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Abstract— This paper presents a novel non-linear program-
ming formulation to find the shortest 3D Dubins path with a
limited pitch angle. Such a path is suitable for fix-wing aircraft
because it satisfies both the minimum turning radius and pitch
angle constraints, and thus it is a feasible and smooth path in the
3D space. The proposed method utilizes the existing decoupled
approach as an initial solution and improves its quality by
dividing the path into small segments with constant curvature.
The proposed formulation encodes the path using the direction
vectors that significantly reduce the needed optimization vari-
ables. Therefore, a path with 100 segments can be optimized in
about one second using conventional computational resources.
Although the decoupled paths are usually within 2% from the
lower bound, the proposed approach further reduces the gap
by about 30%.

I. INTRODUCTION

Finding the shortest 3D Dubins path is a natural extension
of the well-studied Dubins path planning problem [1] in
2D. However, the 3D extension does not have a closed-
form solution. In addition to the minimum turning radius
and constant forward speed, the vehicle’s movement is also
constrained by the maximum climb/dive angle to ensure path
feasibility for a real aircraft. Several heuristics have been
proposed in the literature to find a feasible solution close
to the optimum. Currently, the best existing method to find
the 3D Dubins path (to the best of the authors’ knowledge)
is the decoupled approach proposed in [2]. It solves the
horizontal and vertical parts of the path separately, and the
minimum turning radius for each segment is determined such
that the overall curvature is guaranteed to be within the
limit. Therefore, such a path can be further optimized to
use general 3D turns that are neither horizontal nor vertical,
which is the motivation of the presented work.

We propose a novel Non-Linear Programming (NLP)
formulation of the 3D Dubins path problem, which can
improve the quality of existing solutions. The path is split
into several segments, where each segment is a circular
arc in the 3D space (or a straight line). The proposed
formulation effectively represents any feasible 3D path if
the number of segments is sufficiently high. An example
of the difference between the initial 3D path found by the
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Fig. 1. Example of the 3D Dubins path found by the decoupled
approach [2] (blue) and the path optimized by the proposed NLP formulation
(black). The crosses represent samples on the boundary of the path segments
used in the proposed formalization of the optimization problem.

decoupled approach [2] and the optimized path provided by
the proposed optimization is depicted in Fig. 1.

Although the decoupled approach already provides 3D
Dubins paths close to the optimum, based on the empirical
evaluation, the proposed NLP-based optimization can further
reduce the relative optimality gap to a lower bound estimate
of the optimal solution value by about 30 % without signifi-
cant computational requirements. The proposed formulation
encodes the path by direction vectors instead of interme-
diate configurations, and a computation of the path with
100 segments takes about one second using conventional
computational resources.

The rest of the paper is organized as follows. The related
work with a description of the existing decoupled approach
is summarized in Section II. The problem of finding the
3D Dubins path is formally introduced in Section III, and
the proposed NLP-based optimization is described in Sec-
tion IV. The evaluation results are reported and discussed in
Section V. Finally, Section VI summarizes the paper.

II. RELATED WORK

The problem of finding the shortest path with bounded
curvature in the plane was posted by Andrey Markov at the
end of the nineteenth century. Later on, the optimal solution



to the problem was found in 1957 by L. E. Dubins [1]. He
showed that for any input configurations, the optimal path
consists of three segments. Each of those segments is either
a straight line or a circular arc. Moreover, the optimal path
can be only one of two types: CCC or CSC, where C stands
for curve segment, and S stands for a straight segment. It is
also proved that each curved segment has a turning radius
equal to the minimal turning radius. Hence, the problem is
called the Markov-Dubins problem in the literature.

An alternative proof of the optimal solution to the Markov-
Dubins problem is presented in [3] using optimal con-
trol theory. Besides, relatively recently, the authors of [4]
reformulate the path segments so that both the straight
segments and the circular arcs can be represented using the
same formula, enabling the formulation of the problem as
an optimization problem in a unifying way. The authors
also present a transformation of the problem to exploit its
symmetries.

The Markov-Dubins problem in 3D has already been stud-
ied in the literature. The optimal solution is addressed in [5]
using geometrical and numerical approaches that address
the curvature constraint. The optimal solution in the 3D is
studied in [6]. However, real aerial vehicles usually have a
limited pitch angle. The pitch angle constraint is considered
in the numerical solution [7] that is claimed to provide the
optimal solution, but the convergence of the method is not
formally supported. The authors of [8] propose to use the
minimal 2D path between the configurations and interpolate
the altitude linearly. Although the methods presented in [5],
[7], [8] provides some 3D Dubins paths, none of them limits
the pitch angle, and thus the resulting 3D path may not be
feasible for a real aircraft.

The constraint on the limited pitch angle is addressed by
the Dubins airplane model proposed in [9]. A helix curve can
address a high altitude difference between path endpoints that
allows the aircraft to reach the requested altitude. A helical
path added at the beginning or end of the path is used
in [10] to satisfy the pitch angle constraint. The helical
path is also added in the RDDH approach presented in [11]
and the final path is a union of three subpaths. The helix
curve is used to mitigate the altitude difference of the two
points, and a simple 2D Dubins curve can then be used
for the rest of the path. The same approach is utilized in
[12], where the final path consists of two semicircles and
Dubins helices. A geometric approach for the path containing
straight segment is considered in [13] for a hypersonic glider.

A different approach based on Bézier curves is presented
in [14], [15], and [16]. It provides feasible paths considering
the limited pitch angle based on a variation of the quintic
Pythagorean hodographs curves for generating smooth paths.

One of the most recent heuristic methods is the decoupled
approach [2]. A more detailed description is provided here
because the decoupled method is utilized as both an initial
solution in the proposed NLP-based optimization and a
reference solution for empirical evaluations.

1) Decoupled approach: The general idea of the decou-
pled method [2] is to divide the problem into horizontal

and vertical parts. Both these sub-problems are then solved
separately using 2D Dubins paths. The only influence be-
tween horizontal and vertical parts is via turning radius
because the maximum curvature constraint would be violated
if both horizontal and vertical turns would be executed
simultaneously. Therefore, the decoupled approach selects
a larger turning radius for each part to meet the curvature
constraint. Also, the horizontal turning radius is increased if
the pitch angle constraint is violated to enlarge the path and
decrease the climb/dive angle under the given limit.

The decoupled approach [2] provides lower and upper
bounds for the 3D Dubins path based on the same idea.
The bounds are quite tight and are utilized in Section V-D
to estimate the quality of paths optimized by the proposed
NLP-based approach.

III. PROBLEM STATEMENT

The studied problem is to find the shortest curvature-
constrained 3D Dubins path between two configurations. In
addition to the minimal turning radius of Dubins path, the
inclination of the 3D path is limited according to the specific
aircraft type. Thus, the state of the vehicle q is given by its
position (x, y, z) ∈ R3, heading angle φ ∈ S, and pitch angle
ψ ∈ S. Hence, the configuration space is C = R3 × S2 and
q ∈ C. The pitch angle is limited by its minimum ψmin
and maximum ψmax value that constrains the inclination of
the vehicle. The roll angle is not considered in the model
as it assumed it does not influence the movement directly.
The vehicle motion for a constant forward speed v can be
described by motion equation

q̇ =


ẋ
ẏ
ż

φ̇

ψ̇

 = v


cos (φ) cos (ψ)
sin (φ) cos (ψ)

sin (ψ)
u1

u2

 , (1)

ψ ∈ [ψmin, ψmax] , (2)

where u1 and u2 are the control inputs for heading and pitch
angles. These control inputs are limited by the maximum
curvature κmax as, according to [11],

u2
1 cos2 (ψ) + u2

2 ≤ κ2
max . (3)

The problem is to determine the shortest possible 3D
Dubins path Γ : [0,L]→ C from the initial qI to the final qF
configuration, where L stands to the length of the path given
the fixed speed v. Formally, the problem can be defined as
the optimization Problem 1.

Problem 1 (Shortest 3D Dubins Path):

min
Γ

L (4)

subject to
Γ(0) = qI, (5)
Γ(L) = qF, (6)

Equations (1), (2), and (3) are met. (7)



IV. PROPOSED NON-LINEAR OPTIMIZATION
FORMULATION

The proposed method formulates the 3D Dubins path
problem as a Non-linear Programming (NLP) optimization.
The path is split into s similarly long segments with a
fixed curvature and fixed origin of the turn, if not a straight
line. The path connects s + 1 intermediate configurations
Q = {q1, . . . , qi+1}, where q1 = qI and qs+1 = qF . The
configurations Q are optimized in the NLP formulation to
find the shortest 3D Dubins path.

qI

qF

w1

w2

w3

w4

w5w6

Fig. 2. Example of 3D Dubins path (black) between initial the qI and
final qF configuration. The path is represented as s turn segments defined
by W = {w1, . . . , ws+1} direction vectors (red) and length multiplicators
D = {d1, . . . , ds}. The green lines indicate the origin of the turn segment.
Notice the turn segments are not in the same plane.

The proposed approach encodes the i-th path segment by
the initial direction vector wi, final direction vector wi+1,
and multiplicator di that determines the length of the seg-
ment. The vectors W = {w1, . . . ,ws+1} can be computed
based on the ψi and φi angles at the i-th configuration qi as

wi =

cos (ψi) cos (φi)
cos (ψi) sin (φi)

sin (ψi)

 . (8)

Note that the direction vector is always a unit vector, i.e.,
‖wi‖ = 1. The vehicle’s movement in the segment is
determined based on the multiplicator di and the two end
directions encoded by wi and wi+1 allowing an arbitrary
length of segments. Thus

qxyzi+1 = qxyzi + di(wi + wi+1), (9)

where qxyzi+1 stands for the 3D position of the initial configu-
ration qi of the i-th segment. An example of the path defined
by the directions W and multiplicators D = {d1, . . . , ds} is
depicted in Fig. 2.

The problem is to find a curvature-constrained path, and
thus it is necessary to determine the actual curvature of each
segment. First, the turn angle αi is determined based on the
dot product of the two consecutive directions

αi = arccos (wi ·wi+1) . (10)

Then, the curvature κi of the i-th segment depends on the
angle αi as

|κi| =
tan

(
αi

2

)
di

=

√
1−wi ·wi+1

di
√

1 + wi ·wi+1
. (11)

Having the introduced preliminaries, the 3D Dubins path
problem can be reformulated as an NLP optimization prob-
lem with the W and D vectors representing the whole path
consisting of s arc (or straight) segments as Problem 2.

Problem 2 (NLP formulation of 3D Dubins path):

min
W,D

s∑
i=1

L(di,wi,wi+1), (12)

subject to

w1 = wI , ws+1 = wF ; (13)

qxyzI +

s∑
i=1

(di(wi + wi+1)) = qxyzF ; (14)

‖wi‖2 = 1, i = 1, . . . , s+ 1; (15)

1−wi·wi+1 ≤ d2
i κ

2
max(1+wi·wi+1), i = 1, . . . , s; (16)

wz
i ∈ [sin (ψmin) , sin (ψmax)], i = 1, . . . , s+ 1; (17)

di = ρi di−1, i = 1, . . . , s− 1. (18)

The objective function (12) sums the lengths Li of all
segments determined by the following equation based on the
direction vectors and the multiplicator corresponding to the
specific segment

Li(di,wi,wi+1) =

=
arccos (wi ·wi+1)

κi

= di arccos (wi ·wi+1)

√
1 + wi ·wi+1√
1−wi ·wi+1

.

(19)

The proposed non-linear formulation contains 4s + 3
variables for s segments constrained by a set of equations.
First, the initial and final directories wI and wF in (13)
are determined based on (8), and the direction vectors wi

are ensured to be unit vectors in (15). The final position
qxyzF is constrained in (14) based on the initial position qxyzI
and accumulates all the movements determined by (9). The
curvature of each segment determined by (11) is constrained
by κmax in (16). The pitch angle is constrained in (17).

The last constraint (18) permits multiplicators of wi are
not equal; so, the formulation is more general. It is beneficial
when an existing path initializes the solution. Once the initial
path is sampled uniformly, the multiplicators are calculated
according to the sampled configurations. Then, the ratios ρi
can be fixed. Alternatively, the approach allows less dense
sampling for a long straight line segment to reduce the
computational burden while preserving a high precision.

A. Approximation of the Objective Function

If the number of segments s is high enough, the objective
function can be approximated directly using the multiplica-
tors di. The turn angle of segments becomes very small, and
it goes to zero for an infinite number of segments

lim
s→∞

wi ·wi+1 = 1. (20)



Then, the length of a single segment from (19) can be
approximated with a substitution p = wi·wi+1 and assuming
p goes to 1, the equation become

L(di,wi,wi+1) ≈ lim
p→1

di arccos(p)

√
1 + p√
1− p

(21)

that can be reduced to

L(di,wi,wi+1) ≈ 2 di . (22)

Hence, the objective function can be approximated as a linear
combination of D.

B. Initialization of the proposed NLP Optimization

A proper initialization is crucial for an efficient path
optimization because, otherwise, the solver might converge
to a sub-optimal solution or might not converge at all. One
of the benefits of the proposed formulation is that it can be
initialized by any path using sampling that is not necessarily
uniform. The initialization works as follows.

Given the configuration samples, the initial values of the
direction vectors W can be directly computed using (8).
Then, the multiplicators D are determined to minimize the
error of the movement equation (9). The error can be caused
by changing the curvature during a single segment that is
not allowed in the proposed formulation. The issue can be
reduced by using more segments, if necessary. Once the
multiplicators are initialized, the ratios ρi are fixed to meet
(18) and remain constant during the whole optimization.

Two different initialization methods have been examined.
The first method is to initialize the proposed optimization
by the decoupled approach [2]. The reported results indicate
the proposed optimization improves the paths founds by the
decoupled approach, albeit they are close to the optimum,
which is measured as the relative gap to lower bound values
of the optimal solution. It is because there is still a space
for path improvement as not all paths have both horizontal
and vertical parts consisting of Dubins path with the same
curvatures at both ends, which is assumed in [2]. Here,
it is worth noting that for the cases where the initialized
segments contain both turn and straight parts, it might not be
possible to determine the respective multiplicator di exactly,
i.e., determine a single curvature for each segment.

The second initialization method is to used 2D Dubins
path in xy-plane and interpolate the altitude (z coordinate)
linearly between the initial and final altitude as

zi = (qzF − qzI )
i− 1

s
, i = 1 . . . s+ 1. (23)

Although this approach is straightforward, the initial solution
is not feasible because it does not account for the initial
and final directions. However, the pitch angle is limited
by its maximum values, and thus it might be close to the
final solution. This simple initialization works well in cases
where the altitude difference between the initial and final
configurations is low.

V. RESULTS

The proposed NLP-based solution of the 3D Dubins path
has been empirically evaluated in several scenarios with
randomly generated instances and compared to the currently
best-performing method [2]. The proposed method is imple-
mented in Julia programming language [17] using interior-
point filter line-search algorithm from the Ipopt library [18]
for solving the proposed non-linear optimization problem.
All the results were computed using a single core of the
Intel Xeon Scalable Gold 6146 processor.

For the empirical evaluations, 1250 random instances
have been generated by selecting a fixed distance between
the two configurations, and randomly selecting the height
difference and the angles: qI = (0, 0, 0, φI, ψI) and qF =
(xF, 0, zF, φF, ψF). The maximum curvature is set to κmax =
1, and the pitch angle is limited to the interval

[
− π

10 ,
π
10

]
.

The directions are selected by the uniform distribution. Since
the location of qI is fixed, xF also determines the distance
between endpoints. The value of zF is selected randomly
from the interval [0, 6zmax], where zmax is the maximum
altitude achievable on a path between the two configurations
disregarding the angles

zmax = tan (ψmax)xF, (24)

where xF is the distance between the two configurations.
The high difference zmax is almost always achievable, but it
becomes a limiting factor at about 3zmax, depending on the
overall path length.

A. Path Length Improvement

The first empirical evaluation is focused on the examina-
tion of the solution quality. The proposed NLP-based solver
is initialized by the decoupled method [2] also used as a
baseline solution. Fig. 3 shows the relative path lengths to
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Fig. 3. Relative path lengths normalized to the length of the initialization
path provided by [2]. The middle mark corresponds to the median and 10%
of best and worst solutions are removed to estimate 80% non-parametric
confidence interval.



the initial solutions. The results are computed for various
distances between the endpoints xF and the various segment
counts s ∈ [20, 60, 100]. The mean values are marked for
each of the cases. Further, 10 % of the best and worst
results are discarded for visualization improvement, i.e.,
the minimum and maximum values estimate the 80 % non-
parametric confidence interval.

The results indicate that for distances of the endpoints
xF = 1, the length improvement provided by the proposed
NLP-based approach is up to about 10 %, and the mean
improvement is about 7 %. It is also noticeable that a
low number of segments (s = 20) is not sufficient for
larger endpoint distances. It is probably influenced by an
insufficient number of segments approximating the end turns
because a long straight segment in the middle is expected.

Notice that the Ipopt solver may not found a solution
because the algorithm does not converge in the selected
limit of 500 iterations. Usually, the maximum number is not
reached, but it prevents the algorithm from being stuck for
cases with poor convergence. Such cases are not included
in the presented results, and the fail rate is discussed in the
following section.

B. Fail Rate

The employed Ipopt solver is not able to always con-
verge to a feasible solution. There are various reasons for
that, but the optimization algorithm reaches a point where it
is impossible to converge to an optimum. First, we examined
the influences of the endpoint distance and the number of
samples. Fail rates are depicted in Fig. 4 for paths initialized
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Fig. 4. Fail rate of the Ipopt solver to find a solution of the NLP-based
optimization initialized by [2] according to distance between the endpoints
and the number of segments n.

by the decoupled approach [2]. The results suggest that the
failure rates are slightly higher for shorter paths, while an
influence of the number of segments is not visible.

Secondly, the influence of the initialization using 2D
Dubins paths has been studied. Thus, the NLP-solver is
initialized by the decoupled method and using the 2D Dubins
path. Besides, both initialization methods are examined, and
the best solution is reported. The results are reported in Fig. 5
from which it can be observed that the initialization using
the decoupled approach yields a lower failure rate than using
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Fig. 5. Fail rate of the Ipopt solver to find a solution of the NLP-based
optimization with s = 60 segments and initialization by the decoupled
approach [2] and 2D Dubins path. The “Combined” tries both initialization
and select the better one.

the 2D Dubins path. That is why the decoupled approach is
considered a more suitable option, and it is utilized in all
other results presented in this paper. However, the 2D Dubins
path initialization can provide better convergence in specific
cases. Therefore, the overall reliability is slightly improved
if both initialization methods are combined, denoted “Com-
bined” in the plot. Besides, the initialization using 2D Dubins
paths might be preferable for instances with low altitude
differences because it is easier to compute.

C. Computational Time

The computational time of the proposed NLP-based ap-
proach is reported in Fig. 6 for the increasing number of
segments s. The time to get the initial decoupled path is
included, but it is negligible compared to the optimization
time. The computational requirements seem to depend expo-
nentially on the number of segments s. Notice that the plot
is semi-logarithmic.
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Fig. 6. Required computational times of the proposed NLP-based approach
depending on the number of segments s.



D. Comparing Results to the Lower Bound

Based on the reported results, the path improvement using
the proposed NLP-based approach may seem small com-
pared to the initialization paths provided by the decoupled
method [2]. The decoupled approach can provide paths
within 2 % from the lower bound estimation of the optimal
solution value that is also provided in [2]. Since some
improvement can be observed in Fig. 3, we examine how
much the proposed optimization can reduce the gap from
the lower bound.
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Fig. 7. Relative gap of the proposed NLP-based solution to the lower bound
estimate of the optimal solution value and the initial decoupled path [2].
The line separates paths that are improved during the proposed optimization
and unimproved cases. The number of path segments is s = 100, and
the endpoint distance is randomly selected from the previously computed
results. Note that there are several results with the original gap greater than
20% that do not fit into the plot, but all of them are significantly improved
by the proposed optimization.

The relative gap to the optimization solution and initial
reference path found by the decoupled method [2] is shown
in Fig. 7. The results show that the proposed method can
improve the path if the initial gap is larger than 0.5% in
almost all cases. Contrarily, if the initial gap is close to
zero, there is no space for improvement, and the NLP-based
method suffers from convergence issues. Thus the initial
solution can be utilized as the final solution in such a case.

VI. CONCLUSION

In this paper, we introduce a novel NLP-based formulation
of the 3D Dubins path problem with a limited pitch angle.
The proposed approach splits the 3D path into several seg-
ments, each with constant curvature. The 3D path is encoded
by intermediate direction vectors (instead of vehicles’ states
directly) that reduce the number of variables and support
faster convergence of the used NLP solver. The proposed
optimization can improve initial solutions noticeably. Al-
though the existing decoupled method provides solutions
within 2 % from the lower bound, the proposed approach
further reduces the gap by about 30 %. Furthermore, if the

distance of the endpoints is close to the length of the turning
radius, the median total improvement is about 7 %. The
computational requirements are relatively low, and solutions
are found in less than one second, which motivates to employ
the proposed solution in more complex planning problems
such as multi-goal planning. In our future work, we plan
to optimize paths connecting multiple locations as the first
step towards combinatorial multi-goal planning, where the
sequencing needs to be addressed.
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[3] J.-D. Boissonnat, A. Cérézo, and J. Leblond, “Shortest paths of
bounded curvature in the plane,” Journal of Intelligent and Robotic
Systems, vol. 11, pp. 5–20, 1994.

[4] P. Bevilacqua, M. Frego, D. Fontanelli, and L. Palopoli, “A novel
formalisation of the markov-dubins problem,” in European Control
Conference (ECC), 2020, pp. 1987–1992.

[5] S. Hota and D. Ghose, “Optimal geometrical path in 3d with curva-
ture constraint,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2010, pp. 113–118.

[6] D. Mittenhuber, “Dubins’ problem is intrinsically three-dimensional,”
ESAIM: Control, Optimisation and Calculus of Variations, vol. 3, pp.
1–22, 1998.

[7] S. Hota and D. Ghose, “Optimal path planning for an aerial vehicle in
3d space,” in 49th IEEE Conference on Decision and Control (CDC),
2010, pp. 4902–4907.

[8] Y. Lin and S. Saripalli, “Path planning using 3d dubins curve for
unmanned aerial vehicles,” in International Conference on Unmanned
Aircraft Systems (ICUAS), 2014, pp. 296–304.

[9] H. Chitsaz and S. M. LaValle, “Time-optimal paths for a dubins
airplane,” in IEEE Conference on Decision and Control, 2007, pp.
2379–2384.

[10] M. Owen, R. W. Beard, and T. W. McLain, Implementing Dubins Air-
plane Paths on Fixed-Wing UAVs*. Dordrecht: Springer Netherlands,
2015, pp. 1677–1701.

[11] Y. Wang, S. Wang, M. Tan, C. Zhou, and Q. Wei, “Real-time dynamic
dubins-helix method for 3-d trajectory smoothing,” IEEE Transactions
on Control Systems Technology, vol. 23, no. 2, pp. 730–736, 2015.

[12] G. Ambrosino, M. Ariola, U. Ciniglio, F. Corraro, E. De Lellis, and
A. Pironti, “Path generation and tracking in 3-d for uavs,” IEEE
Transactions on Control Systems Technology, vol. 17, no. 4, pp. 980–
988, 2009.
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