
A Sampling Schema for Rapidly Exploring Random Trees using a
Guiding Path

Vojtěch Vonásek Jan Faigl∗ Tomáš Krajnı́k Libor Přeučil
Department of Cybernetics, ∗Center for Applied Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague
{vonasek,xfaigl,tkrajnik,preucil}@labe.felk.cvut.cz

Abstract— In this paper, a novel sampling schema for Rapidly
Exploring Random Trees (RRT) is proposed to address the
narrow passage issue. The introduced method employs a guiding
path to steer the tree growth towards a given goal. The main
idea of the proposed approach stands in a preference of the
sampling of the configuration space C along a given guiding
path instead of sampling of the whole space. While for a low-
dimensional C the guiding path can be found as a geometric
path in the robot workspace, such a path does not provide useful
information for efficient sampling of a high-dimensional C. We
propose an iterative scaling approach to find a guiding path in
such high-dimensional configuration spaces. The approach starts
with a scaled geometric model of the robot to a fraction of its
original size for which a guiding path is found using the RRT
algorithm. Then, such a path is iteratively used in the proposed
RRT-Path algorithm for a larger robot up to its original size. The
experimental results indicate benefit of the proposed technique in
significantly higher ratio of the successfully found feasible paths
in comparison to the state-of-the-art RRT algorithms.

Index Terms— motion planning, RRT

I. INTRODUCTION

The motion planning is a classical robotic problem, which
can be described using a notion of the configuration space C,
where q ∈ C is a configuration of a robot. The obstacles in the
workspace correspond to a set Cobs ⊆ C, while Cfree = C\Cobs
is a set of feasible configurations. The motion of a robot in a
workspace equals to a feasible path in Cfree.

Several complete methods have been proposed to solve the
planning problem, e.g., Voronoi diagrams or Visibility Graphs.
These approaches require an explicit representation of the
configuration space. However, such a representation cannot be
easily computed for systems with many degrees of freedom.

To overcome this problem, sampling-based methods as
Probabilistic Roadmaps (PRM) [13], Rapidly Exploring Ran-
dom Trees (RRT) [15] or Expansive Spaces Trees (EST) [9]
were suggested to obtain an approximation of the configuration
space. The common idea of the sampling-based methods is
to build a roadmap of free configurations q ∈ Cfree. These
methods randomly sample the configuration space C and
classify the samples as free or non-free using a collision
detection method. The free samples are stored and connected
to make a roadmap, in which a solution is found. The collision
detection is applied as a “black-box”, which allows to cope
with robots of arbitrary shapes.

The sampling-based methods are intensively studied, and
their advantages and issues have been described in many
papers. Here, we refer to summary [17]. The well known issue

of the sampling-based methods is the narrow passage problem.
A narrow passage can be defined as a part of C, which removal
changes the topology of C [14]. The narrow passage becomes
important if the result path in C has to pass it. The issue
comes from a less number of the samples covering the narrow
passage, which disallows to construct a feasible path through
it. The sparse coverage of the passage is due to the uniform
distribution, which is usually used in sampling-based motion
planning methods. Even though the methods are probabilistic
complete, they do not provide a feasible path within a given
computational time.

In this paper, a novel sampling schema for the RRT algo-
rithm is proposed to cope with the narrow passage problem,
and to increase success ratio of finding feasible paths. The
approach is based on a modification of the RRT–Path [2]
algorithm, which uses a guiding path to steer the tree growth
in C. Although a guiding path can be computed directly in
workspace corresponding to a low dimensional C, it is difficult
to construct a useful path in a general C. Therefore, we propose
to iteratively employ the RRT–Path algorithm to find a path for
a robot with downscaled size, but preserving the same motion
model. The path found for a smaller robot is then used as a
guiding path for a larger one, which increases performance of
the motion planning.

The paper is organized as follows. Related work is described
in the next section. In Section III, the modified RRT–Path
algorithm is described. It is then used in Section IV in the
iterative method to find a guiding path in a high-dimensional C.
Experimental verifications are described in Section V.

II. RELATED WORK

A crucial part of the sampling-based methods is the sam-
pling of the configuration space. The sampling process can
be characterized by a sampling source and a sampling mea-
sure [11]. The sampling source denotes how the samples
are constructed, e.g., using pseudorandom number generators
or by deterministic approaches like Halton sequences. The
sampling measure is the distribution of the samples in C and
it is more important for the planning process itself than the
sampling source [11].

In the original PRM and RRT, the configuration space is
sampled uniformly. To cope with the narrow passage problem,
the sampling measure can be modified to generate more
samples in difficult regions. A simple method that modifies
the sampling measure in the RRT is the goal-bias [16], where



random configuration is replaced by the goal configuration
with a probability pg . The goal-bias suppresses the exploration
of C, while the tree is expanded more preferably towards the
goal. Although the goal-bias speeds up the growth towards the
goal, it may cause a congestion problem of the tree growth due
to existence of an obstacle in the pathway.

A location of narrow passage can be estimated using a
shape of the workspace prior the planning. This approach is
used in the Gaussian PRM [18] and Bridge-Test [8], where
random configurations are generated close to obstacles. If a
roadmap with a higher clearance is preferred, the samples can
be generated on the medial axis [23]. Other approaches that
use knowledge about the workspace to determine regions for
dense sampling are [14, 22, 1, 10].

The sampling measure can be adapted in the planning phase,
which allows to generate more samples in sparsely covered
regions. The adaptive sampling can be based on the level of in-
formation gain brought by the samples [4, 5]. The coverage of
the configuration space by the samples can be estimated using
KPIECE [20] algorithm. The adaptive methods improve the
sampling in high-dimensional configuration spaces, where the
sampling cannot be modified respecting purely the workspace
knowledge [14].

The sampling measure can be easily modified in a PRM
algorithm, because such algorithm first samples the configura-
tion space, and after that, the roadmap is constructed using
the samples located in Cfree. The modifications originally
suggested for the PRM cannot be directly used in the RRT,
because the RRT algorithm simultaneously builds the tree
and samples the configuration space. To modify the sampling
measure in RRT, the tree growth needs to be considered,
otherwise the tree can get stuck due to an obstacle, like
in the situation depicted in Fig. 1a. More samples in the
narrow passage np do not guarantee the tree will escape the
“u” obstacle, because the tree tends to growth towards the
samples in the np, but in that directions an obstacle is located.
Therefore, a sampling measure should be boosted around np
after the tree approaches the narrow passage (Fig. 1b).

np

q
init

qgoal qgoal
initq

np

Fig. 1. Environment with a narrow passage (np). If the sampling is boosted
around np before the tree approaches it, the tree attempts to grow to the
obstacles (left). To help the tree to pass np the sampling measure should be
boosted in np when the tree approaches it (right).

Several approaches to adjust the sampling measure consid-
ering the tree growth in the RRT have been presented so
far. The tree nodes can be classified into two groups: (1)
frontier nodes, whose Voronoi cells grow together with the
growth of the environment; and (2) boundary nodes, which
are close to obstacles [24]. The tree should be expanded
from the frontier nodes, as these are found at the boundary
of the tree; thus, these can be extended towards unexplored

regions. In narrow passages, the nodes are mainly of both
the frontier and the boundary types. These are frequently
chosen for tree expansion, because they are frontier nodes.
Nevertheless, the expansion of the nodes may not be successful
as these are located close to obstacles. The authors of [24]
proposed the RRT-DD algorithm to deactivate nodes from
which the tree cannot be expanded. Each node has assigned
a radius defining maximum distance of a random sample in
C, which can activate the node for the expansion. The radius
is initialized to ∞; hence, the nodes can be chosen for the
expansion by an arbitrary random sample. If the expansion of
a node fails, its radius is decreased to a predefined value R.
This suppresses frequent selection of the boundary nodes,
and increases probability of selecting frontier nodes. However,
the performance of the RRT-DD strongly depends on the
value of R. A strategy for adapting the activation radius has
been proposed in [12]. If the expansion of a node succeeds,
its activation radius is increased by a given percentage α,
otherwise it is decreased by the same percentage.

To attract the tree into a narrow passage, the Retraction-
RRT [26] computes contact configurations q′c that are located
on a boundary of Cfree and Cobs. Such configurations are
found using retraction procedure, which works as follows.
A random configuration qrand ∈ Cfree is generated and a
close non-free configuration qobs ∈ Cobs is found. A contact
configuration qc on a segment (qrand, qobs) is found and
its neighborhood is searched for q′c minimizing the distance
between qobs and q′c. The configuration q′c is then added to
the tree. It was shown that this approach can deal with narrow
passages efficiently, because the generated contact configu-
rations penetrate into the narrow passages. However, to find
the contact configurations, the collision detection algorithm is
called frequently, which can decrease the performance of the
algorithm.

In [2], the performance of the RRT for problems with a low-
dimensional C has been increased by the proposed RRT–Path
algorithm. The approach is based on a precomputed geometric
path in the workspace that is used to guide randomized con-
struction of the tree through the configuration space. Therein,
the guiding path is computed using well known approaches
like Visibility graph, Voronoi diagram, or the Visibility-
Voronoi combination. A similar idea for attracting the tree
was proposed in [21]. In this approach, the tree is grown
towards multiple precomputed key configurations. In the RRT–
Path, only one attraction configuration is used. Moreover, this
configuration is moved along the path considering the growth
of the tree. It allows the tree to reach the goal configuration
even in an environment with obstacles.

A significant performance improvement of the RRT–Path
in problems with many narrow passages (like office like
building plans) allows to consider the motion planning in the
watchman route problem [6] where many trajectories have
to be determined to find a final watchman route trajectory
from which the whole environment is covered. However, a
guiding path found in the workspace cannot be used to guide
the RRT in a high-dimensional C, because the workspace
importance decreases as the dimension of the configuration
space increases [14]. Therefore, in this paper, we extended the



former RRT–Path algorithm to efficiently deal with problems
in a high-dimensional C.

III. GUIDING A TREE USING A PRECOMPUTED PATH

Although the RRT–Path has been proposed in [2], the
algorithm has been further improved to cope with high-
dimensional spaces. That is why a detailed description of the
modified algorithm is presented in this section. The basic idea
of the algorithm is to steer the growth of the tree through the
environment without unnecessary exploration steps.

To steer a growing process of the tree a precomputed guid-
ing path is employed, and new samples are generated along
this path using a temporal goal gt, which follows the goal-bias
principle. The temporal goal gt is maintained considering the
growth of the tree; thus, gt slides along the guiding path during
the tree construction. To determine the temporal goal gt, the
nearest node in the tree should be projected to a line segment
of the guiding path. To avoid computing of this projection, we
represent the guiding path by a set of sample points. Then,
the temporal goal is searched among these samples. To bias
the tree growth towards gt a new random sample qrand is
randomly drawn from w neighbor sample points of gt. So,
qrand is sampled around gt with the probability pg , otherwise
qrand is sampled from C. The principle of the sampling is
depicted in Fig. 2. Similarly to the original RRT, the nearest
configuration qnear in the tree is found and the tree is extended
towards qrand. If the tree approaches the current goal gt in a
distance less than δt, the temporal goal is updated to the most
distant point of the guiding path that has not yet been reached
by the tree. The algorithm terminates if the tree approaches
qgoal. The RRT–Path algorithm is listed in Algorithm 1.

The guiding path can be found easily for 2D or 3D
workspaces using well know approaches like Visibility graphs
or Voronoi diagrams. Here, we do not focus on the guiding
path computation itself, rather we assume to have one and
focus to the sampling along such a path. To measure distance
between a configuration q ∈ C and a path point p, only
the corresponding variables are used in Euclidean metric. For
example, for a car-like robot with q = {x, y, ϕ} and 2D
guiding path point p = {x, y}, only x and y variables are
used to determine the distance between q and p.

Maintenance of the temporal goal (lines 4–12 in Algo-
rithm 1) is based on distances between the tree and points
on the guiding path that have a higher index than gt. If the
distance is lower than δt for a point pi, then the next point
pi+1 is labeled as a new temporal goal.

The considered distance δt implies that the tree may not
follow the path exactly. A higher δt leads to a less accurate
tracking of the guide path. In such a situation, a new path

1

3
5

64=g t

9

87

2

Fig. 2. An example of a guiding path with nine points. The gt is set to point
4. If w = 5 neighbors of the temporal goal is used to attract the tree, qrand

is drawn from points {2, 3, 4, 5, 6}.

Algorithm 1: RRT–Path
Input: Configurations qinit, qgoal, the maximum number

of iterations K, the temporal goal bias pg , the
number of the temporal goal neighbors w,
a guiding path P = {p1, . . . , pn}

Output: A trajectory between qinit and qgoal or failure

T.add(qinit)1

gt = 1 // index of the temporal goal point2

while iteration< K and qgoal not reached do3

i = n4

while i > gt do5

qn = nearestNeighbor(T, pi)6

if distance(qn, pi) < δt then7

gt = i+ 1 // new temporal goal8

break9

end10

i = i− 111

end12

if pg > rand(0, 1) then13

qrand = random point among w neighbors of gt14

else15

qrand = random configuration in C16

end17

qnear = nearestNeighbor(T, qrand)18

qnew = extend qnear towards qrand19

if qnew can be connected to qnear then20

T.add(qnew)21

end22

iteration = iteration+ 123

end24

if qgoal was reached by the tree T then25

return trajectory between qinit and qgoal26

else27

return failure28

end29

through the environment may be found and even it can be
interconnected with an existing path behind the temporal goal.
So, the tree can “skip” a part of the guiding path, which is
useful in situations, where a part of the guiding path is not
able to steer the tree properly, e.g., due to a low clearance. An
example of such a situation is depicted in Fig. 3.

A balance between path following and exploration of C
depends on the number of neighbors of gt and the distance
between the consecutive points on the guiding path. If the
number of the neighbors w is high, or the consecutive path
points are too far, the algorithm prefers exploration of C rather
than following the guiding path. The reason is that the tree is
more attracted by widespread points than by the guiding path
itself. If the distance between the consecutive path sample
points is small or only several gt neighbors are used to select
the random points, the tree is attracted by points located in
a close area; thus, the tree does not explore, but attempts to
reach these points. As the distance between consecutive path
points decreases, the number of path points increases, which
also increases the computational burden of the temporal goal



gt

tg
,

p

init
q

goalq

Fig. 3. Example of skipping part of the guiding path by the tree. The temporal
goal is set to gt but the tree approaches the point p. The new temporal goal
is thus set to g′t.

selection. To overcome these situations, the distance between
consecutive sample points on the guiding path should not be
higher than δt.

IV. RRT–PATH WITH ITERATIVE SCALING OF ROBOT
GEOMETRY

The RRT–Path is able to grow the tree along a predefined
geometric path. The guiding path can be computed easily for
a point robot in 2D or 3D workspaces, while its computation
is PSPACE-Hard [19] for a non-point robot. In this section,
we proposed an iterative scaling algorithm denoted as RRT-IS
to find a guiding path in a general C.

The approach is based on an iterative refinement of the
guiding path using a scaled model of the robot. First, the
original RRT is used to find an initial guiding path with a
downscaled model of the robot. This path is then used as
the guiding path in the modified RRT–Path algorithm that is
executed several times using an enlarged robot in a stepwise
manner unless the original size of the robot is achieved. The
RRT–Path attempts to follow the given guiding path at most
m-times. Here, we assume that the robot is a single body
robot and it is scaled equally in all dimensions. The algorithm
is listed in Algorithm 2.

The narrow passages in C of a smaller robot are relatively
wider than the passages in C of the original (full-sized) robot;
thus, it is easier to find a path through the passages. The
iterative scaling approach assumes that the path found for a
smaller robot is topologically equivalent to the path for the
robot with the original size. It is clear that this assumption
is not always valid. For example a path in C found for a
small robot can become infeasible for a larger robot due to
existence of an obstacle, see for an example Fig. 4. However,
the modified RRT–Path is able to skip a part of the guiding
path, and therefore, it may find a solution also in these cases.

Performance of the proposed RRT-IS depends on the used
scaling strategy. The simplest strategy is to start the planning
with a low scale and increase the scale at each iteration by
a predefined value. Although the initial robot scale can be
chosen as extremely low to increase a chance to find an
admissible guiding path, such a path may become infeasible
for a larger robot. An improved scaling strategy can be used,
e.g., employing a binary search, to speed up the RRT-IS
algorithm.

The idea of iterative scaling approach for finding the guiding
path in C is similar to the Iterative Relaxation of Constraints
(IRC) [3], which was introduced for PRM. The IRC method
iteratively scales the robot and for each scale a roadmap is

Algorithm 2: RRT–IS
Input: qinit, qgoal, the number of RRT–Path trials m, the

maximum number of allowed iterations K
Output: A path for the robot with the scale 1.0 or failure
guidingPath = ∅1

while qgoal is not reached by the original robot do2

scale = getNextScale() // scaling strategy3

robot.scaleGeometry(scale)4

if guidingPath.size = 0 then5

p=rrtOriginal.findPath(qinit,qgoal,robot, K)6

else7

for t = 1 : m do8

p=rrtpath.findPath(guidingPath, qinit,qgoal,K)9

if goal reached by p then10

break11

end12

end13

end14

if goal reached by p then15

guidingPath = p16

else17

return failure18

end19

end20

return guidingPath // a solution for scale 1.021

init

q

q

goal

C

obs

obs

goalq

q
init

C

obsC

init

q

q

goal

obs

obsC

goalq

q
init

C

Fig. 4. An example of guiding paths found for two different scales of a
robot. The workspaces with the robot are depicted in the left column, and
their configuration spaces are on the right. Two paths can be found in the
configuration space of a smaller robot (b); however, only the dashed path is
feasible for a larger robot.

built. In the next step, the scale of the robot is increased and
the previous roadmap is adapted. The benefit of our approach
designed for the RRT is that it provides solution in situations
where: (a) differential constraints must be considered, or (b)
in a case of changing environment, where finding one path
between start and goal is faster than building a roadmap of
the whole configuration space. Moreover, the proposed RRT-
IS uses a guiding path that considers the motion model of
the robot, and therefore, it can be used to find a path for a
non-holonomic robot.



V. EXPERIMENTS

The performance of the proposed modification of the RRT
with iterative scaling (RRT-IS) has been experimentally ver-
ified and compared with state-of-the-arts RRT approaches in
two sets of experiments. All experiments have been performed
within the same computational environment using the Intel
Core2Duo 3.0 GHz CPU with 2 GB RAM. The nearest
neighbors in RRT algorithms were searched using the MPNN
library [25] and the collisions were detected using the RAPID
library [7].

In the first set of experiments, the RRT-IS was verified in
2D environments1 BT100 and BT30 with a car-like robot. The
subscript in the map name denotes the size of the narrow
passage in centimeters. The size of the robot is 100× 20 cm.

Each algorithm was executed 100 times for each map.
A trial in which the distance between the resulting trajectory
and the goal state was higher than 30 cm is considered as
planning failure and the trial is discarded. The ratio of the
number of planning failures to the total number of the trials
performed denotes the failure ratio. Results from the successful
trials are averaged.

In the RRT-IS, the scale was initialized to 0.9, and it was
increased by 0.02 at each iteration. The number of the inner
RRT–Path trials was set to m = 3. The parameters of RRT–
Path were: w = 15, pg = 95%, and δt = 20 cm.

The results are shown in Table I and examples of found
solutions in Fig. 5. The maximum number of iterations for
the RRT-Original is in row No. iterations. For RRT-IS, this
denotes maximum number of iterations of one run of RRT
and RRT–Path on a certain scale (parameter K in Alg. 2).
The row Time is the required computational time, Tree size
is the size of tree created by the method, No. Collisions is
the number of collision queries. The tree size of the RRT-IS
can be higher than the number of iterations as the RRT–Path
algorithm can be performed up to m-times.

A passage that is a more than four times wider than the robot
does not represent a significant issue for the RRT-Original
algorithm in the BT100 environment. However, the failure ratio
of RRT-Original is higher in the BT30 environment with a
narrow passage. The failure ratio of RRT-Original depends
on the maximum number of iterations. However, even if the
number was increased (to 50, 000), the failure ratio of the
RRT-Original was still higher than in RRT-IS with only 5, 000
of allowed iterations.

Although the RRT-IS is more computationally intensive than
the RRT-Original, it provides significantly better performance
regarding the failure ratio. The high computational require-
ments of the RRT-IS are caused by the determination of the
temporal goals as RRT–Path has to find the nearest neighbors
to all points on the guiding path in each iteration. The initial
construction of the first guiding path for the most downscaled
robot is time consuming, whilst the guidance of larger robots
is faster as can be seen in Fig. 7.

The second experimental verification concerns 3D environ-
ments in scenarios Bugtrap2 and Room. The task is to find

1Maps are available at http://imr.felk.cvut.cz/planning/maps.xml
2http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/bug-trap/

a path for a stick-shaped robot. Both environments contain
a narrow passage. The iterative scaling was started at a scale
0.05 for the Bugtrap environment and it was increased by 0.05
after each iteration. The initial scale for the Room environment
was 0.7 and it was increased by 0.02 after each iteration.
The parameters of RRT–Path were: w = 15, pg = 95%,
and δt = 0.5 map unit. A trial was accepted if the distance
between found trajectory and the goal state was less than 1
map unit. The results are shown in Table II. Beside the RRT-
Original, the RRT-Retraction [26] and RRT-DynamicDomain
[24] with adaptive tuning were implemented for a comparison.
The parameters α = 0.1 and R = 100ε of RRT-DD were used,
where ε is the length of the expansion step in the RRT.

Although the state-of-the-art methods RRT-DD and RRT-
Retraction are faster and need less number of collision detec-
tion queries, their failure ratios are significantly higher than for
the RRT-IS. Regarding the experimental results the proposed
RRT-IS provides feasible path with a higher frequency, which
indicates benefit of proposed method of guided sampling.

TABLE I
RESULTS FOR BT100 AND BT30 MAPS WITH CAR-LIKE ROBOT.

RRT-Original RRT-IS

BT100

No. iterations 15,000 35,000 5,000
Time [s] 1.45 3.18 5.0
Tree size 10,738 24,485 8,279
No. collisions 180,557 384,971 257,796
Failures 8 % 1 % 1 %

BT30

No. iterations 30,000 50,000 5,000
Time [s] 2.72 4.2 28.81
Tree size 19,335 26,734 18,834
No. collisions 331,085 510,084 860,929
Failures 82 % 78 % 1 %

Fig. 5. Results of RRT-IS on maps BT100 (left) and BT30 (right). The
rectangle represents the robot.

VI. CONCLUSION

A novel sampling schema for RRT planning algorithms has
been presented. The proposed method employs a guiding path
to steer the growth of the tree in the configuration space.
The guiding path can be computed in the workspace by geo-
metric path-planning methods, or by the RRT approach with
the herein proposed iterative scaling. Whilst the geometric
methods are more suitable for a low-dimensional configura-
tion space, the RRT-IS can even deal with high-dimensional



TABLE II
RESULTS FOR 3D ENVIRONMENTS.

RRT-Original RRT-IS RRT-Retr RRT-DD
Room
No. iterations 200,000 40,000 40,000 100,000
Time [s] 66.84 58.2 9.9 19.2
Tree size 156,874 209,031 69,886 100,000
No. collisions (×106) 4.38 4.57 1.23 1.2
Failures 59% 0% 75% 80%
Bugtrap
No. iterations 4 · 106 3.5 · 106 106 106

Time [s] 2,692 3,000 257 394
Tree size (×106) 3.8 2.2 1.63 0.99
No. collisions (×106) 133 120 16 12
Failures 86 % 1 % 46 % 86 %

a b
Fig. 6. 3D environments Bugtrap (a) and Room (b) with a tree along a path.

��� ���� ���� ���� ���� �
�

	��

����

�	��

����

�	��


���


	��

����

�	��

	���
�����

��
�


����

�
��
�
��
��
�

a b
Fig. 7. Tree size needed to find a solution with different scales of a car-
like robot in BT100 and BT30 (a); running time of the RRT–Path for various
scales of robot in the Bugtrap problem (b).

problems; thus, it can find a path through a narrow passage
in the C even if the corresponding part of the workspace does
not indicate the presence of a narrow passage.

The experimental verifications have shown that the proposed
RRT-IS algorithm is able to cope with the narrow passage
problem in both 2D and 3D workspaces with significantly
higher success rate than other methods. Although the proposed
method is computationally demanding, it may be combined
with the RRT-DD or RRT-Retraction to decrease the compu-
tational burden, which is a subject of our future work.

VII. ACKNOWLEDGMENTS

This work has been supported by the Grant Agency of
the Czech Technical University in Prague under grant No.
SGS10/185 and SGS10/195, by the Ministry of Education of
the Czech Republic under Projects No. 7E08006, No. 1M0567,
and No. LH11053, and by the EU under Project No. 216342.

REFERENCES

[1] Nancy M. Amato, O. Burchan Bayazit, Lucia K. Dale, Christopher
Jones, and Daniel Vallejo. OBPRM: an obstacle-based PRM for 3D
workspaces. In WAFR, pages 155–168. A. K. Peters, Ltd., 1998.

[2] Vonásek Vojtěch, Jan Faigl, Tomáš Krajnı́k, and Libor Přeučil. RRT-
Path: a guided Rapidly Exploring Random tree. In Robot motion and
control, Poznan, Poland, June 2009.

[3] O.B. Bayazit, Dawen Xie, and N.M. Amato. Iterative relaxation of
constraints: a framework for improving automated motion planning. In
IROS 2005, pages 3433 – 3440, aug. 2005.

[4] B. Burns and O. Brock. Information theoretic construction of proba-
bilistic roadmaps. In IROS, volume 1, pages 650–655, Oct. 2003.

[5] Brendan Burns and Oliver Brock. Toward optimal configuration space
sampling. In Proceedings of Robotics: Science and Systems, Cambridge,
USA, June 2005.

[6] Jan Faigl. Multi-Goal Path Planning for Cooperative Sensing. PhD
thesis, Czech Technical University in Prague, 2010.

[7] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: a hierarchical
structure for rapid interference detection. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
pages 171–180, New York, NY, USA, 1996. ACM.

[8] David Hsu. The bridge test for sampling narrow passages with
probabilistic roadmap planners. In IEEE ICRA, 2003.

[9] David Hsu, Jean claude Latombe, and Rajeev Motwani. Path planning
in expansive configuration spaces. In International Journal of Compu-
tational Geometry and Applications, pages 2719–2726, 1997.

[10] David Hsu, Lydia E. Kavraki, Jean-Claude Latombe, and Rajeev Mot-
wani. On finding narrow passages with probabilistic roadmap planners.
In WAFR, 1998.

[11] David Hsu, Jean-Claude Latombe, and Hanna Kurniawati. On the prob-
abilistic foundations of probabilistic roadmap planning. International
Journal of Robotics Research, 25(7):627–643, 2006.

[12] L. Jaillet, A. Yershova, S.M. La Valle, and T. Simeon. Adaptive tuning
of the sampling domain for dynamic-domain RRTs. In IEEE/RSJ IROS,
pages 2851 – 2856, 2-6 2005.

[13] Lydia E. Kavraki, Petr Svestka, Jean claude Latombe, and Mark H.
Overmars. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and Automation,
12:566–580, 1996.

[14] Hanna Kurniawati and David Hsu. Workspace importance sampling for
probabilistic roadmap planning. In IROS, September 2004.

[15] S. M. LaValle. Rapidly-exploring random trees: A new tool for path
planning, 1998. TR 98-11.

[16] Steven M. Lavalle and James J. Kuffner. Rapidly-exploring random
trees: Progress and prospects. In Algorithmic and Computational
Robotics: New Directions, pages 293–308, 2000.

[17] Stephen R. Lindemann and Steven M. LaValle. Current issues
in sampling-based motion planning. In Robotics Research: The
Eleventh International Symposium, pages 36–54, Berlin, Germany, 2005.
Springer-Verlag.

[18] Mark H. Overmars. The Gaussian Sampling strategy for probabilistic
roadmap planners. In ICRA, pages 1018–1023, 1999.

[19] John H. Reif. Complexity of the mover’s problem and generalizations.
In Proceedings of SFCS ’79, pages 421–427, Washington, DC, USA,
1979. IEEE Computer Society.

[20] Ioan Alexandru Sucan and Lydia E. Kavraki. Kinodynamic motion
planning by interior-exterior cell exploration. In WAFR, 2008.

[21] E. Szadeczky-Kardoss and B. Kiss. Extension of the rapidly exploring
random tree algorithm with key configurations for nonholonomic motion
planning. In IEEE International Conference on Mechatronics, 2006.

[22] J.P. van den Berg and M.H. Overmars. Using workspace information as
a guide to non-uniform sampling in probabilistic roadmap planners. In
IEEE ICRA, volume 1, pages 453–460 Vol.1, April-1 May 2004.

[23] Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. Maprm: A
probabilistic roadmap planner with sampling on the medial axis of the
free space. In IEEE ICRA, pages 1024–1031, 1999.

[24] A. Yershova, L. Jaillet, T. Simeon, and S.M. LaValle. Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain. In
ICRA, pages 3856–3861, April 2005.

[25] A. Yershova and S. M. LaValle. Improving motion-planning algo-
rithms by efficient nearest-neighbor searching. Robotics, IEEE Trans-
actions on, 23(1):151–157, Feb. 2007. http://msl.cs.uiuc.edu/ yer-
shova/MPNN/MPNN.htm.

[26] Liangjun Zhang and D. Manocha. An efficient retraction-based RRT
planner. In IEEE International Conference on Robotics and Automation,
pages 3743 –3750, 19-23 2008.


