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Abstract— This paper concerns a variant of the multi-goal path
planning problem in which goals may be polygonal regions. The
problem is to find a closed shortest path in a polygonal map
such that all goals are visited. The proposed solution is based
on a self-organizing map algorithm for the traveling salesman
problem, which is extended to the polygonal goals. Neurons’
weights are considered as nodes inside the polygonal domain and
connected nodes represent a path that evolves according to the
proposed adaptation rules. Performance of the rules is evaluated
in a set of problems including an instance of the watchman
route problem with restricted visibility range. Regarding the
experimental results the proposed algorithm provides flexible
approach to solve various NP-hard routing problems in polygonal
maps.

I. INTRODUCTION

The multi-goal path planning problem (MTP) stands to
find a shortest path connecting a given set of goals located
in a robot working environment. The environment can be
represented by the polygonal domain W and the goals may
be sensing locations in the inspection task. Such point goals
guaranteeing the whole environment would be covered using
a sensor with limited sensing range can be found by a sensor
placement algorithm [8]. The MTP with point goals can be
formulated as the Traveling Salesman Problem (TSP) [16],
e.g., using all shortest path between goals found in a visibility
graph by Dijkstra’s algorithm. Then, the MTP is a combinato-
rial optimization problem to find a sequence of goals’ visits.

A more general variant of the MTP can be more appropriate
if objects of interest may be located in certain regions of W ,
e.g., when it is sufficient to reach a particular part of the
environment to “see” the requested object. In such a problem
formulation, a goal is a polygonal region rather than a single
point. Several algorithms addressing this problem can be found
in literature; however, only for its particular restricted variant.
For example goals form a disjoint set of convex polygons
attached to a simple polygon in the safari route problem [12],
which can be solved in O(n3) [17]. If the route enter to the
convex goal is not allowed, the problem is called the zoo-
keeper problem, which can be solved in O(n log n) for a given
starting point and the full shortest path map [1]. However, both
problems are NP-hard in general.

Routing problems with polygonal goals can be considered
as variants of the TSP with neighborhoods (TSPN) [10]. The
TSPN is studied for graphs or as a geometric variant in a
plane but typically without obstacles. Approximate algorithms
for restricted variants of the TSPN have been proposed [5, 3];

however, the TSPN is APX-hard and cannot be approximated
to within a factor 2− ε, where ε > 0, unless P=NP [13].

A combinatorial approach [14] can be used for the MTP
with partitioned goals, where each goal is represented by
a finite (small) set of point goals. However, combinatorial
approaches cannot be used for continuous sets because of too
many possibilities how to connect the goals. This is also the
case of the watchman route problem (WRP) in which goals
are not explicitly prescribed. The WRP stands to find a closed
shortest path such that all points of W are visible from at
least one point [11]. Although polynomial algorithms have
been proposed for restricted class of polygons [2], the WRP
is NP-hard for the polygonal domain.

In this paper, a self-organizing map (SOM) algorithm for
the TSP in W [9] is modified to deal with a general variant
of the MTP. Contrary to combinatorial approaches, a geomet-
rical interpretation of SOM evolution in W allows easy and
straightforward extensions to deal with polygonal goals. To
demonstrate geometric relation between the learning network
and polygonal goals several modifications of the adaptation
rules are proposed and evaluated in a set of problems. The
main advantage of the proposed approach is ability to address
general multi-goal path planning problems inW (not only in a
simple polygon) and with goals not necessarily attached toW .

The rest of this paper is organized as follows. The addressed
problem formulation is presented in the next section. The
proposed algorithms are based on the SOM adaptation schema
for the TSP in W , and therefore, a brief overview of the
schema is presented in Section III. The proposed modifications
of the adaptation rules for polygonal goals are presented in
Section IV. Experimental evaluation of the proposed algorithm
variants is presented in Section V. Concluding remarks are
presented in Section VI.

II. PROBLEM STATEMENT

The problem addressed in this paper can be formulated
as follows: Find a closed shortest path visiting given set of
goals represented as convex polygons (possibly overlapping
each other) in a polygonal map W . The problem formulation
is based on the safari route problem [12]; however, it is a
more general in three aspects. First, polygons can be placed
inside a polygon with holes. Also, it is not required that
convex polygons are attached to the boundary ofW like in the
original safari route problem formulation. Finally, polygons
can overlap each other, and therefore, such polygons can
represent a polygonal goal of an arbitrary shape.



The proposed problem formulation comprises the WRP with
restricted visibility range d. The set of goals can be found
as a convex cover set of W , i.e., a set of convex polygons
whose union is W . The advantage of an algorithm solving
the formulated problem is that it is not required to have a
minimal cover set. The restricted convex polygons to the size
d can be found by a simple algorithm based on a triangular
mesh of W [6].

III. SOM ALGORITHM FOR THE TSP INW

A SOM algorithm for routing problems, in particular the
SOM for the TSP inW [9], is Kohonen’s type of unsupervised
two-layered learning neural network. The network contains
two dimensional input vector and an array of output units
that are organized into a uni-dimensional structure. An input
vector represents coordinates of a point goal and connections’
weights (between the input and output units) represent co-
ordinates of the output units. Connections’ weights can be
considered as nodes representing a path, which provides direct
geometric interpretation of neurons’ weights. So, the nodes
form a ring in W because of the uni-dimensional structure of
the output layer, see Fig. 1.
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Fig. 1: A schema of the two-layered neural network and
associated geometric representation.

The network learning process is an iterative stochastic
procedure in which goals are presented to the network in
a random order. The procedure basically consists of two
phases: (1) selection of winner node to the presented goal; (2)
adaptation of the winner and its neighbouring nodes toward
the goal. The learning procedure works as follows.

1) Initialization: For a set of n goals G and a polygonal
map W , create 2n nodes N around the first goal. Let
the initial value of the learning gain be σ=12.41n+0.06,
and adaptation parameters be µ=0.6, α=0.1.

2) Randomizing: Create a random permutation of goals
Π(G).

3) Clear Inhibition: I ← ∅.
4) Winner Selection: Select the closest node ν? to the goal

g ∈ Π(G) according to:

ν? ← argminν∈N ,ν /∈I |S(ν, g)|,

where |S(ν, g)| is the length of the shortest path among
obstacles S(ν, g) from ν to g.

5) Adapt: Move ν? and its neighbouring nodes along a
particular path toward g:
• Let the current number of nodes be m, and N (N ⊆
N ) be a set of ν?’s neighborhoods in the cardinal
distance less than or equal to 0.2m.

• Move ν? along the shortest path S(ν?, g) toward g
by the distance |S(ν?, g)|µ.

• Move nodes ν ∈ N toward g along the path S(ν, g)
by the distance |S(ν, g)|µf(σ, l), where f is the
neighbouring function f = exp(−l2/σ2) and l is
the cardinal distance of ν to ν?.

• Update the permutation: Π(G)← Π(G) \ {g}.
• Inhibit the winner: I ← I ∪ {ν?}.

If |Π(G)| > 0 go to Step 4.
6) Decrease the learning gain: σ ← (1− α)σ.
7) Termination condition: If all goals have the winner in

a sufficient distance, e.g., less than 10−3, or σ < 10−4

Stop the adaptation. Otherwise go to Step 2.
8) Final path construction: Use the last winners to deter-

mine a sequence of goals’ visits.
The algorithm is terminated after finite number of adaptation

steps as σ is decreased after presentation of all goals to the
network. Moreover, the inhibition of the winners guarantees
that each goal has associated a distinct winner; thus, a se-
quence of all goals’ visits can be obtained by traversing the
ring at the end of each adaptation step.

The computational burden of the adaptation procedure de-
pends on determination of the shortest path inW , because 2n2

node–goal distance queries (Step 4) and (0.8n+1)n node–goal
path queries (Step 5) have to be resolved in each adaptation
step. Therefore, an approximate shortest path is considered
using a supporting division of W into convex cells (convex
partition of W) and pre-computed all shortest path between
map vertices to the point goals. The approximate node–goal
path is found as a path over vertices of the cells in which
the points (node and goal) are located. Then, such a rough
approximation is refined using a test of direct visibility from
the node to the vertices of the path. Details and evaluation of
refinement variants can be found in [9].

Beside the approximation, the computational burden can be
decreased using the Euclidean pre-selection [7], because only
the node with a shorter Euclidean distance to the goal than
the distance (length of the approximate shortest path) of the
current winner node candidate can become the winner.

In Fig. 2, a ring of nodes connected by an approximate
shortest path between two points is shown to provide an
overview of the ring evolution in W .

IV. ADAPTATION RULES FOR POLYGONAL GOALS

Although it is obvious that a polygonal goal can be sampled
into a finite set of points and the problem can be solved as
the MTP with partitioned goals, the aforementioned SOM
procedure can be straightforwardly extended to sample the
goals during the self-adaptation. Thus, instead of explicit
sampling of the goals three simple strategies how to deal
with adaptation toward polygonal goals are presented in this
section. The proposed algorithms are based on the SOM for



(a) step 29 (b) step 40

(c) step 58 (d) step 78

Fig. 2: An example of ring evolution in a polygonal map for
the MTP with point goals, small green disks represent goals
and blue disks are nodes.

the TSP using centroids of the polygonal goals as point goals.
However, the select winner and adapt phases are modified
to find a more appropriate point of the polygonal goal and
to avoid unnecessary movement into the goal. Therefore, a
new point representing a polygonal goal is determined during
the adaptation and used as a point goal, which leads to
computation of a shortest path between two arbitrary points
in W . Similarly to the node–goal queries an approximate
node–point path is considered to decrease the computational
burden. The approximation is also based on a convex partition
of W and the shortest path over cells’ vertices (detailed
description can be found in [6]).

A. Interior of the Goal

Probably the simplest approach (called goal interior here)
can be based on the regular adaptation to the centroids of
the polygonal goals. However, the adaptation, i.e., the node
movement toward the centroid, is performed only if the node
is not inside the polygonal goal. Determination if a node is
inside the polygonal goal with n vertices can be done in O(n)
computing the winding number or in O(log n) in the case
of a convex goal. So, in this strategy, the centroids are more
like attraction points toward which nodes are attracted because
the adaptation process is terminated if all winner nodes are
inside the particular polygonal goals. Then, the final path
is constructed from a sequence of winner nodes using the
approximate shortest node–node path. An example of solutions
using the new termination condition and with the avoiding
adaptation of winners inside goals is shown in Fig. 3.

(a) a found path for termination
of the adaptation if all winners are
inside the goals, L=84.3 m

(b) a found path with avoiding
adaptation of winners inside the
goal, L=65.0 m

Fig. 3: Examples of found paths without and with consider-
ation of winners inside the goals. Goals are represented by
yellow regions with small disks representing the centroids of
the regions. Winner nodes are represented by small orange
disks. The length of the found path is denoted as L, and the
length of the path connecting the centroids is Lref=85.9 m.

the winner node

the intersection point

(a) an intersection point (b) a found path, L=59.7 m

Fig. 4: Examples of an intersection point and a found path
using the attraction algorithm variant.

B. Attraction Point

The strategy described above can be extended by determi-
nation of a new attraction point at the border of the polygonal
goal. First, a winner node ν? is found regarding its distance
to the centroid c(g) of the goal g. Then, an intersection point
p of g with the path S(ν, c(g)) is determined. The point p is
used as the point goal to adapt the winner and its neighbouring
nodes. This modification is denoted as attraction in the rest
of this paper.

An example of determined intersection point p and the final
found path is shown in Fig. 4. The found path is about five me-
ters shorter than a path found by avoiding adaptation of winner
nodes inside the goals. Determination of the intersection point
increases the computational burden, therefore an experimental
evaluation of the proposed algorithm variants is presented in
Section V.



C. Selection of Alternate Goal Point

A polygonal goal can be visited using any point of its
border. The closest point at the goal border to a node can
be determined in the winner selection phase. To find such a
point, straight line segments forming the goal are considered
instead of the goal centroid. Moreover, a goal can be attached
to the map, and therefore, only segments laying inside the
free space of W are used. Let Sg = {s1, s2, . . . , sk} be
the border segments of the polygonal goal g that are entirely
inside W . Then, the winner node ν∗ is selected from a set of
non-inhibited nodes regarding the shortest path S(ν, s) from
a point ν to the segment s, s ∈ Sg . Beside the winner node,
a point p at the border of g is found in the winner selection
procedure as a result of determination of S(ν, s). The border
point p is then used as an alternate point goal for adaptation,
therefore this modification is denoted as alternate goal.

the winner node

the alternate goal (border) point

(a) an alternate goal point (b) a found path, L=56.9 m

Fig. 5: An example of the alternate goal point and the final
found path. Red straight line segments around the goal regions
denote parts of the goal border inside the free space of W .

Determination of the exact shortest point–segment path can
be too computationally demanding, therefore the following
approximation is proposed. First, the Euclidean distance be-
tween the node ν and the segment s is determined. If the
distance is smaller than the distance of the current winner node
candidate, then the resulting point p of s is used to determine
an approximate path among obstacles between p and ν. If
|S(p, ν)| is shorter than the path length of the current winner
node candidate to its border point, ν becomes the new winner
candidate and p is the current alternate goal (border) point.

Even though this modification is similar to the modification
described in Section IV-B, it provides sampling of the goal
boundary with a less distance of the goal point to the winner
node; thus, a shorter final path can be found. An example
of found alternate goal point and the found path is shown in
Fig. 5.

V. EXPERIMENTAL RESULTS

The proposed adaptation rules in Section IV have been
experimentally verified in a set of problems. Due to lack of
commonly available multi-goal path planning problems with
polygonal goals several problems have been created within
maps of real and artificial environments. An overview of the
basic properties of the environments is shown in Table I.

TABLE I: Properties of environments and their polygonal
representation

Map Dimensions No. No. No. convex
[m × m] vertices holes polygons

jh 20.6 × 23.2 196 9 77
pb 133.3 × 104.8 89 3 41
h2 84.9 × 49.7 1 061 34 476
dense 21.0 × 21.5 288 32 150
potholes 20.0 × 20.0 153 23 75

The last column shows the number of convex polygons of
the supporting convex polygon partition utilized in the ap-
proximation of the shortest path. The partition is found by
Seidel’s algorithm [15]. Maps jh, pb, and h2 represent real
environments (building plans), and maps dense and potholes
are artificial environments with many obstacles.

Sets of polygonal goals have been placed within the maps
in order to create representative multi-goal path planning
problems. The name of the problem is derived from the name
of the map, considered visibility range d in meters written as
a subscript, and a particular problem variant, i.e., the problem
name is in a form mapd-variant. The value of d restricts the
size of the convex polygonal goal, i.e., all vertices are in
mutual distance less than d. An unrestricted visibility range
is considered in problems without the subscript.

Three proposed variants of the SOM based algorithm for the
MTP with polygonal goals have been experimentally evaluated
within the set of problems. The algorithms are randomized,
therefore twenty solutions of each problem have been found
by each algorithm variant. The average length of the path
L, the minimal found path length Lmin, and the standard
deviation in percents of L (denoted as sL%) are used as the
quality metrics. All presented length values are in meters.
The experimental results are shown in Table II, where n is
the number of goals. The best found solutions are shown in
Fig. 6. From the visualized solutions, one can assume that high
quality solutions are found for all problems.

The required computational time is presented in the column
T . All algorithms have been implemented in C++, compiled
by the G++ version 4.2 with -O2 optimization, and executed
within the same computational environment using a single
core of 2 GHz CPU. Therefore, the presented required com-
putational times can be directly compared. The time includes
determination of all shortest path between map vertices (used
in the path approximation) and the adaptation time. The
supporting convex partition and the complete visibility graph
are found in tens of milliseconds, and therefore, these times
are negligible regarding the time of the adaptation procedure
and determination of the shortest paths.

Discussion

The presented results provide performance overview of the
proposed adaptation rules. The principle of the attraction and
alternate goal algorithm variants are very similar; however, the
alternate goal variant provides better results. The advantage
of the alternate goal is sampling of goals’ borders. Even
though a simple approximation of the shortest path between



TABLE II: Experimental results

Problem n
goal interior attraction alternate goal

L [m] sL% Lmin T [s] L [m] sL% Lmin T [s] L [m] sL% Lmin T [s]

dense-small 35 119.5 3.21 113.51 0.85 114.4 3.47 108.64 0.96 111.8 3.09 106.11 1.20
dense5-A 9 68.2 1.75 66.21 0.41 62.4 2.19 60.60 0.43 58.7 1.75 58.06 0.44
h25-A 26 425.3 1.42 416.22 3.56 405.9 1.25 399.62 3.54 402.1 0.97 396.46 3.75
jh-rooms 21 103.6 1.49 101.37 0.28 88.2 0.22 87.83 0.33 88.1 0.26 87.79 0.34
jh10-doors 21 71.5 3.24 67.48 0.47 68.0 1.52 66.11 0.46 62.2 0.25 62.06 0.57
jh10-coverage 106 134.2 2.52 128.31 3.64 106.6 1.59 101.19 4.19 93.8 0.47 93.12 6.22
jh4-A 16 66.6 2.97 64.00 0.44 61.5 2.74 59.10 0.45 57.3 1.02 56.80 0.51
jh5-corridors 11 69.6 2.05 66.96 0.38 66.0 1.23 64.83 0.39 60.0 0.56 59.60 0.41
pb5-A 7 277.8 3.21 268.61 0.84 273.8 4.55 265.56 0.88 270.1 2.66 264.91 0.86
potholes2-A 13 73.9 2.09 72.01 0.13 72.0 1.95 70.42 0.14 72.0 1.78 70.32 0.16

(a) jh4-A, Lbest=56.6 m (b) jh5-corridors,Lbest=59.6 m (c) jh10-doors, Lbest=62.1 m (d) jh-rooms, Lbest=87.8 m

(e) jh10-coverage,Lbest=93.1 m (f) h25-A, Lbest=395.6 m (g) pb5-A, Lbest=264.7 m

(h) dense-small, Lbest=102.8 m (i) dense5-A, Lbest=58.0 m (j) potholes2-A, Lbest=68.7 m

Fig. 6: The best found solutions.

a node (point) and goal’s segment is used, a precision of
the approximation increases with node movements toward the
goal, and therefore, a better point of the goal is sampled. This
is an import benefit of the SOM adaptation, which allows
usage of a relatively rough approximation of the shortest path.

On the other hand, the attraction algorithm variant is a more
straightforward, as the path to the centroid is utilized as a path
to the fixed point goal. The fixed point goals allow to use pre-
computed all shortest paths from map vertices to the goals,
which improves precision of the approximate node–goal path.



Such approximation is less computationally intensive in the
cost of higher memory requirements. However, this benefit is
not evident from the results, because the alternate goal variant
provides a faster convergence of the network.

Although convex goals are assumed in the problem for-
mulation, the presented adaptation rules do not depend on
the goal convexity. The convex goals are advantageous in
visual inspection tasks (covering tasks), because the whole
goal region is inspected by visiting the goal at any point of
the goal. Also a point representative of the convex goal can
be simply computed as the centroid. If a goal is not convex
a point that is inside the goal has to be determined for the
goal interior and attraction algorithms. Basically any point
inside the goal can be used, but a bias toward the point can be
expected. The alternate goal algorithm variant uses a set of
segments representing the goal, and therefore, this algorithm
can be directly used for problems with non-convex goals (see
Fig. 7).

(a) the jh environment (b) potholes environment

Fig. 7: Found solutions of problems with non-convex goals by
the alternate goal algorithm variant.

Regarding the problems with disjoint convex goals that are
relatively far from each other, a sequence of goals’ visits can
be found as a solution of the TSP for centroids of the goals.
Then, having the sequence of polygonal goals the problem of
finding the path connecting them can be formulated as the
touring polygons problem (TPP) if start and end points are
given. A polynomial algorithm exists for the TPP with convex
goals lying inside a simple polygon [4]; however, the TPP
is NP-hard in general. Therefore, the proposed alternate goal
algorithm seems be more practical due to its flexibility.

VI. CONCLUSION

A self-organizing map based algorithm for the multi-goal
path planning problem in the polygonal domain has been
presented. Three variants of the algorithm addressing polygo-
nal goals have been proposed and experimentally evaluated
for a set of problems including an instance of the WRP
with restricted visibility range (jh10-coverage). Even though
the solution quality is not guaranteed because of SOM, re-
garding the experimental results the algorithms provide high
quality solutions. The advantage of the proposed alternate
goal algorithm is that it provides a flexible approach to solve
various routing problems including the TSP, WRP, safari route
problems, and their variants in the polygonal domain. From the

practical point of view, the proposed SOM algorithm is based
on relatively simple algorithms and supporting structures,
which is an additional benefit.

SOM is not a typical technique used for routing prob-
lems motivated by robotic applications. The presented results
demonstrate flexibility of SOM based algorithm; thus, they
may encourage roboticists to consider SOM as a suitable plan-
ning technique for other multi-goal path planning problems.
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