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Abstract—This paper tackles an evaluation and comparison
of frontier-based exploration strategies to create a grid map of
unknown environment by a team of autonomous mobile robots.
A strategy is considered as a set of procedures to determine
promising goal candidates, allocate them to the robots, and
select the next navigational goal for each robot. A mobile robot
is a complex system with many components that affect the
mission performance and a comparison of different strategies
in real experiments can be performed only for a particular
system setup and with only partial controllability of important
parameters. Therefore, the reproducibility and repeatability of
such a comparison are not satisfied. In this paper, we propose a
methodology for evaluating exploration strategies and provide a
benchmark for a comparison of frontier-based approaches in a
well-defined evaluation environment. The proposed methodology
is demonstrated on a comparison of five state-of-the-art task-
allocation strategies in multi-robot exploration.

I. INTRODUCTION

Multi-robot exploration can be considered as a problem to
efficiently navigate a robot or a team of collaborating robots in
an unknown environment to acquire information about some
studied phenomena. The basic variant of this problem is to
collect information about an unknown environment and to
create a map of the environment. Such a map can be used
to find objects of interest located in the environment, which
is one of the fundamental problem to address search and
rescue missions, where the primary objective is to find possible
victims as quickly as possible.

Within this context, exploration strategies are procedures
that provide new navigational goals for each robot in the
team. Then, the robots are navigated to the goals until new
goals are determined. A more frequent determination of the
navigational goals may utilize new information available and
thus the mission can perform better.

Regarding the mission performance, there are several ap-
proaches ranging from work on designing off-line trajectories
to approaches focused on autonomous navigation and related
localization aspects. Authors usually demonstrate that their
new approach is working and in some sense provides a
“better” performance than the selected state-of-the-art algo-
rithms that are most typically implemented within a particular
framework developed by the authors for the specific robotic
system [1]. Due to the specific details of the framework and
the dependency of the system performance on various aspects

of the whole robotic system, such comparisons and made
conclusions are less general because practical experiments are
tightly related to a particular robotic system used for the
experimental evaluation. Even though a practical deployment is
an indispensable part of the experimental system verification in
realistic scenarios, simulations are becoming widely accepted
by the robotics community as a part of the appropriate exper-
imental methodology [2] that follows experimental principles
well established in science [1].

It has been shown [3], [4] that the exploration performance
in a practical deployment depends on available computational
resources. Hence, more sophisticated and demanding algo-
rithms can provide worse results than simpler and fast-to-
compute approaches because of limited computational power
currently available on-board of mobile exploring units. Avail-
able computational power is still increasing, and therefore, an
influence of the current lack of resources has to be fixed in the
evaluation methodology. This motivates us to consider ideas in
experimental computing [5], multi-robot exploration [4], and
simulation in robotics [6], [1], [2] to propose a benchmark of
various exploration strategies.

The paper is organized as follows. The related work on
experimenting and benchmarking in computing and robotics
is presented in the next section. An overview of the proposed
methodology regarding experimental principles [1] and views
of experiments [5] is discussed in Section III. The proposed
methodology is presented in Section IV and a use case of
its application in evaluation of five exploration strategies
(briefly introduced in Section V) is described in Section VI.
Concluding remarks are given in Section VII.

II. RELATED WORK

There is progress in the development of the experimental
methodology in both fields: robotics and informatics [1], [7],
[5], [8]. A key question is how a simulation can be employed
in the experimental verification, evaluation, and study of
complex robotic systems, because it is clear that a practical
experimentation using real robots is time consuming, costly,
and also very hard to replicate with the identical properties,
especially for multi-robot scenarios. Therefore, simulators are
used to study a particular aspect of the robotic system [2].
For exploration, there are custom simulators [9] or available
frameworks like Player/Stage [10] and USARSim [6], [11].
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experiments in computing, we follow principles of experimen-
tal methodology originating in natural sciences that includes
aspects of: (1) comparison; (2) reproducibility; (3) repeatabil-
ity; (4) justification; and (5) explanation [1]. It is clear that a
simulation can provide better controllability of the experiment
and thus it definitely supports these aspects.

The crucial issue of the experimental methodology is the
problem how to compare different approaches. One way is
to implement selected approaches within the same framework
and perform several trials in the same scenario, e.g., like in [9],
[3]. Simulations provide a better controllability of the scenario
than a practical experiment with real robotic systems. The
studied performance indicators, such as the time to explore
the environment, can be evaluated statistically using ANOVA
test [12] or Wilcoxon test [3]. However, methods may perform
differently in different type of environments and an aggregation
of the results into a single indicator is not straightforward
without a reference value.

Authors of [13] propose to evaluate performance of the
exploration as the competitive ratio, i.e., the ratio of the length
of the path found by the studied algorithm to the length of
the optimal path determined off-line for the known environ-
ment. Determination of the optimal continuous exploration
tour (closed path) has been shown to be NP-hard [14], and
therefore, authors developed approximation algorithm based
on A* to find an optimal exploration path in a grid based
environment for a single mobile robot with the limited vis-
ibility. Then, having the estimation of the optimal off-line
performance Po, the competitive ratio of an on-line algorithm
a can be computed as Pa/Po, where Pa is the performance of
the on-line exploration algorithm a in the same environment. In
particular, the traveled distance is the used as the performance
indicator for the exploration [13].

Another approach is to determine a reference solution as
the best found solution for each particular scenario using
thousands of performed trials with different exploration strate-
gies [4]. Such a solution represents a realistic lower bound
of the required time to explore the whole environment that
can be achieved by one of the evaluated strategies. This also
allows to aggregate the results from different scenarios albeit
the selected solution depends on the performance of the on-
line algorithm that can be probably always worse than off-line
solution found for the known environment.

An important aspect of evaluating exploration strategies
is the frequency of sensing and in-situ decision-making. Au-
thors of [12] experimentally confirm that, generally, a higher
frequency provides better results, i.e., a shorter exploration
path. On the other hand, it may not be the case of the
computationally demanding methods because of limited com-
putational power. Hence, a less sophisticated strategy may
perform better than a more demanding approach on the same
hardware because of a more frequent decision-making.

The computational burden can be decreased by approaches
like [15]; however, in practical deployment, the exploration
performance is always affected by this issue, which disfavors
computationally expensive strategies. Computational resources
are still improving; hence, such an evaluation can be consid-
ered as a less general.

A. Practical experimentation vs simulation

Probably the most criticized aspect of using simulations
in robotics is the level of the realism and how much are the
obtained results generalizable into a practical deployment. On
the other hand, the valuable benefits of simulations are the
reproducibility and repeatability [2] in addition to a statistical
evaluation of many trials. Here, we can argue that such
criticisms are mostly from the authors that are focused on
robotic issues related to the sources of uncertainty in sensing
and acting.

Such uncertainties are typically manifested in the precision
of the localization. The exploration can be considered within
the context of SLAM [16] and an exploration strategy has
to trade-off between exploring new areas and navigation to
the previously visited locations to decrease the localization
uncertainty [17]. However, ongoing improvements of local-
ization techniques provide sufficiently precise localization for
indoor structured (e.g., office like) environments [18]. For
example, teams participating in the CAROTTE multi-robot
exploration challenge reported the most important part of their
system design was to efficiently share the workload among
the team members [19]. Hence, it seems that the well matured
localization techniques allow to focus on further challenges
of the exploration related to multi-robot coordination, limited
communication, and efficient data sharing.

III. EXPERIMENTAL PRINCIPLES

This section is intended to provide a background for the
experimental evaluation techniques and how these principles
are addressed in the proposed methodology.

A. Experimental Principles

Although there are still discussions what is the role of
experiments in computing, we follow principles of experimen-
tal methodology originating in natural sciences that includes
aspects of [1]:

Comparison – is one of the main principles that allows to
measure and decide which approach provides better results.
However, it is also a question in what type of the environment
(setup) and in which measure the approach is better. Three
basic types of comparisons can be identified [20]: 1) usage of
the same implementations used in the previous experiments; 2)
development of a new implementation based on the available
description; 3) usage of the results reported by other authors
in their publications. In all cases, a precise description of the
mission setup is very important.

Reproducibility – is mostly related to the description of the ex-
periment that must be sufficiently detailed to allow replication
of the experiment by other researchers.

Repeatability – expresses the ability to get the same outcome
from several trials and thus it is related to the controllability
of the experiment, i.e., all the important influences that affect
the measured indicator are fixed or under specified bounds.

Justification and Explanation represent aspects that allow to
make a general conclusion based on the experimental data
collected, which is not an artifact of the particular experimen-
tal setup [1]. To further support that, a comparison with a
reference or optimal solution may be provided.



B. Views on Experimentation

Five views on experimental computer science are discussed
in [5]. Although we do not aim to provide a definition of a
particular type of experiment, we provide a brief comment on
each view regarding experimentation in the robotic exploration
and exploration strategies themselves.

Feasibility Experiment shows that a particular approach works
without specification of assumed conditions. It provides no
comparison with other approaches.

Trial Experiment includes elaborated results under different
conditions and provides performance indicators.

Field Experiment is an experiment performed in real-world
conditions and it should include challenges to show robustness
of the solution in realistic scenarios.

Comparison Experiment is a comparison of various solutions
providing a conclusion that one approach is better than another.
For robotic exploration, a simple greedy selection of the next-
best goal can be applied and thus each experiment should
provide at least a comparison with such a simple solution.

Controlled Experiment is the way how to provide generalizable
results and conclusions. All variables that can influence the
results of the experiment should be under control and specified
in the experimental protocol.

IV. EVALUATION OF EXPLORATION

The proposed evaluation methodology is based on the
aforementioned principles, our practical experience, and liter-
ature review. Although, the general recommendations of good
experimental methodology can be found in several papers, we
aim to provide additional contribution towards further devel-
opment in strategies for multi-robotic exploration. Therefore,
we built our approach on three pillars, where for each pillar,
we also provide particular implementation artifacts to support
ease of use of the proposed methodology.

The first pillar is a specification of the exploration frame-
work, which provides a general concept about what the explo-
ration strategy is and what algorithmic parts influence the ex-
ploration performance. The second pillar is the benchmark that
consists of environments, particular frameworks and methods,
reference solutions, and statistical evaluation. The third pillar
can be considered as an experimental protocol that is a precise
specification of the particular trials, experimental methods and
all parameters of the exploration system. Regarding the role of
simulation and experimental principles, we propose to consider
evaluation using different levels of realism to clarify what is
the purpose of the experiment.

Level–0 fixes all parameters and aspects of the exploration and
represents a completely controlled evaluation environment. It
allows to evaluate strategies independently on computational
resources. Under these constraints, performance indicators like
the real required time to explore the environment cannot be
directly measured, instead, the traveled distance is used as the
performance indicator.

Level–1 represents evaluation using a software simulator like
Player/Stage or USARSim. The main difference from the
Level–0 is that it provides direct measurement of the real ex-
ploration time based on physical simulations and models of the

(a) (b)

Fig. 1. Examples of real mobile robots in evaluation of autonomous robotic
exploration under Level–2 or realism.

robot motion. It also includes influence of the computational
requirements of the studied strategies albeit the simulator can
be slowed down.

Level–2 is an experiment with real mobile robots; however,
in a well defined environment, where the localization is not
an issue and the deployment allows to repeat the experiments
several times. Such an environment can look like in Fig. 1a or
it can be a remotely accessible system for a robotic e-learning
like [21], which is shown in Fig. 1b. These deployments allow
to consider practical issues of real mobile robots, but they still
provide controlled environment without communication issues.
Particular limits in communication range and reliability can be
realistically simulated.

Further levels of realism are considered as field experi-
ments with increasing challenges in navigation and decreasing
controllability of the experimental parameters.

A. Exploration Framework

The problem to decide where to navigate mobile robots can
be decomposed into several sub-problems, where a solution
of each such a problem may affect the overall system perfor-
mance. We call a set of procedures to address the sub-problems
as an exploration strategy and the procedures are the basic
building blocks of the exploration framework. In the proposed
methodology, we provide the framework supplemented by
implementations of the selected algorithms [22].

For m robots R = {r1, . . . , rm}, the exploration can
be considered as an iterative procedure as follows. Notice,
the highlighted parts of the procedure denote the important
algorithms that may affect the performance significantly.

1) Initialize the model of the environment and set the
initial plans to P = (P1, . . . , Pm), where Pi = {∅}
for each robot 1 ≤ i ≤ m.

2) Repeat
a) Navigate robots using the plans P;
b) Collect new measurements;
c) Update the navigation map M;

Until replanning condition is met.
3) Determine goal candidates G from M.
4) If |G| > 0 assign goals to the robots

• (〈r1, gr1〉, . . . , 〈rm, grm〉)=assign(R,G,M),
ri ∈ R, gri ∈ G;

• Plan paths to the assigned goals
P = plan(〈r1, gr1〉, . . . , 〈rm, grm〉,M);

• Go to Step 2.
5) Stop all robots or navigate them to the depot (all

reachable parts of the environment are explored).



B. Problem specification

The listed procedure can be used for different exploration
missions; however, for simplicity, we consider frontier-based
exploration to create a grid map of the environment as quickly
as possible. Thus, the evaluation criterion is the time to create
a map of the whole environment (using occupancy grid [23]),
which can be measured as the longest exploration path traveled
by an individual robot of the team.

In this discussion of benchmarking exploration strategies,
we prefer to simplify the problem and thus we consider central-
ized approach of multi-robot frontier-based exploration with
homogeneous mobile robots equipped with an omnidirectional
sensor with a limited sensing range ρ. The cells of the grid
map are in one of three possible states: free, obstacle, and
unknown; and a cell is called frontier cell if it is a free cell
that is incident with at least one unknown cell.

Although the considered expression of the problem is
relatively simple, there are still several parameters of the
exploration procedure to provide a complete specification of
the problem. Most of the reports on exploration are focused on
algorithms how to select the next navigational goal to share the
workload among robots; however, the exploration procedure
also depends on the following aspects.

The first aspect is a resolution of the grid map which is
also related to the path planning algorithm because a shape of
the path affects what the robot can explore during navigation
to its current goal. Here, we can imagine standard algorithms
like Dijkstra’s and A*, Voronoi Diagram or wave-front prop-
agation techniques like Distance Transform (DT) [24], and its
improved variant EEDT [25] and Fast Marching method [26].

The robots are navigated towards the assigned goal by
following the planned path to the goal; however, the speed of
the robot depends on its kinematics and used motion controller.
For the Level–0 of realism we assume the robot is capable of
omnidirectional motion and visits each grid cell of the found
path. The expected exploration time can be then estimated
from the length of the traveled path in the grid and average
velocity of the robot. However, for higher levels of realism,
we need to deal with the local motion planner (and controller)
that uses current sensor measurements to determine the robot’s
forward and angular velocities. Notice that such a planner
(e.g., SND [27]) may decrease the robot velocity in proximity
of obstacles (to increase safety in narrow passages), while a
robot may move significantly faster in open space areas. The
character of the environment and planned paths may affect the
average speed of the robot during a particular mission.

Based on the impact of the frequency of the decision-
making [12], we identify two limiting cases: (a) goal re-
planning (GR) – the assignment of newly determined goals
whenever a robot reaches its previously assigned goals, (2)
immediate replanning (IR) – determination and assignment
of new goals whenever a previously assigned goal is no longer
a frontier as its surroundings have been explored.

In a case the robots collect high quality images of the
explored areas that cannot be transmitted remotely [19], we can
further distinguish two additional variants of the exploration
which may influence the exploration time: open paths (OP)
and return to the depot (RD).

TABLE I. SPECIFICATION OF THE EXPLORATION PROCEDURE

Parameter Value

Sensor model Laser range finder with sensing range ρ with omnidi-
rectional/limited field of view

Environment map Grid map with the cell size 0.05 m
Path planning DT with a ray-shooting simplification [3]
Local navigation Discrete movements in the grid / SND [27]
Depot return Yes (RD)
Decision-making Goal / Immediate
Coordination Centralized
Communication Full without restriction

Finally, we also found out another detail that influences
the required time to explore the whole environment. It is
related to the identification of the frontiers and determination
of the goal candidates. In [28], authors consider frontier cells
organized into single connected components. Then, for each
such a component a number of representatives is determined,
but only if the component consists of more than a given
number of frontier cells (denoted as nfc in the rest of this
paper). Although a low value of nfc does not affect the
ability to explore the whole environment (e.g., nfc=2), it may
provide significantly faster exploration, because robots avoid
navigation to areas represented by a small set of frontier cells,
e.g., corners of rooms. The value of nfc is therefore important
to compare different approaches under the same conditions.

A list of the discussed parameters of the exploration proce-
dures is depicted in Table I, except the methods to determine
the goal candidates and assign them to the robots that are
discussed in Section V.

C. Scenario Setup

Further aspect of the evaluation is a specification of the
mission setup – the environment to be explored and initial
positions of particular robots. A representative environment is
important and to support further generalization of the results
a set of randomly generated environments with particular
percentage of obstacles can be used, e.g., using a generator
like in [29]. However, regarding the evaluation of exploration
strategies, there are basically two types of environments: 1) of-
fice like with long corridors and many relatively small rooms;
2) and large open space areas with obstacles. Moreover, an
environment should contain loops to demonstrate coordination
of robots, as long corridors are not a significant difficulty for
finding an efficient solution.

Regarding the environment and a shape of the robot, it
is worth mentioning that path planning can be performed in
an enlarged representation of the environment currently being
explored, e.g., using Minkowski sum of the current map with
a disc representing a shape of the robot. Thus, some parts of
the environment may appear as unreachable, and therefore,
dimensions and shape of the robot body is also important
regarding evaluation of the mission performance.

D. Benchmarks

Benchmark in multi-robot exploration is a set of artifacts
that enable evaluation of the exploration strategies regarding
the aforementioned experimental aspects and views. In this
paper, we do not provide a strict set of the artifacts that have



(a) jh (b) potholes

Fig. 2. Example of reference solution for 3 robots with sensing range ρ=3 m;
notice, the solutions are found in enlarged maps of the environment to respect
dimensions of the robots.

to be used, we rather provide initial solutions that can be used
and further extended.

A set of maps is the first part of the benchmark. Due to the
limited space, we consider only two environments called jh and
potholes to cover the office-like environments and open-space
areas, see Fig. 2.

The additional part of the benchmark are the particular al-
gorithms for: path planning, task-allocation, and determination
of the goal candidates. Four algorithms for path planning are
provided: DT, EEDT, Voronoi, and modified DT with a simple
ray-shooting technique to improve the solutions.

The task-allocation algorithms provided as a part of the
benchmark are briefly described in the next section. Besides,
we also provide three methods to determine goal candidates:
all frontiers, the method RFE introduced by the authors of [28],
and its modification called ANR [4].

Probably the most important part of the proposed bench-
mark is the reference algorithm to find an off-line solution of
the exploration problem for several mobile robots. Here, we
consider the problem as a formulation of the watchman route
problem with limited sensing range that stands as follows.
For m robots and a given polygonal environment determine
m paths from which the whole environment is covered using
an omnidirectional sensor with the range ρ. This problem is
known to be NP-hard, and therefore, we adopted the approx-
imate algorithm [30] to consider m distinct initial positions
of the robots. We consider this method only for the Level–0
of realism in a discrete time simulator for which particular
reference solution is determined in a polygonal map that is
created from the map of the environment being explored by
applying Minkowski sum with a disc representing the shape
of the robot. An example of solutions is depicted in Fig. 2.

V. EXPLORATION STRATEGIES

Five task-allocation procedures have been selected to show
how the proposed evaluation method can be used to compare
performance of the exploration strategies. The procedures
have been already applied in multi-robot exploration by sev-
eral authors and are well described in literature. Therefore
only a brief description of them is presented here. Particular

implementations of these methods are part of the provided
benchmark to foster further development and evaluation.

Greedy Assignment (GA) – originally proposed by Ya-
mauchi [31] has modified to select the closest not yet assigned
goal to each robot sequentially in a random order.

Iterative Assignment (IA) – is a centralized implementa-
tion of the Broadcast of Local Eligibility algorithm [32], which
assigns the goal according to an ordered sequence of all robot–
goal pairs 〈r, g〉 using the associated distance cost. A not yet
assigned goal with the lowest cost is assigned to the particular
robot without a goal.

Hungarian Assignment (HA) – is based on the Hungarian
algorithm [33] that provides optimal task-allocation for m
robots and n goals, where the cost of the robot–goal assign-
ment is stored in a cost matrix. For m > n, the IA algorithm
is used. In a case m < n, additional (virtual) robots are added
to the matrix with a very high cost of the assignment.

Multiple Traveling Salesman Assignment (MA) – is
based on solution of the multiple traveling salesman problem
(MTSP) [3] by the 〈cluster first, route second〉 heuristic
based on the K-means clustering method. Once clusters are
determined and assigned to the robots, the next navigational
goal for each robot is determined as the first goal on the TSP
tour to visit all the goals in the cluster that starts from the
current robot’s position. An approximate solution of the TSP
is found by the Chained Lin-Kernighan heuristic [34] from the
CONCORDE package [35].

MinPos algorithm consists of determination of the rank
ri,j for each goal i and robot j. The rank ri,j denotes the
number of robots that are closer to the goal candidate i than
the robot j. The goal with the minimal rank to a robot is
assigned as the next navigational goal of the particular robot.
If there are several goal candidates with the same minimal rank
to the robot, the closest goal candidate is selected [36]. Notice
that even though MinPos is simple, it provides very similar (a
little bit better) results as [37].

VI. USE CASE

The proposed evaluation methodology has been employed
for a comparison of the exploration strategies described in
Section V to demonstrate how the method can be used.
The comparison has been performed for three levels of the
realism: 1) the precisely defined discrete-time simulator of the
Level:0; 2) a more realistic simulator Player/Stage that allows
to measure the real required time to explore the environment
in the Level:1; 3) and finally using real robots in the remotely
accessible SyRoTek platform [28] for the Level:2 of the
realism. In all cases, the exploration is terminated when all
the robots return to their initial positions.

A. Level–0: Discrete Simulator

In this case, all five task-allocation algorithms (GA, IA,
HA, MA, and MinPos) have been deployed in the exploration
of the jh and potholes environments and accompanied by
the ANR method for determination of goal candidates. The
sensing range has been selected from ρ ∈ {3 m, 5 m, 7 m}
and the number of robots m ∈ {3, 5, 7}. In addition, a small
perturbation is added into the initial positions of the robots,



which gives 20 variants of each problem. The IA, HA, and
MinPos algorithms are deterministic, therefore only a single
trial is performed by each algorithm for each exploration
scenario defined by the environment, ρ, m, and the starting
positions of the robots. GA and MA algorithms are stochastic
and thus 20 trials are performed for each scenario. Besides,
the evaluation has been performed for both limiting replanning
conditions GR and IR, which gives 30 960 trials in total.

Regarding the high number of the trials, the performance
indicators of the particular algorithms are considered as the
five-number summaries of the competitive ratio of the longest
exploration path in each trial and the reference value deter-
mined as a solution of the multiple watchman route problem
(MWRP) with the minimization of the longest watchman route
based on the approximate algorithm proposed in [30]. The
particular reference solutions are depicted in Table II.

TABLE II. REFERENCE EXPLORATION PATHS IN METERS.

Sensing No. of Environment
range Robots jh potholes

ρ=3 m m=3 75 170
m=5 59 120
m=7 59 104

ρ=5 m m=3 68 131
m=5 57 100
m=7 56 92

ρ=7 m m=3 59 105
m=5 57 87
m=7 57 83

During the exploration, the paths are determined in the
enlarged current map of the environment about a disc with the
diameter 0.3 m that represents the shape of each robot. The
same enlargement has been made for the reference solution of
the MWRP. The occupancy grid and navigational grid have
resolution 5 cm, i.e., the squared grid cell has dimension
0.05 m. The parameter nfc has been set to 0.

Although a high number of trials for different exploration
missions have been performed, the competitive ratio allows
to aggregate the results and show the overall performance
indicators, e.g., to study how the algorithms scale with the
number of robots m or the sensing range ρ. Due to limited
space, only selected results are depicted in Fig. 3.
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Fig. 3. Competitive ratio for the GR and IR replanning conditions.

Generally, the IR condition improves performance for all
exploration strategies; however, for an increasing number of
robots m, the performance of GA is significantly worse than
for the GR condition. It is because GA significantly changes

(a) jh (b) potholes

Fig. 4. Exploration paths for 7 robots.

the assignment of the goals to the robots between two as-
signments. Although the IR condition is unrealistically fast, it
allows to identify such an “unstable” behaviour.

An identification of such instability of the strategy is not
possible in a regular deployment using real-time simulator
or real system, where the assignment is not performed with
such a high frequency because of limited computational power.
Besides, a high number of trials with randomized positions of
the robot provides an opportunity to verify implementations of
particular complex algorithms under various conditions.

Regarding a comparison of the task-allocation algorithms,
the best performance provides the most computationally de-
manding MA algorithm based on the solution of the MTSP.
On the other hand, differences between the algorithms are less
significant with increasing frequency of the assignment.

B. Level–1: Player/Stage

For the Player/Stage simulator, the considered environ-
ments are jh and potholes but the sensing range ρ is set to the
value 3 m and 5 m, and simulations are performed only for
m=7. The assignment strategies are GA, IA, HA, and MinPos
accompanied by the ANR goal candidates determination and
immediate replanning (IR) once a decision is made. In this
case, 20 trials are performed for each strategy, as the simulation
environment includes noise and thus perturbations are already
included. All the other parameters are the same as for the
Level–0, except the nfc, which is set to a more practical value
4 without an effect on the final created map, e.g., see examples
of the created maps in Fig. 4.

Five-number summary of the longest exploration paths are
depicted in Fig. 5. Under the Level–1 of the realism, we
can measure the required exploration time that is depicted in
Fig. 6. We can notice that the length of the exploration path
corresponds to the required exploration time and thus travelled
distances are representative performance indicators. However,
we can also see that in particular cases, the averages and
standard deviations are higher for the time than for the length
of the exploration path. It is because it may happen that a robot
is locally “stucked” due to the used SND controller, while the
exploration paths have similar lengths. In addition, a higher
exploration time may also be caused by the mutual avoidance
of the robots. The results also indicate that a longer sensing
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Fig. 6. Total required time to explore the whole environment and return all
7 robots to the depot.

range does not improve exploration time in the environment
jh because of the environment structure.

C. Level–2: SyRoTek

We also consider deployment of the strategies using real
robots in the SyRoTek system [21]. SyRoTek is a platform for
e-learning and distant experimentation in robotics and related
areas consisting of thirteen robots equipped with standard
robot sensors (laser range-finders, sonars, odometry, etc.). The
robots operate in the Arena of size 3.5× 3.8 m and are fully
programmable and remotely controlled. Provided global local-
ization system, on-line visualization, interfaces to Player/Stage
and ROS enable to perform long-term experiments without
human assistance.

With the increased level of the realism we decrease the
number of trials to five and restrict the exploration to three
robots. Two strategies GA and HA are deployed with ρ=0.4 m
and limited sensing view to 240◦ because of used sensor
the HOKUYO URG-04LX laser range finder. The occupancy
and navigational grids have resolution 2 cm and the nfc is
set to 4. The maximal rotational velocity is set to 7◦/s to
guarantee safe navigation in presence of other moving robots.
The environment is without obstacles and exploration paths can
be seen in Fig. 7. Average length of the longest exploration
paths and average required exploration times are depicted in
the table in Fig. 7.

In this case, the distance travelled does not correspond to
the required exploration path and both strategies GA and HA
provide similar performance. However, regarding the explo-
ration time HA provides the expected better performance. It is
because the low level motion controller SND is slow in turns
and goals proposed by GA oscillate more frequently than these

Indicator GA HA

L – Traveled 3.9 3.9distance [m]
σL – std. dev. 0.65 0.68

T – Exploration 85 75time [s]
σT – std. dev. 3.88 5.48

Fig. 7. Results for the deployment with real robots in SyRoTek.

provided by HA. This leads to frequent changes of the robots’
heading and thus a slower movement.

VII. CONCLUSION

In this paper, an evaluation of multi-robot exploration has
been discussed and methodology and benchmarks have been
introduced. The benchmarks also include particular artifacts
to support and encourage other researchers to standardize re-
sults in exploration approaches. The methodology is primarily
focused on the frontier-based exploration problem to create a
grid map of the environment; however, it can also be used for
another variants of the robotic exploration.

Although the current results are presented for centralized
approaches of multi-robot coordination, the proposed bench-
marks with the reference solution as a lower bound may
also be used for distributed strategies. They allow to measure
efficiency of the distributed approach regarding the efficacy of
the communication, which is a subject of our future work.

Finally, in this paper, we do not claim the proposed
methodology is the ultimate approach, but we believe it can
further support unification of the evaluation and benchmarking
in multi-robot exploration.
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