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Abstract— Frontier-based approach can be considered as
a de facto standard method for a mobile robot exploration
task. Many variants have been proposed; however, relatively
little attention has been made to study the influence of goal
candidates generation to the performance of the exploration.
In regular approaches, frontiers are considered as eventual
goals for the next-best-view selection using a utility function
combining a distance cost and expected information gain. The
aim of this paper is to show that using goal candidates that are
independent of the distance cost can improve the performance
of exploration strategies. The found insights are supported by
a statistical evaluation of thousands of trials performed for
various environments.

I. INTRODUCTION

The problem of building a map of an unknown environ-
ment by a single or a group of mobile robots is called robotic
exploration and first approaches addressing this problem have
been proposed in eighties. The main idea to address the
problem is to determine the next goals towards which the
robots are navigated to collect new information about the
environment. The fundamental approach to generate goal
candidates is the frontier-based approach [1]. A frontier is an
area between unknown and already explored space; hence, it
is a good candidate to be the next goal because the robot will
likely explore the unknown space during navigation towards
the goal. Frontiers can be easily determined in a grid-based
map, and therefore, the frontier-based exploration is usually
combined with the occupancy grid for a straightforward
integration of new sensor measurements. Thus, the frontier-
grid-based exploration is one of the most popular exploration
approaches because of its simplicity.

During exploration, robots are navigating towards goals as-
signed in the next-best-view manner. The goals are iteratively
selected from the actual goal candidates (e.g., frontier cells)
according to the selected optimization criterion. Here, it is
worth to mention that in the case of multi-robot exploration
such a problem formulation can be considered as the task-
allocation problem, where the expected information gain of
the goal candidate can be combined with the distance cost
in the utility function [2], [3].

Computational requirements of the exploration strategy
can be expressed in terms of the computational complexity
of the assignment procedure that principally depends on the
number of goal candidates n and the number of robots m.
The number of frontier cells can be easily in hundreds (or
even thousands) for a moderate environment with dimensions
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in tens of meters and an occupancy grid with the cell size of
units (or tens) of centimeters. A high number of frontiers is
not a significant computational issue for simple assignment
procedures like greedy or iterative assignments [1], [4], [5],
[6]; however, it can be computationally demanding for more
complex approaches providing a shorter exploration time
like the Hungarian algorithm [7] with O(n3) or the multiple
traveling salesman approach [8].

Considering complex assignment procedures, it is prefer-
able to determine the minimal set of the most promising
goal candidates to decrease the computational burden of the
assignment procedure. Moreover, it can be desirable to have
a set of goal candidates with small overlap of their coverage
to avoid necessity of candidates re-evaluation if a goal is
assigned to a robot, e.g., like in [5], or to allow usage of
the optimal Hungarian algorithm for solving the assignment
problem.

To the best of our knowledge, the determination of promis-
ing goal candidates using the frontier cells has not been
systematically studied. Therefore, in the presented study,
we examine influence of the goal candidates determination
to the performance of the multi-robot exploration where
the exploration strategy is formulated as the task-allocation
problem. In addition, we propose a simple procedure for
determining goal candidates considering a coverage of the
current frontiers that decreases the total required exploration
time also for simple greedy and iterative goal assignment
methods. Hence, the proposed idea can be considered as
complementary to the other approaches combining additional
criteria, e.g., respecting localization and communication con-
straints.

The paper is organized as follows. In Section II, related
approaches are briefly described and their main differences
to the proposed idea are discussed. Section III defines the
problem and the evaluation methodology together with the
description of the evaluated task assignment procedures and
goal candidates determination methods. The proposed goal
candidates selection is described in Section IV. A compara-
tive study of the methods is presented in Section V, discus-
sion in Section VI and concluding remarks in Section VII.

II. RELATED WORK

The most straightforward generation of the goal candidates
is to use all frontiers cells as the candidates. A simple filtra-
tion can reduce the number of candidates, e.g., considering
only frontiers that are not too close to obstacle regions to
increase safety of navigation [9]. Then, the next robot goal
can be selected according to the candidate utility.



In [5], a utility of the frontier cell is estimated using vis-
ibility to frontier cells assigned to other robots. Considering
all possible frontier cells in the assignment would lead to
a combinatorial explosion, and therefore, the authors rather
consider an iterative approach in which the current most
suitable frontier is determined for each robot and after that
the utilities of all remaining frontiers are recomputed. The
iterative assignment is also used in [10], where the frontier
cost is computed with respect to a particular robot using
clustering of all possibly reachable unknown cells using the
K-means algorithm. If a frontier does not belong to the
robot’s cluster the frontier–robot distance is computed as
a sum of the Euclidean cluster’s center–frontier distances.
Otherwise, the cost is determined as the length of the robot–
frontier path. In both cases, an additional penalization is
considered to avoid assignment of the frontiers that are
within a sensor range distance from the assigned frontiers.
The penalization is determined after each assignment and the
cost of the particular frontiers are updated.

From another perspective, finding a minimum set of the
goal candidates can be formulated as a variant of the art
gallery problem, in which we are looking for the best possi-
ble locations to cover unexplored areas that are represented
by the frontiers. This idea has been presented in [3], where
the authors utilize the sensor placement algorithm [11] as
a randomized greedy set coverage technique to find the
best view locations to cover the frontiers organized into a
single connected components called free curves. The goal
candidates are randomly placed within the sensor range from
the free curves and each candidate q is evaluated using a
utility function g(q) = A(q)exp(−λL(q)), where λ is a
positive constant, L(q) is the length of the robot–candidate
path, and A(q) is the expected maximal area of the unknown
part of the environment that can be explored from the
candidate q. A similar approach is considered in [12], where
distance and utility costs are combined in the same way with
an additional exponential term to consider orientation of the
sensor at the goal candidate location. The feasibility of the
selection of the goal candidates to cover frontier cells in 3D
exploration is shown in [13]. Instead of direct coverage of
frontiers, authors consider the so called void cells (unknown
cells that are inside of the convex hull of the point cloud
representing the sensor measurements).

The proposed goal candidates generation method (de-
scribed in Section IV) follows the idea of covering frontier
cells and it is mostly similar to approaches [3], [12]. How-
ever, it considers only the current known parts of the environ-
ment, i.e., no explicit assumption about the unknown parts is
assumed. Besides, the candidates are selected from possible
locations from which frontiers can be covered independently
to the distance cost and the current positions of the robots;
hence, it does not require any weight parameters and thus it
can be simply used with any task-allocation procedure.

In addition, the generation of candidates is a deterministic
procedure, which is probably the most important difference
to the approach [3]. Although the authors of [3] comment
the eventual oscillations related to the parameter λ, we found

out that the oscillations are mostly related to the frequency
of re-planning. If new goals are determined once a robot
reaches the current goal, the oscillations are not a signif-
icant issue. However, for a more frequent re-planning, the
randomized placement causes that new goals can be placed
at different directions which can cause frequent changes of
robot’s heading. This behaviour disqualifies the randomized
approach for a frequent re-planning, which can generally
provide a better performance as it avoids situations when
the robots are navigated towards the goal from which only
the already explored area can be covered.

III. PROBLEM DEFINITION AND EVALUATION
METHODOLOGY

In the presented study of the goal candidates generation,
we consider the exploration as a repetitive solution of the
task-allocation problem, where at each step, n goals at the
locations G = {g1, . . . , gn} are allocated to m robots at
the locations R = {r1, . . . , rm}. At each such a decision
step, the problem can be defined as follow. Determine the
next goal g ∈ G for each robot r ∈ R such that the
assignment will minimize the total required time to explore
the whole environment. We assume an omnidirectional sensor
consisting of two regular laser scanners with the range
ρ, each with 180◦ field of view, providing 722 distance
measurements in total with a high frequency (relatively to the
speed of the robot), i.e., the sensing cost is negligible. The
required exploration time is approximated by the maximal
travelled distance by an individual robot. Having m robots
with the travelled distances l1, l2, . . . , lm the performance
metric is L = max{l1, l2, . . . , lm}.

As we are interested in studying the mechanisms of the
goal candidates determination, we consider the exploration
in a simulator providing a precise definition of the particular
exploration scenario and identical initial conditions for all
studied strategies like in the studies [14], [15], [8]. In
particular, we use the multi-robot exploration framework
described in [8]. The framework allows a focused study of
the decision mechanisms without influence of other parts of
the real navigation system, which may affect the performance
significantly. It also allows to evaluate the results statistically
using thousands of simulations, which are unlikely possible
with real robots. However, it is worth to mention that the
found insights based on the proposed methodology represent
foundations for further development and verification of the
proposed techniques in real practical scenarios.

A brief overview of the exploration framework is presented
in Section III-A and selected assignment strategies and goal
determination methods are described in Section III-B and
Section III-C, respectively.

A. Multi-Robot Exploration Framework

The framework is basically an iterative procedure consist-
ing of determination of the goal candidates, their assignment
to the robots, and navigation of the robots towards the new
goals. The detailed description can be found in [8], and
therefore, only a summary of the procedure is presented here.



1) Initialize the occupancy grid Occ and integrate the first
sensor measurements.

2) Create navigation gridM from Occ, where each cell in
M has value from {freespace, obstacle, unknown}.

3) Detect all frontiers, F = detect frontiers(M).
4) Determine goal candidates G, G = generate(F ).
5) Assign the next goal to each robot r ∈ R,

(〈r1, gr1〉, . . . , 〈rm, grm〉) = assign(R,G,M) .
6) Create a plan Pi for each pair 〈ri, gri〉, which is a

sequence of simple operations (a movement of the
robot about single cell or turn).

7) Perform the plans up to smax steps and at each step,
update Occ using new sensor measurements.

8) If |G| > 0 go to Step 3, otherwise terminate.
The parameter smax precisely defines the re-planning pe-
riod, which also affects the performance of the explo-
ration [8]. A small smax provides a frequent re-planning
while smax=−1 is considered for re-planning after a robot
reaches its goal. A localization based on scan alignment
techniques is supported by a laser scanner with a high
frequency sensing that provides overlapping scans, which is
simulated by taking laser measurement at each grid cell.

B. Goal Assignment Strategies

The effect of the goal candidates selection has been studied
using four goal assignment strategies for the multi-robot
exploration in which only the distance cost is considered.
For the first three strategies, the distance cost is the length
of the shortest robot–goal path, and for the fourth method the
cost is the TSP distance cost [16]. In addition, we consider
the approach [10] for a coordinated multi-robot exploration
based on clustering of an unknown space. All goal–robot
paths are found by the Distance Transform algorithm [17]
with a simple smoothing [8].

Greedy Assignment (GA) – We use a modified greedy
assignment approach [18] in which the best not assigned goal
is assigned to each robot sequentially, while the robots are
selected in a random order to avoid preference of one robot.

Iterative Assignment (IA) – The iterative assignment is a
centralized implementation of the iterative procedure called
Broadcast of Local Eligibility [4], where all robot–goal pairs
〈r, g〉 are ordered by the associated distance cost. Then, the
first not assigned goal from the ordered sequence of pairs is
assigned to the particular robot without an assigned goal.

Hungarian Assignment (HA) – The Hungarian method
provides the optimal assignment using the cost matrix, where
each cell represents the value of the distance cost for a robot–
goal assignment 〈r, g〉. The C implementation [19] is used
for the results presented in this paper.

Multiple Traveling Salesman Assignment (MA) – The
assignment problem is formulated as the multiple traveling
salesman problem (MTSP) that is solved approximately
using 〈cluster first, route second〉 heuristic [8]. The clusters
are found by the K-means algorithm and the next goal is
selected from the particular cluster according to the TSP
distance cost using the Chained Lin-Kernighan heuristic from
the CONCORDE solver [20].

Solanas and Garcia Assignment (SGA) – This explo-
ration strategy (proposed by Solanas and Garcia in [10])
represents a distance cost approach, where the coordination
of the robots is supported by clustering unknown cells into
m clusters. After the first clustering (initialized by the map’s
center), the clusters are associated to the robots for the rest
of the exploration. The next clustering is initialized by the
previous clusters’ centers. For the frontier fi, robot rj and
its cluster ζj the cost is

costij =

{
∆ + |fi − center(ζj)|2 + oij fi /∈ ζj
path length(fi, rj) + oij fi ∈ ζj

, (1)

where ∆ is the length of the map diagonal, oij is an
additional penalization and fi is associated to the cluster
with the closest center. A frontier f∗ with the minimal value
of the cost (1) is selected for each robot and 2ρ penalization
is added to oij for each frontier that is within ρ distance
from f∗. In the original algorithm, a new goal is determined
after a robot reaches its previous goal. However, based on
the evaluation of the strategy performance we rather consider
re-planning after smax=7 steps, which provides up to 3 times
shorter exploration paths, at the cost of a more aggressive
robot control.

C. Determination of Goal Candidates
The studied methods of goal candidates generation are

based on determination of frontier cells in the navigation
grid M as freespace cells incident with unknown cells
considering 8-neighbourhood. We assume (without lost of
generality) the freespace cells inM form a single connected
component and consider only frontiers that are reachable by
all robots. The set of all frontiers is denoted as F .

The frontier cells are formed into connected components
representing the free edges described in [3], [6], i.e., a set
of all frontier cells F is organized into a set of k sets (free
edges) F = {F 1, . . . ,F k} such that F =

⋃k
i=1 F i and F i∩

F j = ∅ for i 6= j, 1 ≤ i, j ≤ k. An example of the frontier
cells organized into free edges is shown in Fig. 1a. Moreover,
we follow the approach presented in [3] and consider only
frontiers that are from free edges that have more than nf
cells, i.e., |F i| ≥ nf for F i ∈ F .

1) All frontiers (AF) – The first selection method is a
simple consideration of all frontiers. Although the framework
allows to consider the AF method for the HA and MA
exploration strategies, the required computational time is
high, and for hundreds of frontiers such a combination of
the methods is not suitable for real navigation.

2) Representatives of Free Edges (RFE) – This method
is an accompanying goal candidates generation to the TSP
distance cost introduced in [16]. The idea is to use only
few goal candidates representing the free edges and from
which all frontier cells would be covered (if a robot would
visit the representatives). The representatives are means of
nr clusters that are found for each free edge F i using the K-
means clustering algorithm. The number of representatives
nr is determined considering the range of the sensor ρg (in

the number of grid cells) as nr = 1 +

⌊
|F i|
1.8ρg

+ 0.5

⌋
.



IV. GOAL CANDIDATES COVERING FRONTIERS

The proposed goal candidates generation algorithm fol-
lows the idea of representatives (RFE) and generation of
samples covering free curves proposed in [3]. The problem is
formulated as a variant of the art gallery problem with limited
visibility, i.e., the problem stands in finding the minimal
number of locations to cover all the frontiers F using an
omnidirectional laser scanner with the range ρ. Contrary
to [3], the proposed algorithm is an iterative deterministic
procedure that is denoted as the Complete Coverage (CC)
here. The procedure is summarized in Algorithm 1.

Algorithm 1: Goal Candidates Covering the Frontiers
Input: (F , ρ, M) - F a set of all reachable frontiers,

k = |F |, ρ - the range of the sensor, M - the
current navigation grid

Output: G - a set of goal candidates
G = ∅ // initialize the goal candidates1

foreach fi ∈ F do2

Ci = get covering cells(fi, 0.8ρ,M)3

C =
⋃k

i=1 Ci // join the covering cells4

S = ∅ // set of covered cells for c ∈ C5

foreach ci ∈ C do6

Si = get covered frontier cells(ci,F )7

S = S ∪ 〈ci, Si〉 // associate ci with Si8

U = F // initialize uncovered frontiers9

while |U | > 0 do10

〈ci, Si〉 = argmaxci∈C,ci /∈G(|Si \ (F \U)|)11

U = U \ Si12

G = G ∪ {ci}13

First, for each frontier cell fi a set of cells from which
fi can be covered by the sensor with the 0.8ρ range is
determined (Line 3) using a ray casting technique. A shorter
range is used to support navigation towards frontiers. Then,
the goal candidates are iteratively selected from the covering
cells C until all the frontiers are covered. The covering cell ci
with the maximal coverage of the not yet covered frontiers
is selected in each iteration (Line 11). A visualization of
determination steps is shown in Fig. 1. In this example, the
original number of frontiers cells is 815 and the number
of the final found goal candidates is 10, which represents
a significant reduction allowing to consider the exploration
strategy as the MTSP.

V. RESULTS

A ground for a discussion of the goal candidates de-
termination methods is based on a statistical evaluation of
exploration performance using the considered goal assign-
ment and candidate generation methods. The results have
been obtained using the multi-robot exploration framework
and a set of problems within three representative environ-
ments called, em, jh and potholes. The em environment is
an open space area without obstacles with the dimensions
21 m×24 m, which mainly serves to study how the strategies

(a) frontiers formed to free edges (b) a set of covering cells C

(c) all covering cells C (d) all determined goal candidates

Fig. 1. An example of goal candidates covering the frontiers: (a) the
current frontiers formed into single connected components representing the
free edges, each component has different color; (b) a frontier showed as a
red disc and all cells from which the frontier is covered (showed as green
region); (c) all covering cells C; (d) the final set of goal candidates showed
as red discs. The free edges (frontiers) are enlarged for a better visualization.

can split the work to particular robots. The jh environment
is a real administrative building with the same dimensions
as the em and it contains several rooms. The potholes
environment represents 40 m×40 m large open space with
several obstacles. The environments are visualized in Fig. 2.

(a) jh, ρ=4 m, m=3 (b) potholes, ρ=5 m, m=5
Fig. 2. An example of the found solutions using the MTSP assignment
and the proposed CC goal candidates generation.

The considered statistical evaluation methodology is based
on [8] that follows recommendations for benchmarking ex-
ploration strategies [14]. Each problem is defined by the
environment, number of robots m, sensor range ρ, and the
goal assignment and goal candidates generation methods.
For each problem, small perturbations in the initial robot
positions are considered, which gives 20 variants of each
problem. Moreover, for the stochastic assignment methods
(GA and MA) 20 trials are performed for each particular
problem variant. The number of robots is m ∈ {3, 5, 7, 10}
and the sensor range is ρ ∈ {3, 5, 7} meters. In all trials, the
minimal number of frontier cells in a free edge is nf=1 and
the planning period is set to smax=7, which provides the best



TABLE I
COMPARISON OF THE EXPLORATION STRATEGIES IN em/jh/potholes ENVIRONMENTS

ρ m
IA–CC HA–CC MA–CC HA–CC HA–CC IA–CC IA–CC IA–CC IA–CC HA–CC MA–CC

vs vs vs vs vs vs vs vs vs vs vs
IA–RFE HA–RFE MA–RFE MA–RFE MA–CC HA–RFE MA–RFE HA–CC SGA–AF SGA–AF SGA-AF

3.0 3 =/+/+ +/+/= +/+/+ =/–/+ =/–/= =/+/+ –/–/+ –/=/= =/+/+ +/+/= +/+/=
3.0 5 +/+/= +/+/+ =/=/+ +/+/+ +/+/= +/=/+ +/–/+ =/–/= +/=/= +/+/+ +/+/+
3.0 7 +/+/= +/+/– =/+/+ +/+/= +/+/= =/+/– +/+/= =/=/= =/+/+ =/+/+ –/=/+
3.0 10 =/+/+ =/=/+ =/+/+ =/+/+ =/+/+ =/=/= =/+/+ =/=/= =/+/+ =/+/+ =/+/=

5.0 3 +/=/+ +/=/+ +/+/+ +/–/+ =/–/= +/=/+ +/–/+ +/=/= +/=/+ +/=/= +/+/+
5.0 5 =/=/+ =/+/– +/+/+ +/–/+ +/–/+ =/=/– +/–/+ –/–/= =/=/= +/=/= =/+/=
5.0 7 =/+/+ =/+/+ +/=/+ =/+/+ =/+/+ =/+/+ =/=/+ =/–/= =/+/+ =/+/+ =/+/+
5.0 10 =/=/+ =/+/+ –/+/+ =/+/+ =/+/= =/=/+ =/=/+ =/–/+ =/+/+ =/+/= =/+/=

7.0 3 =/=/– =/=/+ +/=/+ =/–/+ =/–/= =/=/– =/–/– =/=/= –/–/– =/–/= –/+/+
7.0 5 –/+/+ –/+/+ –/–/+ –/–/+ =/–/= –/=/+ –/–/+ =/–/= –/–/= –/–/+ –/+/+
7.0 7 –/+/+ –/+/+ –/–/+ –/+/+ =/+/+ –/+/+ –/=/+ =/–/– –/+/+ –/+/+ –/+/+
7.0 10 –/+/+ –/=/+ –/=/+ –/+/+ =/+/= –/=/+ –/+/+ =/=/= =/+/+ =/+/+ =/+/+

performance for all methods. The methods are combined as
follows. The assignment methods GA, IA, and HA have been
combined with the AF, RFE, and CC generation schemata.
The MTSP Assignment (MA) is considered with the RFE and
CC schemata. The coordinated approach [10] (called SGA
here) is considered only as the SGA–AF. The total number
of the evaluated trials is about two hundred thousands but
due to the limited space only selected results are presented.

The evaluation is based on testing a null hypothesis that
the strategies provide statistically identical results for the
performance indicator L considered as a random variable
over all perturbations and particular trials. The distributions
of the performance metrics are not Gaussian (based on the
Shapiro-Wilk test), and therefore, we evaluate the hypothesis
using the Wilcoxon test. The strategies are considered dif-
ferent if difference between distributions of L is statistically
significant, i.e., P-value of the Wilcoxon test is smaller than
0.001. The statistical comparison of the strategies is shown in
Table I, where characters ’-’, ’+’ and ’=’ denote the particular
strategy provides longer, shorter, or statistically identical L.
The characters are determined according to P-values and in
the case of statistically different distributions, the strategy
providing a smaller average value of L is considered as a
better. So, “a vs b: +” means the strategy a is better than b.

In addition, indicative results of the MTSP assignment
using all frontiers (MA–AF) are depicted in Table II to show
computational requirements. The results have been obtained
using 2.8 GHz CPU and C++ implementation, the required
computational time Tcpu is in seconds. Using all frontiers
in the MA is not computationally feasible for a real navi-
gation. The CC goal generation is a more computationally
demanding than RFE, but still computationally feasible.

TABLE II
INDICATIVE RESULTS FOR THE TSP DISTANCE COST ASSIGNMENT

ρ
MA–AF MA–RFE MA–CC

L Tcpu L Tcpu L Tcpu

3.0 173.0 63 050 168.8 141 160.8 403
4.0 149.8 60 834 152.9 171 147.6 557
5.0 139.6 74 479 137.2 237 137.4 883

VI. DISCUSSION

The statistical comparison provides a ground for a discus-
sion about an impact of the goal candidates determination
methods to the performance of the exploration strategies. In
a multi-robot exploration, it makes no sense to consider all
frontiers in the greedy assignment, because robots can be
navigated towards goals with a similar goal distance; hence,
towards the same area. The SGA–AF method (similarly
to [5]) addresses this issue by the penalization of the frontiers
that are within the sensor range from the already assigned
goals. The presented results indicate that this issue can also
be addressed by selecting goal candidates, which naturally
support distributions of the robots among the environment.

The CC method improves performance of all evaluated
goal assignment strategies. RFE has been combined with
the GA, HA, and MA approaches in [8], where the MA
provides the superior results. However, using the proposed
CC method, differences between the assignment methods
are smaller. The HA–CC method provides (in most cases)
better results than the MA-RFE approach; thus, the relatively
simple HA method provides competitive solutions to a more
complex MTSP assignment. Regarding the SGA–AF strat-
egy, other strategies provide mostly statistically identical or
better results than the SGA–AF. All the approaches use only
the distance cost; however, the SGA–AF approach introduces
additional penalization and it re-evaluates the goal costs
after each assignment. The GA assignment provides the
worse performance (not included in Table I due to space
constraints) but CC improves its performance over the RFE.

Based on the results, the IA–CC provides competitive
results to other strategies. The main advantage of the IA
is a straightforward implementation in a decentralized envi-
ronment, and therefore, the IA–CC is a suitable approach for
a distributed decision making in the multi-robot exploration.
A. Notes about Deployment of the Exploration Strategies

The considered evaluation framework provides a focused
test bed, where the fundamental properties of exploration
strategies can be studied and which can be hidden when
the strategies are evaluated in a practical deployment, where
the real performance depends on many other factors. This



is visible for a frequent re-planning, which generally can
improve the performance, e.g., see [8]. However, if positions
of the goal candidates are significantly changed between re-
planning steps, the robots can oscillate between the goals and
the whole performance is decreased like for the approach [3].
Such a behavior may not necessarily be observable for a
less frequent re-planning limited by available computational
power; hence, the used framework is beneficial.

Regarding the re-planning frequency, the studied strategies
provide statistically equivalent performance for re-planning
after a robot reaches its goal (results not presented here).
A more frequent re-planning improves the performance of
all of them and makes differences between the strategies
statistically noticeable. From this observation, it is obvious
the performance of the methods may be different in a
practical deployment. Thus, an initial evaluation has been
performed in a more realistic setup using the Player/Stage
framework and the SND navigation [21]. The robots are
continuously navigated towards their actual goals, while the
re-planning is performed as frequently as possible.

The preliminary evaluation provides statistically equiva-
lent results for the RFE and CC methods. It is because the CC
method is a more demanding than RFE, which can be even
more significant for a larger set C considering a restricted
field of view, where each goal candidate includes also the
desired orientation of the robot like in [12].

In this deployment, we also have found out that the real
required time to explore the environment is mostly affected
by the SND navigation, which slows down the robot in the
vicinity of obstacles, e.g., in doors. Hence, the exploration
time mostly depends on the number of rooms while long
travels in an open space are fast and do not affect the
exploration time significantly. Therefore, the expected travel
time seems to be a more suitable metric than the pure
distance cost, which deserves a further investigation.

VII. CONCLUSION

In this paper, we discuss a problem of determining goal
candidates in the multi-robot exploration. The study is moti-
vated by our previous work on the TSP distance cost in which
a smaller number of candidates is a more desirable than
considering all frontier cells because of the computational
burden. The presented results indicate that generating goal
candidates can make a less complex task-allocation ap-
proaches (i.e., the iterative and Hungarian methods) competi-
tive to the complex MTSP based assignment. Moreover, they
provide expectations of better results than approaches based
on a penalization of frontiers and re-evaluation of the cost
function, which are not suitable for distributed environment
because of needed communication. Thus, the results support
the idea of a simple goal assignment accompanied by a
determination of promising goal candidates.

Regarding a practical deployment of exploration strategies,
we found out the performance significantly depends on the
real travel time to the goal rather than on the exploration
strategy itself. Besides, the current implementation of the CC
method is computationally demanding, which decreases the

achievable re-planning frequency using on-board resources.
We also found out that a frequent re-planning needs “stable”
locations of the goal candidates to avoid changes of the
robots’ heading. These issues are subjects of our future work.
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