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Abstract— In this paper, we concern a traversal cost estima-
tion considering motion control of a hexapod walking robot.
The proposed idea is motivated by the observation that the
traversal cost depends not only on the traversed terrain but also
on the robot motion. Based on the experimental deployments,
the forward motion is preferable over some terrains; however,
uphill and downhill locomotion over the particular terrain
might differ significantly. Therefore, we propose to enhance the
traversal cost model by a motion characterization. The model
is learned using feature descriptor composed of terrain shape
and appearance that is combined with the expected motion
performance determined from the slope change and possible
rotation of the robot. The traversal model enables to reason
about the robot stability regarding placement of the robot legs
and performed motion action. The proposed idea of motion
characterization is demonstrated and experimentally verified
on a simplified motion control using grid-based planning with
the robot control decomposed into straight and turn movements.

I. INTRODUCTION

This paper concerns the traversal cost modeling for multi-
legged walking robots that can traverse rough terrains either
by planning the exact positions of their footholds [1]–[3], or
by using the feedback from their legs [4], [5]. In this work,
we focus on improving the safety and performance over
traversable areas, and we assume that the robot is operating
in a traversable environment. Therefore, we assume that
only easily recognized areas such as walls and ravines are
untraversable using regular locomotion gait [6]. In our former
work [7], we propose to incrementally learn the traversal
cost experienced by the robot inferred from observed terrain
feature descriptors. The model has been further deployed
and verified in path planning scenario [8] to avoid hard to
traverse areas based on the experience collected so far. In
our robot deployments in various terrains, we experienced
that both considered traversal costs (the energy exertion
and stability of the robot attitude) depend not only on the
particular terrain type but also on the direction the robot is
approaching the terrain, i.e., down- and up-hill locomotion
over the same terrain. Besides, we observed that forward
motion is less demanding than turning movements over some
terrains. Therefore, we propose to enhance the model of
the traversal cost by considering motion characterization of
the used robot. The proposed idea is demonstrated in the
following simplified deployment of the hexapod walking
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Fig. 1. The hexapod walking robot used in the experimental validation of
the motion characterization proposed in this paper.

robot depicted in Fig. 1 to show the need for the motion
characterization in the traversal cost estimation.

It is assumed that the robot motion control is decomposed
into a set of motion primitives; w.l.o.g. into 0.25 m straight
forward walks and 90 degree rotations. Even though we
can imagine further motion actions, the main idea of the
proposed approach is to reason about the terrain and robot
motion actions, for which two simple basic maneuvers are
sufficient. Thus, we are concerned over what type of motion
the robot executes over which terrain. We address the raised
problem by enhancing the terrain descriptor by a motion
descriptor that characterizes the slope of the executed motion
and indicates whether the robot would change its heading.
The proposed motion characterization is coupled with the
terrain characterization and integrated into the robot path
planner. Since we employ the incremental learning of the
proposed model, the robot experience collected so far can
be instantly used in path planning.

The remainder of the paper is structured as follows. In
Section II, we review traversal costs and other works related
to the locomotion efficiency of the multi-legged walking
robots. The traversal cost model for the robot path planning
is formulated in Section III. The proposed motion character-
ization, the related traversal cost inference method, and its
application in path planning for the hexapod walking robot
are presented in Section IV. Results on the experimental val-
idation of the proposed approach are reported in Section V.
Finally, the work is concluded in Section VI.

II. REVIEW OF TRAVERSAL COST

The fundamental premise of robot motion planning is to
reach the goal locations efficiently with minimized risks,



energy consumption, and time. Risks incurred by mobile
robots may be generalized as a chance of the system reaching
a configuration without possible return. Such configurations
can be caused by a wide range of threats, including the
well-documented cases of the robot damage [9] and entering
difficult and unsafe areas [10].

The loss of stability is related to the robot tumbling over,
and thus indicates the risk of physical damage. Stability
margin, also referred to as the Static Stability Margin (SSM),
is a stability measure for multi-legged walking robots [11],
defined as the shortest distance between the vertical pro-
jection of the robot center of gravity and either any point,
vertex, or edge on the supporting polygon. The Dynamic
Stability Margin (DSM) [12] replaces the vertical center
of gravity projection with a projection along the direction
of the combined gravitational, inertial, and external forces.
The stability margin concept is further employed in the
Energy Stability Margin (ESM) [13] that is defined as the
minimum work required to rotate the robot center of gravity
about any support polygon edge to a configuration where the
center of gravity is located over that edge. Moreover, in our
experience, low stability may cause the robot body vibration
and thus damage of its construction, e.g., cable placement,
or decreased sensor accuracy; hence it can hamper the robot
localization and its perception of the environment. Besides,
vehicle vibration may cause harm to passengers [14], but
vibration can be utilized as a terrain type descriptor. For
example a vibration based classifier has been used to iden-
tify terrains encountered by passenger vehicles [15] and to
characterize simulated Martian terrains [16].

Low traversal efficiency can also be considered as a risk
factor, since a robot may enter a configuration from which it
is impossible to move out, e.g., wasting its battery while not
reaching its goal or reaching a location inside a hole in the
ground. The cost of transport [17] is a measure of the energy
efficiency of motion, defined as the ratio of the consumed
power and reached velocity over a particular terrain type. The
authors of [18] employ the concept of the cost of transport to
the battery-powered vehicle, where the power consumption
is based on the instantaneous current drawn from the robot
battery, and the measure is normalized by the robot mass and
gravitation acceleration to get a dimensionless quantity.

Exteroceptive approaches are utilized to extrapolate pos-
sible traversal risks of observed but not yet visited areas. A
traversal cost is assigned to the observed area, e.g., a cost that
defines a danger, complication, or roughness of the terrain.
The exteroceptive properties of the observed terrain can be
utilized to 1) directly compute properties closely related to
the terrain traversability, e.g., geometric properties such as
roughness; 2) assign terrain classification from the labeled
data; or 3) both approaches can be combined. Classification
methods divide observed terrain into a set of predetermined
classes that can be human defined terrain types [16], but it
can also be identified as an untraversable obstacle class [20].

Direct exteroceptive traversal efficiency characterization
suffers from limited adaptability, as it is based on prede-
termined geometrical or classification setups. However, ex-

teroceptive approaches may be utilized as terrain descriptors
in more complex traversability estimation schemata.

The existing geometric descriptors related to the terrain
traversability are based on the height and slope [20]–[24].
The height and slope based measures need to be referenced
to the ground coordinate frame, which can be an issue
when encountering generally sloped environments such as
mountainsides. Height based measures utilize mean and
deviation statistics [20], [21] or observed the necessary step
height [21]–[23]. Slope measures range from the gradient
based [24], through local-vs-global plane [21], [22] to normal
based [20], [23]. Alternatively, the terrain roughness can be
characterized by eigen-statistics of the local neighborhood of
the particular location of interest. In [20], [25], the authors
use a set of eigenvalue features designed to discriminate flat,
vegetated, and obstructed terrains.

A combination of the height variance roughness, height
difference, step height, and circular neighborhood slope to
the ground is utilized for the terrain evaluation in [21]. A
set of seven features to characterize the step height and
roughness is used in [22].

In addition to the terrain characterization using a set of
descriptors, the autonomous robots operating in potentially
dangerous areas must predict traversal efficiency of their
planned motion. Although it does not imply that an efficiency
model is learned, it is often the case for traversal efficiency
not defined as a direct consequence of the observed data,
e.g., directly from geometric properties of the terrain as
in [21]. The authors of [26] combine SVM classifier on
robot vibration with Gaussian mixture clustering on visual
data to classify terrain into five classes: grass, asphalt, gravel,
pavement, and indoor flooring. On the other hand, two SVMs
are utilized in co- and self-training setup by the authors
of [16]. An online Bayesian framework is utilized in [27] for
modeling the global and locale-specific terrain descriptors.

In [7], we propose to learn the cost of transport [18]
incrementally from a terrain feature descriptor, and thus
combining the advantages of robot-observed proprioceptive
locomotion efficiency with the exteroceptive terrain char-
acterization. In this paper, we leverage the work [7], and
we extend the feature descriptor to include the proposed
motion characterization. Moreover, we choose to represent
the traversal cost based on the observed robot stability to
characterize risks encountered with the hexapod walking
robot, which better fits to risk assessment than usage of the
cost of transport. However, we avoid the foothold position
calculation by using a measure based on robot attitude
instead of a stability margin approach.

III. PROBLEM FORMULATION

The proposed enhancement of the traversal cost model by
motion characterization is motivated by the deployment of
a multi-legged walking robot in rough terrains, where it is
desirable to discriminate paths according to the safety and
efficiency of the robot motion. The paths need to be selected
with regards to the traversal cost prediction for the observed



terrain. The robot motion control is decoupled into two ac-
tions: 0.25 m long forward walks, which correspond roughly
to the distance covered by two gait cycles, and turn about
90 degrees. Even though the robot has eighteen controllable
joints, based on the motion actions, simplified state of the
robot is considered as q = (x, y, φ) and it consists of the
location (x, y) considered within a grid-based environment
representations with the squared cell size 0.25 m, and the
discretized heading φ ∈ {0, π2 , π, 3π2 }. The motion planning
problem is defined as a problem to find a sequence of
actions (forward walks or turns) to move the robot from
one grid cell to the desired destination cell. For simplicity
and focused presentation of the proposed idea of motion
characterization, we assume the robot is operating only in
a traversable environment; however, we further distinguish
the motion safety that is directly related to the configuration
of the robot legs and the used footholds. Therefore, the robot
planned motion is limited to such configurations.

The assessment of the robot safety at the robot state q is
based on the position of the robot footholds [2]. However,
a simplification based on a mask of possible leg positions
is utilized to characterize the embodiment of the robot. The
mask is oriented according to the robot heading shown in
Fig. 2a. The mask represents the ground projection of the six
footholds that are further accompanied by the robot center
of gravity. The safety of the state is related to the position
and the relative elevation of the footholds, and therefore, we
investigate the slope between the selected pairs of the robot
footholds. The slope α(Xq, Y q′

) between the legs X and Y
for states q and q′, respectively, is schematically visualized
in Fig. 2b and Fig. 2c. The slope can be defined as

α(Xq, Y q′
) = arctan

‖zqX − zq
′

Y ‖
‖(xqX, yqX)− (xq

′
Y , y

q′
Y )‖

, (1)

where z is the elevation of the environment. For the particular
hexapod robot used in the experimental verification, the state
q is considered safe if the following holds

|α(LRq, RRq)| < π

4
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4
∧
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4
∧
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4
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4
,

(2)

where ∧ denotes the logical and operator, and symbols for
the footholds and center of gravity (CoG) are as in Fig. 2.

Similarly, a motion from the state q to the state q′ is
considered safe if both states are safe and the motion (q, q′)
is safe as well. The safety is determined from foothold
positions and the projected CoG as the slope between the
foothold positions q and q′ and the motion (q, q′) is assumed

to be safe if (3) holds.
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4
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)| < π

4
∧ q and q′ are safe

(3)

Finally, the traversal cost c is measured as the root of
the variance of the robot roll observed over the 10 s period,
which corresponds to the average expected time for travers-
ing a single grid cell. The learned traversal cost model is used
to infer the cost ĉ using the motion feature characterization.
The cost c(q, q′) corresponding to the motion between the
states q and q′ is defined as

c(q, q′) = ‖q, q′‖+ λcostĉ(q, q
′), (4)

where ‖q, q′‖ is the Euclidean distance between the coor-
dinates corresponding to the state q and q′, the prediction
of the traversal cost is ĉ(q, q′), and λcost = 100 is the
cost-to-distance scaling constant. Thus, the cost of a motion
sequence is the robot walking distance summed with the
traversal cost prediction for each of the motion actions. Since
we assume two types of motion actions and a grid with the
squared cell size 0.25 m, two instances of (4) are as follows.

1) The cost to execute the 0.25 m forward motion can be
defined as

cforward(q, q′) = 0.25 + 100ĉ(q, q′), (5)

2) and the cost to turn by 90 degrees as

cturn(q, q′) = 100ĉ(q, q′). (6)

IV. PATH PLANNING WITH MOTION CHARACTERIZATION

The motion of the utilized hexapod walking robot is
characterized by the feature descriptor of the traversed terrain
combined with the motion characterization. The observed de-
scriptors are used to learn the traversal cost model that is used
for the prediction of the traversal cost in path planning ac-
cording to (4), and the robot path, i.e., the cheapest sequence
of motion actions, is selected using the A∗ with the Euclidean
distance heuristic. In particular, we deploy feature descriptors
of the terrain shape and appearance and characterize the mo-
tion by slope and rotation. Thus, the feature descriptor is the
seven-dimensional vector d = (s1, s2, s3, a1, a2,m1,m2),
where shape and appearance features, which are based on
the previous work [7], are denoted (s1, s2, s3, a1, a2) and
characterize the traversed terrain in the 0.2 m radius neigh-
borhood around the investigated location of the robot. The
shape descriptors are based on eigenvalues statistics extracted
for the defined neighborhood area [20], and the appearance
part describes the neighborhood terrain color in the Lab color
space.

The design of the descriptor characterizing the motion
stems from the made observations that the energy exertion
and stability experience is different for the same area but
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Fig. 2. The proposed (a) simplified foothold mask applied to the robot state q = (x, y, φ), (b) slope between the left and right legs LX and RX for
the state q, and (c) forward motion slope between the foothold positions of the leg X for the states q and q′.

down- and up-hill locomotion. Similarly, the forward motion
is less demanding than turning over some terrains. Hence,
the motion characterization is proposed as the descriptors
(m1,m2). The forward motion action is proposed to be
characterized as the slope feature

m1 = arctan
‖∆z‖
‖∆(x, y)‖ , (7)

where ‖∆z‖ is the elevation change, and ‖∆(x, y)‖ is the
Euclidean distance on the ground plane covered by the
described motion. The rotation motion is proposed to be
characterized by the feature m2 defined as

m2 = arctan
‖∆φ‖

‖∆(x, y, z)‖ , (8)

where ‖∆φ‖ ∈ (0, π) is the absolute value of the robot
heading change, and ‖∆(x, y, z)‖ is the Euclidean distance
traversed by the robot. Notice that arctan function is utilized
to scale the feature to (0, π2 ) and has no geometric interpre-
tation, unlike in (7).

Before a detailed description of the traversal cost model
learning process, we first remind the reader that the traversal
cost c is measured as the root of the variance of the robot
roll observed over the 10 s long period. The descriptor d is
paired with the experienced cost c in the robot experience
descriptor dc = (s1, s2, s3, a1, a2,m1,m2, c). The descriptor
dc thus characterizes the robot motion executed over the
10 s long period. Notice that both the motion action and the
period used to measure the traversal cost are roughly equal
to two gait cycles of the employed locomotion controller of
the utilized hexapod walking robot.

The traversal cost model is learned using the Incremental
Gaussian Mixture Network (IGMN) [28], which incremen-
tally builds a Gaussian mixture model from a single scan of
data, and thus can be used in life-long learning scenarios.
The IGMN is parameterized with the k = 10 components,
grace period vmin = 100, minimal accumulated posterior
spmin = 3, and scaling factor δ = 1. The model M(k), which
incorporates k observations, is a result of the incremental
update

M(k)← update(M(k − 1),dc). (9)

The traversal cost prediction ĉ is obtained by querying the
traversal cost model M for the descriptor d. The descriptor
d is used for cost prediction of the motion action, and thus

particular values of m1 and m2 in d are considered. The
shape and appearance part of d characterizes the terrain
corresponding to the area of the states q and q′ that define the
start and end of the motion, respectively. Thus, the shape and
appearance descriptors are computed for the neighborhood
centered at the geometric center of the straight line segment
connecting the states q and q′.

V. EXPERIMENTAL VERIFICATION

The proposed approach has been verified in two experi-
mental scenarios from which the achieved results are reported
in this section. First, the influence of the executed motion on
the traversal cost experienced by the robot is demonstrated to
support the motivation of the addressed problem experimen-
tally. Second, the robot was deployed on the laboratory test
track to demonstrate the incremental learning of the traversal
cost model and its applicability in path planning. The robot
showed in Fig. 1 has been utilized in both scenarios, and its
detailed specification can be summarized as follows.

The robot is about 50 × 60 × 20 cm large. Each of its
six legs consists of three joints actuated by the Dynamixel
AX-12A servo motors. For locomotion with the forward
velocity up to 0.05 ms-1, the robot employs the tripod
adaptive motion gait [4], which is decomposed into the
leg swing phase and the body leveling phase. The robot is
navigated along the planned path using the follow-the-carrot
algorithm with 0.2 m threshold distance. ORB-SLAM2 [29]
with the Intel RealSense D435 RGB-D camera with the
resolution 640× 480 px and 30 Hz are utilized for the robot
localization. The XSense MTi-30 attitude heading reference
system is used to capture the robot roll at 400 Hz. The
proposed approach has been implemented in ROS [30] and
computational requirements of the individual parts of the
complete navigation pipeline are reported in Table I.

TABLE I
PERFORMANCE OF THE PROPOSED SYSTEM ON THE INTEL I7 8550U

Process CPU usage* Update frequency

Localization - ORB-SLAM2 [29] 130% 14.00Hz

Traversal cost calculation 31% 400.00Hz

Feature extraction and model learning 327% 0.50Hz

Planning and cost inference 105% 0.05Hz

Locomotion control 70% 62.50Hz

*The reported usage is of 800% because 4 × cores with Hyper-threading
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Fig. 3. The traversal costs observed by the hexapod walking robot (left) while traversing over a raised obstacle (right).
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Fig. 4. Snapshots of the traversal cost assessments during autonomous navigation with incremental traversal cost learning. Straight lines represent predicted
motion cost using forward walk motion action. The dashed red lines represent the determined cheapest motion sequence towards the goal location, which
is shown as a green rectangle. The test track consists of flat ground and wooden blocks of uneven height, and it is shown in Fig. 5. The wooden blocks are
hard to traverse because of their relative size to the robot, but the flat ground around the blocks is easy to traverse. From the initial location, based on the
learned traversal cost model, the robot may either reach the goal location over the rough terrain or choose a longer flat route, which is however cheaper
regarding (4). After traversing the border of the wooden blocks, the robot avoids further traversal of the rough terrain and chooses the longer route.

Fig. 5. The laboratory test track used for the experimental deployment.

A. Influence of Executed Motion

The robot is guided over a raised obstacle, see Fig. 3b,
to demonstrate the influence of the executed motion on the
traversal cost experienced by the robot. The costs experi-
enced traversing the individual parts of the path are shown in
Fig. 3a. The robot firstly walks over the flat ground, ascends

the wooden stairs and descends a flat, but sloped surface.
After that, the robot turns on the flat ground, and walks back
over the obstacle. Based on the reported experimental results,
we can make observations that reinforce the importance of
the particular motion action to the experienced traversal cost.
Although it is costly to ascend the stairs, it is much cheaper
to descend, possibly because the adaptive motion gait gets
stuck on the individual steps when ascending. However, it
is cheaper to ascend the sloped surface than to descend or
turn on it. This might be explained by the robot slipping
while trying to descend to sloped terrain. We can conclude
that there are considerable differences in the costs to ascend
and descend over different terrains and also turning might be
costly in comparison to ascending. Therefore, it is desirable
to include the robot motion into the reasoning about the
traversal cost.

B. Incremental Learning of the Traversal Cost Model

The indoor track shown in Fig. 5 has been used for the
experimental deployment of the proposed approach with the



incremental model learning, path planning, and autonomous
navigation. The track consists of wooden blocks with irreg-
ular height accompanied by the easy to traverse flat ground.

The evolution of the traversal cost and determined robot
path towards the goal are shown in Fig. 4. After the robot
encounters the wooden blocks, it learns the cost over the
wooden blocks is high, see Fig. 4c. Specifically, climbing
up or down over the boundary of the wooden blocks is
costly. Thus, the robot climbs down the wooden blocks and
walks towards its goal over the flat ground. When leaving the
blocks, the robot encounters the hard to traverse the edge of
the rough terrain that further increases the cost of the wooden
blocks. Moreover, the robot suffers from instability for a few
seconds, affecting the cost of the flat ground; however, the
cheapest path is determined over the flat ground, see Fig. 4d.

The presented experimental results support the proposed
approach, and the robot incrementally learns the traversal
cost of its motion over individual terrains, and it applies the
gained knowledge in reasoning about the cost-efficient path.

VI. CONCLUSION

In this paper, we propose to enhance the existing incre-
mental learning of the traversal cost by characterization of
the robot motion over the traversed terrains. The proposed
concept of the motion characterization is demonstrated in
grid-based planning considering two motion actions of the
hexapod walking robot. The terrain shape and appearance
features are enhanced by the robot motion characterized as
feature descriptors of the expected slope of the motion and
rotation. The reported experimental results support that the
proposed approach is feasible and demonstrate the robot
motion over various terrains influences the traversal cost.
The deployment of the proposed motion characterization in
path planning enables the robot to learn and then avoid hard
to traverse areas in autonomous navigation missions. In our
future work, we aim to generalize the proposed concept to
other motion actions using motion planning techniques, such
as randomized sampling-based algorithms.
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