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Abstract— In this paper, we report on the deployment of
the combination of commercially available off-the-shelf em-
bedded visual localization system and RGB-D camera in an
autonomous robotic exploration performed by small hexapod
walking robot. Since the multi-legged walking robot is capable
of traversing rough terrains, the addressed exploration problem
is to create a map of an unknown environment while simultane-
ously performing the traversability assessment of the explored
environment to efficiently and safely reach next navigational
waypoints. The proposed system is targeted to run onboard of
small multi-legged robots, and therefore, the system design is
focused on computationally efficient approaches using relatively
lightweight components. Therefore, we take advantages of the
recently introduced tracking camera Intel RealSense T265 and
RGB-D camera Intel RealSense D435 that are deployed to our
developed autonomous hexapod walking robot that is equipped
with adaptive locomotion control. Together with the proposed
computationally efficient data representation and traversability
assessment, the developed system supports onboard mapping
and online decision-making within the exploration strategy even
on a platform with low computational capabilities. Based on
the reported experimental evaluation of the tracking camera,
the developed system provides sufficiently accurate localization,
and the robot has been able to explore indoor and outdoor
environments fully autonomously.

I. INTRODUCTION

Spatial robotic exploration is a problem to create a map
of the reachable area by a mobile robot. Many approaches,
such as those mentioned in the survey [1], address the explo-
ration by extending the idea of the frontier-based exploration
introduced in [2]. Frontiers are borders between known and
unknown parts of the environment and represent locations
towards which robots can be navigated to acquire new
information about unexplored parts of the environment [3].

The explored environment can be represented by the spa-
tial map but also by more complicated models if the purpose
of the exploration is to measure an additional physical quan-
tity or if the exploration is driven by a different mechanism
than frontiers, e.g., by entropy [4]. In addition to spatial
mapping, traversability assessment [5] is an important part
of the autonomous decision-making for exploration of rough
terrains and unstructured environments that can be found in
search and rescue [6] or extraterrestrial missions [7], [8].

Regarding such missions, not only the particular explo-
ration approach affects the mission performance, but also
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Fig. 1. Visualization of the elevation map and path planned.

the particular robot type might influence the navigation,
localization precision, and exploration capabilities. Various
robotic platforms can be used, but multi-legged robots can
be considered as a prominent robot type for operating in
rough terrains because of their locomotion capabilities [9].

The fundamental part of an autonomous robotic explo-
ration system is related to the sensor equipment and compu-
tational resources that are also related to the energy sources
that need to be available on-board of the robot. Multi-legged
walking robots have been already deployed in robotic explo-
ration tasks, and reports on existing solutions can be found,
e.g., in [10]. Possible utilization of existing approaches for
localization and mapping needed in autonomous exploration
is related to the capacity and size of the robot.

Generally, sufficiently large robots such [11], but also
LAURON V [12] and ANYmal [13], have paid load capacity
to be equipped with relatively large and heavy equipment
(powerful computers, laser range finders, and appropriate
power source). On the other hand, smaller multi-legged
robots, such as Messor [14] or CRABOT [15] have limited
options for the possible equipment. Thus the development of
the autonomy for these robots has to take into account these
limitations, which might not allow running state-of-the-art
approaches like ORB-SLAM2 [16] at high frame rates using
only onboard computationally resources.

We consider a small hexapod walking robot with the body
of size 10 cm × 20 cm, and paid load capacity 1 kg (in-
cluding battery) employed with adaptive locomotion control
in autonomous exploration missions. Therefore, our main
design focus is on development of computationally efficient
solutions for the full navigation system including localiza-
tion, mapping, planning, and decision-making in exploration
missions that are targeted to be run onboard of the robot.
We take advantages of the recently introduced Intel Re-
alSense T265 device that is deployed as the main localization
system that is accompanied by the RGB-D camera Intel



RealSense D435 for mapping of the robot surroundings. The
new sensory equipment enabled us to build an elevation map
to support computationally efficient online decision-making
in exploration missions held in rough terrains. Based on the
experimental results of the developed system in indoor and
outdoor environments, the system is capable of operating
fully autonomously, and therefore, the herein reported results
are mainly motivated to share the gained experience and
demonstrate capabilities of the relatively small multi-legged
robot with the nowadays sensory system.

The rest of the paper is organized as follows. A brief
overview of the related work is presented in the following
section to support the made selection of the used approaches.
The developed system is described in Section III and
achieved results in three autonomous exploration scenarios
are reported in Section IV, together with an overview of the
performance properties of the developed solution. The con-
cluding remarks and ideas for future work are in Section V.

II. RELATED WORK

The presented deployment of the Intel RealSense T265 in
the autonomous exploration follows the frontier-based explo-
ration [2], which can be considered as a de facto standard
approach for the robotic exploration. Several extensions and
improvements of the regular frontier-based exploration have
been proposed in the literature, e.g., see surveys in [17], [1].
The spatial exploration relies on mapping and localization
of the robot during the autonomous mission, and therefore,
explicit consideration of the pose estimation in the explo-
ration might improve the precision of the build map, e.g.,
using adaptive sensing to maximize the map information
combined with minimization of the uncertainty in the robot
pose estimation [18]. In [4], the authors employ entropy to
combine information about the robot pose and environment
to trade-off pose estimation improvements and mapping by a
selection of the next navigational waypoint in a unified way.

Although advanced exploration strategies can be employed
with the embedded localization sensor [19], the herein
presented evaluation aims to show the performance of the
localization sensor in the autonomous exploration regardless
of the localization, and thus the localization is considered
as an independent system that should provide the best
possible pose estimation during the whole exploration mis-
sion. Therefore, we follow the conventional frontier-based
exploration [2] but improving techniques to decrease com-
putational requirements are employed to enable deployment
of the exploration system on a small hexapod walking robot.

The frontier-based exploration is principally composed of:
mapping, detection of the frontiers in the map, determina-
tion of the possible next goal locations and selection of
the particular navigational goal towards which the robot is
navigated [20]. All the particular parts can have different
implementations, but most important is a suitable data repre-
sentation of the map. The traditional probabilistic approach
for a map representation [21] is the occupancy grid [22]
which is, however, unable to capture the uneven shape of
the terrain traversable by a walking robot. On the other

hand, the full 3D extension such as the OctoMap [23] can be
computationally (and memory) demanding in comparison to
the elevation map as it is reported in [24]. The elevation
map has been successfully employed in exploration with
walking robots, e.g., in [5], and authors of [25] further extend
the elevation map by a cost map based on distance from
obstacles to avoid the risk of driving robot close to obstacles.
Based on these deployments, we chose an elevation map
representation and also the cost map approach [25] in the
developed exploration system.

In our work, the Intel RealSense T265 is intended as a
replacement of the vision-based localization with lightweight
sensors that can be carried on small robots. The state-of-
the-art feature-based visual localization ORB-SLAM2 [16]
has been reported in several works [26], [27] as relatively
accurate. On the other hand, one of the main advantages of
T265 is its energy effectiveness, especially in comparison
to the traditional solution using visual SLAM and dedicated
computational power.

Regarding deployment of the ORB-SLAM2 [16] in dif-
ferent scenarios [27], [28], we experienced it requires at
least CPU with the computational power equivalent to the
Intel i5 to run about 7Hz, which we found sufficient to
localize the employed hexapod walking robot [27]. Hence,
the thermal dissipation power is about 15W in such a
case, which requires input power in tens of watts. Contrary
to that, T265 has input power only 1.5W, and it does
not require any additional computational power. Therefore,
comparison of T265 and ORB-SLAM2-based localization
system is reported in Section IV-A.

III. DEVELOPED AUTONOMOUS EXPLORATION SYSTEM

The embedded localization system has been integrated
into the developed system for autonomous exploration that
consists of four main modules: the sensors, mapping module,
exploration module, and path following module. Since the

Fig. 2. Architecture of the proposed system

utilized sensors the Intel RealSense D435 and T265 directly
provide point clouds and localization, respectively, we do
not explicitly consider a localization module. However, the
mapping module is needed to build an elevation map of
the environment from the provided robot pose and point
clouds. The exploration module then uses the build map
and robot pose to determine possible next goal locations to
explore unknown parts of the environment. Based on the
employed exploration strategy, the next navigational goal is



determined, and a path is planned that is then passed to the
path following module, which is responsible for controlling
the robot towards the next waypoint safely. The exploration
system is developed in ROS [29], and an overview of the
system architecture is visualized in Figure 2. The individual
modules are further described in the rest of this section.

1) Sensors: The RGB-D camera Intel RealSense D435
(further referred as D435) is utilized for collecting 3D
point cloud of the nearby surroundings of the robot that is
directly used with the pose estimation of the robot in the
mapping module. The localization is powered by the Intel
RealSense T265 (further denoted T265) that runs onboard
visual SLAM which takes advantage of stereo fisheye camera
and fusion with the inertial measurement unit (IMU).

2) Mapping module: In the mapping module, the captured
point cloud is integrated into an elevation map using the
estimated robot pose. The elevation map is represented as
a grid map map(i, j) where each cell (i, j) represents a
height of the corresponding terrain area. The map is built
incrementally from the point clouds provided by D435, in
which points not belonging to the top modeled surface
of the terrain are filtered out. Similar to [30], [31], [24],
one dimensional Kalman filter is utilized for merging new
measurements of the terrain height hk and its variance σ2

h,k

of the k-th input point cloud. Thus, a new measured height
zk with the variance σ2

z,k is estimated utilizing the linear
sensor model [30], and it is fused with the height hk−1 of
the elevation map at the corresponding location (i, j) by

hk =
σ2
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Cells of the elevation map that correspond to not yet explored
parts are marked as unknown.

The build elevation map is further assessed to mark un-
traversable parts of the environment based on the heights of
the cells. The map cell map(i, j) is considered traversable if
local height differences gh(i, j) are lower than the threshold
gmax estimated from the particular robot kinematics, where
gh(i, j) is determined as

gh(i, j) = max({|h(i, j)− h(i− 1, j)|,
|h(i, j)− h(i+ 1, j)|,
|h(i, j)− h(i, j − 1)|,
|h(i, j)− h(i, j + 1)|}).

(3)

Then, the untraversable cells are grown by the radius of
the robot shape circumference to consider the physical di-
mensions of the robot. Moreover, we follow the cost map
approach [25], and the distance transform [32] is applied to
compute cost d(i, j) of each traversable cell (i, j) based on
its distance to the closest untraversable or unknown cells.

3) Exploration module is responsible for repeated deter-
mination of the next goal location towards which the robot
is navigated. We follow the frontier-based exploration [2],

and frontier cells are determined in the elevation map as
traversable cells that are incident with unknown cells. Nearby
frontier cells are clustered into similarly sized sets, and a
single representative of each set is determined as in [33]. The
representatives are further considered as possible goal loca-
tions from which the next goal location is selected according
to the shortest expected path from the current robot location
to the goal. The next goal is determined using A* with
the heuristic function computed as the Euclidean distance
to the waypoint. The travel cost between two neighboring
nodes n and n′ is computed using the eight-neighborhood
that is increased by the cost d(n) to penalize paths close
to the obstacles. Non-negative cost d(n) decreases with the
D8 distance from the closest non-traversable cell. However,
the selection of the next waypoint is focused to the nearby
area of the robot, and therefore, a possible goal location is
considered unreachable if a path is not found in less than
20 000 expansions of A*.

The path following module follows the determined path
(if any), and determination of the new navigational goal
and path is triggered if the goal location is reached or
after Texp = 8 s. The exploration terminates if no new goal
location is determined.

4) Path following module is an independent process for
steering the robot motion to follow the path planned by the
exploration module. The path is considered as a sequence
of waypoints that are progressively processed, and for the
current closest waypoint, the robot forward and angular
velocities are determined to steer the robot towards the
waypoint. The next waypoint from the sequence is processed
if the robot gets less than 1 cm far from the current waypoint.

IV. EXPERIMENTAL RESULTS

The localization performance of T265 has been firstly eval-
uated and compared with the ORB-SLAM2 in a dedicated
laboratory experiment with the hexapod walking robot shown
in Fig. 3. Then, T265 has been deployed in one indoor and
two outdoor exploration scenarios.

The exploration framework described in Section III has
been implemented in C++ using ROS [29] and deployed
on the hexapod walking robot with the computational en-
vironment based on the Intel i5 3320M processor clocked at
2.6GHz with 8 GB RAM. The same computational environ-
ment is also used for the ORB-SLAM2-based localization.

TABLE I
COMPUTATIONAL REQUIREMENTS OF EXPLORATION PROCESSES

Module / Process CPU usage Update
Intel i5* Odroid-XU4** rate

Localization by ORB-SLAM2 [16] 208% - 11Hz
RealSense D435 ROS driver 36% 152% -
RealSense T265 ROS driver 16% 48% 200Hz
Elevation map building (90k valid points) 18% 40% 5Hz

Goal determination and path planning 17% 37% 8 s
Path Following 2% 2% 10Hz
Locomotion control 70% 78% 50Hz

*Intel i5 has maximal CPU usage 400% (dual-core with Hyper-threading).
**Odroid-XU4 has maximal CPU usage 800% (two quad-cores).

The elevation map is represented by a quadtree structure



with the size of the smallest squared cell 7.5 cm. The same
cell size is used for the cost map and path planning. The
threshold gmax is set to gmax = 8 cm but gmax = 12 cm
at the grass surface. The mapping is performed at 5Hz
from point clouds provided by D435 synchronized with the
localization from T265. The navigational goal is refreshed
if the path becomes unfeasible or after Texp = 8 s, path
following is run at the frequency 10Hz. The underlying
locomotion control employed tripod gait with a single gait
cycle period of 5 s [34]. Computational requirements of the
particular modules of the exploration framework depend on
map properties and the number of the frontiers, but an
average processor utilization with the corresponding update
rate per particular exploration process is reported in Table I to
provide an overview of the computational requirements. The
localization based on the ORB-SLAM2 is not needed when
T265 is used, and all ORB-SLAM2 requirements, including
memory requirements, which may exceed 4 GB observed
during the second experiment summarized in Table II, are
saved. Hence, the proposed exploration framework with the
T265-based localization can be run on the small embed-
ded computer Odroid-XU4 with Octa-core CPU Samsung
Exynos 5422, and 2 GB memory; and the computational
requirements are reported in Table I.

A. Performance Comparison of T265 and ORB-SLAM2

Before the deployment of T265 as the single localiza-
tion module in the autonomous exploration, we examine
localization precision in comparison with the state-of-the-art
localization method ORB-SLAM2 combined with an RGB-
D camera, that has been already deployed in localization of
the utilized hexapod walking robot [27]. The precision is
measured using the standard metrics of Absolute Trajectory
Error (ATE) and Relative Pose Error (RPE) [35]. Since both
metrics require to compare the estimated trajectory with
the reference ground truth trajectory, we employed motion
tracking system AprilTag [36] to detect the pattern attached
to the robot by a top placed camera. The robot is equipped
with the localization sensor T265 and RGB-D camera D435
utilized by the ORB-SLAM2. The used robot is shown in
Fig. 3.

Fig. 3. The used hexapod walking robot with the attached T265 and D435
sensors and AprilTag for reference localization.

Fig. 4. Setup for the evaluation of RGB-D-based ORB-SLAM2 and T265.

The precision of the localization systems has been eval-
uated for an experimental deployment in the laboratory
environment shown in Fig. 4. Since we are interested in
the deployment of the robot in rough terrains, a part of the
experimental trail is over irregularly shaped wooden blocks
with different heights. The robot has been teleoperated and
walked the closed trails five times (trial 1), and ten times
(trial 2). Because the trails are closed and contain multiple
loops, both localization systems can could take advantage of
the loop closure and relocalization. In the total, the robot
traversed approximately 130 m during both trails.

The captured images from the top camera (with the
resolution 1920×1080 at 20Hz) have been processed frame-
by-frame to provide the reference trajectory. The RGB and
depth images from D435 have been used to obtain the
trajectory estimate by the ORB-SLAM2, while T265 directly
provide the trajectory estimate. The achieved precision of the
localization systems by means of the average values of ATE
and RPE [35] are summarized in Table II.

TABLE II
PRECISION OF THE EVALUATED LOCALIZATION SYSTEMS

Trial 1 Trial 2
Localization system ATEt [cm] RPEt [cm] ATEt [cm] RPEt [cm]

ORB-SLAM2 10.91 1.49 10.15 1.32
Intel RealSense T265 10.27 0.55 8.31 0.45

The results summarized in Table II indicate that T265
provides localization with similar absolute error as the ORB-
SLAM2 combined with RGB-D camera D435. The relative
error of the localization provided by T265 is lower, which is
most probably induced by sensory fusion with IMU utilized
by T265. Thus, it is a premise to be employed in the
exploration, which is reported in the following section.

B. Report on Usability of T265 in Autonomous Exploration

Three scenarios with an indoor corridor, outdoor concrete
panels, and outdoor grass terrain have been considered
for the examination of the usability of T265 as the sole
localization sources in autonomous exploration with small
hexapod walking robot. The map is built using depth images
of D435, and for all scenarios, the size of the squared grid
cell is 7.5 cm. For the indoor scenario, the range of the depth
data has been limited to 2.5m, to increase the frequency of



changes of gaze direction, see Fig. 5d, and thus put stronger
stress on the performance of the localization system.

In all scenarios, the robot walked roughly about 50m, but
the exploration time is noticeably higher for the outdoor sce-
narios due to terrain difficulty. A summary of the exploration
setup and performance indicators is listed in Table III. The
created maps of the explored environments, together with the
snapshots of the real environments, are depicted in Fig. 5,
Fig. 6, and Fig. 7.

TABLE III
EXPLORATION SETUP, TIME, AND TRAVERSED DISTANCE

Terrain type Indoor Concrete Grass

Map resolution [cm] 7.5 7.5 7.5
Max sensor range [m] 2.5 3.0 3.0
Exploration time [min] 28.3 40.2 44.3
Traversed distance [m] 49.1 55.5 46.0

(a) Indoor corridor

(b) Elevation map build during the exploration

(c) Corridor top view

(d) Robot gaze direction

Fig. 5. Indoor scenario, the size of the shown gray grid is 5m.

(a) Concrete pavement environment

(b) Created map

Fig. 6. Concrete pavement terrain, the size of the shown gray grid is 5m.

(a) Uneven grass environment (b) Created map

Fig. 7. Grass scenario, the size of the shown gray grid is 5m.

Discussion

Based on the reported results, the localization solely based
on T265 seems to be sufficient in the particular deploy-
ment scenarios. The comparison results to ORB-SLAM2
indicate competitive precision, while the computational and
also power requirements of T265 are significantly lower.
Even though we do not report qualitative evaluation of
the exploration deployments, regarding the created maps,
it seems T265 provides sufficiently precise pose estimation
that can be directly used for map building from the RGB-D
data provided by D435. The robot has been able to au-
tonomously navigate through the environment, perform the
online-decision making, and build the map. Notice that when
we deploy ORB-SLAM2 in similar scenarios, the localization
sooner or later failed and the autonomous exploration had
to be restarted. Such an issue has not been observed with
T265. Moreover, the advantage of T265 (as a result of the
lower computational requirements) is also in the increased
operational time of the robot for the same battery.

V. CONCLUSION

In this paper, we report on the experimental deployment
of the embedded visual localization system Intel RealSense



T265 as the sole source for the robot pose estimation in
autonomous exploration with small hexapod walking robot.
The herein reported results indicate that T265 provides
competitive results to ORB-SLAM2, but with the decreased
computational requirements. Moreover, it provides suffi-
ciently reliable localization in the considered experimental
deployments, where the ORB-SLAM2 fails. Therefore, it
is a suitable choice to enable localization and autonomous
missions with a small multi-legged robot. In our future work,
we aim to examine the properties of the system further,
quantify the achieved performance in exploration missions,
but also deploy the developed system in environments with
low illumination (such as tunnels and mines), where it is
needed to carry an external light source, which usage is
enabled by the reduced computationally, and thus power
requirements.
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