67.16 2.79 69.81 2.43 104.0

Table 2. Comparison of BP and RDS for the
environment A.

d n RDS BP

Avg Dev Avg Dev RL %
200 2 215.70 9.91 202.84 8.63 94.0

3 158.95 11.45 149.09 9.99 93.8

4 132.99 5.78 126.32 4.94 95.0

300 2 176.11 9.58 170.97 8.77 97.1

3 131.34 6.49 127.62 5.02 97.2

4 117.69 3.74 114.87 3.10 97.6

400 2 158.86 9.80 155.29 8.63 97.8

3 123.03 7.02 119.62 4.66 97.2

4 112.38 3.67 110.00 2.61 97.9

500 2 152.31 9.55 149.07 8.63 97.9

3 117.93 5.40 114.96 6.32 97.5

4 110.27 4.13 108.50 3.43 98.4

Table 3. Comparison of BP and RDS for the
environment B.

d n RDS BP

Avg Dev Avg Dev RL %
300 2 496.48 16.74 486.00 18.66 97.9

3 396.09 18.18 385.89 19.02 97.4

4 347.01 18.40 338.07 16.73 97.4

400 2 469.61 20.26 465.83 19.39 99.2

3 383.42 20.79 376.61 19.52 98.2

4 336.45 16.16 329.48 15.10 97.9

500 2 448.73 22.77 447.25 22.12 99.7

3 373.05 23.06 369.36 21.31 99.0

4 327.70 15.26 325.36 13.73 99.3

Table 4. Comparison of BP and RDS for the
environment C.

algorithm designed especially for visibilities significantly

smaller than a size of the working environment is pre-

sented. The method has been implemented and experimen-

Figure 9. Map B. Figure 10. Map C.

tally compared with a standard Randomized Dual Sampling

algorithm. The experiments show that the proposed algo-

rithm gives better results for small visibilities.

The presented planning approach was integrated into the

PeLoTe system [5] and as its part it was experimentally

tested in many simulated rescue missions and demonstrated

in the Firefighter Training Facility in Wuerzburg. The tests

and demonstrations showed feasibility of the planning sys-

tem in real life.

In the future work we would like to focus on setting

the constant db determining a distance between the cover

boundary and obstacles. This constant should be set auto-

matically taking into account a shape of the environment

and robot’s visibility distance. Other stream will focus on

improvement of the method and more comprehensive com-

parison with other approaches.
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