
Gait-Free Planning for Hexapod Walking Robot

David Valouch Jan Faigl

Abstract— This paper presents a gait-free motion planning
approach for quasi-static walking of hexapod walking robots
on terrains with limited available footholds. The proposed
approach avoids using a prescribed gait pattern allowing an
arbitrary sequence of leg swings. Furthermore, it is allowed
that some legs do not need to be placed on the terrain
for an extended duration. The proposed method is based on
a decomposition of the motion planning into: (i) finding a
candidate sequence of stances and intermediate configurations
representing plausible steps using a graph-search; and (ii)
connecting the intermediate configurations by feasible paths
satisfying the motion constraints of the walking robot. The
individual one-step paths are determined using a Bézier curve-
based parametrization that seems to be sufficient for the
relatively simple paths of a single step, and the low-capacity
parametrization yields natural-looking motion.

I. INTRODUCTION

Hexapod walking robots provide increased stability over
their “competitors” such as quadruped Spot [1] and ANY-
mal [2] or biped/humanoid robots such as Atlas [3]. For
an exploration of highly structured, unsafe environments,
such as collapsed buildings, where fast dynamic motions
are undesirable, hexapod crawlers might be superior due
to their inherent stability and redundancy. Hexapod walking
robots can locomote using a fast, quasi-statically stable gait
for which only two steps are required to complete one gait
cycle, compared to four steps of a quadruped. Hexapod
crawlers also do not need to use all legs for statically
stable locomotion compared to quadrupeds; indeed, six is
the least even number of legs that allow gait-free quasi-static
movement.

In the paper, we present our results on gait-free planning
that builds on the method of K. Hauser [4]. Further motivated
by the relatively recently proposed robust rough-terrain lo-
comotion [5], we propose to evaluate the terrain-collision
constraint using a Signed Distance Field (SDF) based on
Distance Transformation [6] instead of a mesh interference
detection as K. Hauser. We also use an optimization-based
approach motivated by [5], [7] for trajectory planning, where
we proposed to employ a Bézier curve parametrization in-
stead of computationally demanding sampling-based search
for planning the single-step motions. Based on the achieved
results, the proposed approach seems viable and promising
to enable the gait-free motion of hexapod walking robots.

The remainder of the paper is as follows. An overview
of related work is presented in the following section. The
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Fig. 1. Hexapod walking robot traversing an environment with missing
footholds. The support polygon is highlighted.

addressed problem is formulated in Section III together
with the introduction of the used notation. The proposed
method is presented in Section IV. A description of the
empirical evaluation and report on the achieved results are
presented in Section V. Finally, the concluding comments
are in Section VI.

II. RELATED WORK

Existing approaches for motion planning with hexapod
walking robots in rough terrains consider motion between
configurations with six ground contacts using a “semi-
regular gait” such as [8]–[10] to list a few here. It is
because full-motion planning without the prescribed se-
quence of leg swing/stance phases is computationally very
demanding; hence, the full-motion capabilities of hexapod
walking robots in rough terrains are not fully exploited.
In [8], RRT-based [11] motion planner is employed for two-
dimensional body position and heading that are sampled,
and valid leg footholds are determined and assigned for the
individual stance configuration. Image processing techniques
are employed in [9] to rate possible body positions in two
dimensions for the fixed robot height and orientation. Then,
a roadmap [12] is constructed for planning a robot path in
real-time.

The authors of [10] define a concept of “weak collision
freeness” to capture the notion that the workspace of the
robot’s legs must contain part of the terrain. The concept
ensures the object (workspace) contains at least some “free
space” (terrain). In [13], [14], a similarly relaxed approach
is employed to ensure contact with the terrain. An “acyclic”
contact planner is used in [14] for humanoid and quadruped
robots, where a rough path of the body is planned first, and



the contacts are selected in the second stage. Less related
to our quasi-static setting but notable approach is [13] with
planning dynamic motions for a quadruped robot.

The listed methods share a unifying assumption that it is
possible to plan only the motion of the robot’s body. It is
assumed that the ground is always reachable for all legs in
some capacity. Besides, it is assumed that the footholds for
the individual legs and the required leg-swing motions will
be found ad Hoc in a way that all motion constraints would
be satisfied. Even though such approaches exhibited a wide
range of practical applications, there can still be challenging
problems where it is necessary to precisely plan the motion
of the robot legs in an arbitrary sequence of individual leg
swings. Therefore, we are interested in gait-free planning
to better exploit walking robots’ motion capabilities, despite
being computationally demanding because of the complexity
of the precise motion planning in high-dimensional configu-
ration space.

Regarding the quasi-static gait-free planning for hexapod
robots, to the best of the authors’ knowledge, the only work
has been done by T. Bretl et al. [15] and K. Hauser et al. [16].
Besides, related research has been proposed by P. Vernaza et
al. [17] on a quadruped robot, where, however, the planner
is using a regular gait that can be “bypassed” by allowing
a leg to step on a sample place, which exhibited that any
(quasi-static) “gait-free” motion of a quadruped robot can
be represented using a regular gait cycle.

All the approaches [15]–[17] use a graph to represent the
discrete components (modes) of the configuration space of
a walking robot caused by the contacts with the footholds
on the terrain. A similar graph representation is successfully
used with humanoid (biped) robots, e.g., reported in [18],
albeit with a regular gait. In [19], mode families induced by
contact surfaces representing flat surfaces of the environment
are considered when planning a sequence of contacts for a
humanoid robot in challenging environments. More recently,
similar mode families are represented using a combination
of discrete graph and real-valued parameters in [20], where
continuous sets of “footholds” result from a pick-and-place
domain that represents possible handrails for grasping.

In this paper, we follow the work of Bretl and Hauser
on quasi-static motion and gait-free planning for hexapod
walking robots. The proposed approach is based on the
decomposition of the complex planning problem into de-
termining candidate sequence of robot stances followed by
planning feasible paths between the stances. The problem is
more formally defines in the following section.

III. PROBLEM STATEMENT

In the studied gait-free planning for hexapod walking
robot, we consider the three assumptions with the justifi-
cations as follows.

• Quasi-static motion – Superior stability is the main
advantage of the hexapod platform. Therefore, we are
targeting gait-free but quasi-static motion, and thus
we assume the support polygon is formed by at least

three footholds. Besides, the motion is assumed to be
deliberate, such that any dynamic forces are negligible.

• Rigid environment – In scenarios such as exploring
collapsed buildings, disturbing the environment is un-
desirable; therefore, any deformable terrain should be
avoided. However, we consider a model of the non-
rigid environment would be possible to include later.
It is expected to restrict possible footholds further and
put additional requirements on motion planning between
the stances in examining the feasibility of the particular
sequence of stances [21].

• Finite set of footholds – Locally optimal footholds
such as small concavities might be desirable in a
highly structured environment without smooth surfaces.
In general, increasing the number of possible footholds
would increase computational burden; however, due to
the physical dimensions of the foot tips, the footholds
cannot be selected completely arbitrarily. Besides, we
believe footholds set might be locally optimized within
the proposed planning framework, which is considered
to be out of the scope of this paper and is considered for
future work. Thus, foothold selection is out of the scope
of this paper and the footholds on a grid are considered
(see Fig. 1). An informed foothold selection is done
similarly as in [22].

The motion planning is performed within the configuration
space of the considered hexapod walking robot, defined as

C = SE(3)× SO(2)6N (1)

where N is the number of Degree of Freedom (DOF) per
leg. In our practical deployments of the proposed method,
we use N = 3.

Let a stance σ be defined as a partial mapping of the robots
foot tips to footholds. Let the set of all stances be denoted
Σ; since the set of footholds is finite, Σ is finite. Each stance
σ defines a constraint function fσ : C → Rn and a subset of
the configuration space Fσ ⊆ C,

Fσ = {q | q ∈ C ∧ fσ(q) = 0} . (2)

In our case, the constraint function fσ consists of the four
sub-functions as

fσ(q) =


dσ(q)
pσ(q)
l(q)
cσ(q)

 .
The constraints considered are as follows.
• Kinematic contact constraint dσ(q) describes the

position of the robot’s foot tips relative to the footholds
assigned to them by σ.

• Support polygon constraint pσ(q) defines that the cen-
ter of mass has to be inside of the convex hull defined
by the footholds of σ. The convex support polygon is
defined by a set of affine inequalities p̃σ(q) ≤ 0. We use
p̃σ to produce the equality constraint in our paradigm
by setting

[ pσ,i(q) ] =
[

max
(
0, p̃σ,i(q)

) ]
. (3)



• Joint limits l(q) specify the joint angles must be within
their respective ranges. The ranges are also set to pre-
vent collisions between neighbouring legs of the robot.
It is a trivial inequality constraint that is transformed to
an equality constraint in the same way as in (3).

• Collision constraint cσ(q) defines that no part of the
robot may intersect the environment. This constraint is
not as straightforward to define as the previous ones,
and our approach is further discussed in Section IV-C.

The valid subset of the configuration space Cvalid ⊆ C is
defined as

Cvalid =
⋃
σ∈Σ

Fσ . (4)

Let us have a planning task P = (Cvalid, qstart,G) with G
being the set of goal configurations. A sequence

S = q0 σ0 q1 σ1 q2 · · · qn σn qn+1

qstart ∈ Fσ0 , q0 = qstart,
qi ∈ Fσi ∩ Fσi+1

, 1 ≤ i ≤ n
qn+1 ∈ G , qn+1 ∈ Fσn

(5)

is called a candidate sequence of P . The structure of Cvalid
implies that each valid path π : [0, 1] → Cvalid is associated
with such a sequence of stances (σ0, σ1, σ2, . . . , σn) corre-
sponding to the sequence of sets (Fσ0,Fσ1,Fσ2, . . . ,Fσn),
and configurations (q1, q2, . . . , qn), where qi ∈ Fσi−1 ∩Fσi
are further called intermediate configurations. It follows that
an existence of a candidate sequence of the planning task P
is a necessary condition for the existence of π with π(0) = q0

and π(1) = qn+1. The full solution from the candidate
sequence is a path π consisting of subpaths π0, π1, π2, . . . πn
such that

πi : [0, 1]→ Fσi
πi(0) = qi
πi(1) = qi+1

. (6)

Finally, the planning problem can be expressed as an
optimization task to determine a solution P of the minimal
cost; however, it can be expected that even finding a feasible
solution would be computationally demanding. Therefore, in
this paper, we focus on finding a feasible solution satisfying
all the considered constraints.

IV. PROPOSED GAIT-FREE PLANNING METHOD

The proposed gait-free planning method is based on a
decomposition of the planning into two parts. First, a candi-
date sequence of stances is found with intermediate config-
urations. In the second part, the intermediate configurations
are connected to a smooth path that satisfies the requested
motion constraints. This decomposition is motivated by the
high computational cost of finding the smooth motions that
would be too demanding in a solution of the sequencing part.

The existence of a candidate sequence is an indication
that a full path can most likely be found [4]. The stance is a
partial assignment of the robot’s legs to discrete footholds
on the terrain. The assignment is not defined by a gait,
such as a tripod gait with three legs in the support phase
and three legs in the swing phase. The gait-free motion is

realized by examining possible assignments that fulfill the
desired motion and satisfy the robot’s motion constraints.
The proposed method is detailed in the following parts of
this section.

A. Candidate Sequence

The candidate sequence of the planning task is found using
an approximation of the structure of Cvalid by a stance graph
G = (Σ, E), where

E = {(σ1, σ2) | Fσ1 ∩ Fσ2 6= ∅ ∧ |σ1| = |σ2| ± 1} . (7)

We consider that σ2 only adds (or removes) a single foothold
to σ1, and there is a configuration in which both stances are
achievable. Limiting ourselves to adding/removing a single
foothold does not sacrifice generality because any walking
motion can be described by a sequence of stances with such
a property.

The stance graph can be searched using any graph search
algorithm like A*. However, during the search, the existence
of edges in accordance with (7) needs to be validated for
the feasibility of transition between the stances. Hence, we
need to determine a configuration in the intersection of
Fσ1

and Fσ2
to validate edge (σ1, σ2) [4]. The existence

of an edge (σ1, σ2) is equivalent to existence of such an
intermediate configuration that is a part of both Fσ1

and Fσ2
.

Note that the configuration space is most constrained around
these intermediate configurations as they need to satisfy the
constraints of both stances.

Finding intermediate configurations is the narrowest bot-
tleneck of the planning procedure. We follow [4] and sample
configurations close to Fσ1

∩Fσ2
and project them into the

subset using the Newton-Raphson method, i.e., solving the
related set of equations fσ1(q) = 0, fσ2(q) = 0. More
specifically, the “close” configurations are configurations
normally distributed around a nominal configuration of the
robot shifted and rotated in the way to minimize the sum of
square distances of the foot tips to their footholds assigned
by a target stance (‖dσ(q)‖2).

The sampling procedure is summarized in Algorithm 1.
The procedure is also employed to test if Fσ contains a goal
configuration g ∈ G. The constraint function is extended by
the condition of the goal set G. An example is an equality
constraint on the position and orientation of the robot’s body.

For simplicity, but without the loss of generality, we
consider the cost of the edge in the search graph to be 1.
Then, the distance of the centroid of the footholds to the
goal scaled by a factor γ is used as the heuristic for A*.
If γ is the inverse value of the longest possible shift of the
centroid, the heuristic is admissible. However, an admissible
heuristic is not necessary for finding a feasible, not neces-
sarily optimal, solution. Thus, the value of γ can be used
to tune the optimality–search-time trade-off. An example of
the candidate sequence with intermediate configurations is
depicted in Fig. 4.



Algorithm 1: Sample Intermediate Configuration
SampleIntermediate(σ1, σ2)

1: σtarget ← argmaxσ∈{σ1,σ2} |σ|
2: σsuppport ← argminσ∈{σ1,σ2} |σ|
3: for i ∈ {1 . . .MaxIteration} do
4: q ← SampleNeighbourhood(σ1, σ2)
5: q ← SolveNewtonRaphson(q, fFσ support∩Fσ target )
6: if fFσ support∩Fσ target(q) ≤ ε then
7: RETURN q
8: end if
9: end for

10: END failure

SolveNewtonRaphson(q, f )
1: for i ∈ {1 . . .MaxIterationNR} do
2: v← f(q)
3: δ ← Jf

† · v
4: α← 1
5: while ‖f(q − αδ)‖2 > f(q) do
6: α← α/2
7: end while
8: q ← q − αδ
9: if f(q) ≤ ε then

10: RETURN q
11: end if
12: end for
13: END failure

SampleNeighbourhood(σ1, σ2)
1: σtarget ← argmaxσ∈{σ1,σ2} |σ|
2: θ0 ← NominalJointPositions
3: p0 ← argminp∈SE(3)

∥∥dσtarget ((p,θ0))
∥∥

2
4: ν ← N (0,W)
5: RETURN (p0,θ0) + ν

B. Connecting Intermediate Configurations

Having a candidate sequence, a smooth path is being
determined to validate the sequence; or the sequence is aban-
doned if a feasible path is not found. Given the intermediate
configurations qi ∈ Fσi−1

∩ Fσi and qi+1 ∈ Fσi ∩ Fσi+1
,

a smooth path between them has to satisfy the constraint
function of Fσi .

Finding a smooth path can be formulated as a continuous
optimization problem, and we propose parameterizing the
path π : [0, 1]→ Cvalid as the Bézier curve in the configura-
tion space. The Bézier curve of the degree d is defined by
d+ 1 control points Q = [qc,0, qc,1, . . . qc,d] as

πQ(t) =

d∑
i=0

(
d

i

)
(1− t)d−itiqc,i. (8)

The degree of the curve can be used to control the path
complexity. Here, we assume that a low degree can avoid
unnatural motion of the robot, similarly to how a low ca-
pacity model can help avoid overfitting in machine learning.
Therefore, we first attempt to construct a path using a low

degree, the degree of three is sufficient for the simplest
motions, and restart the procedure with more control points
if it fails, but up to the defined maximum degree.

The path constraint function is defined using the constraint
function of Fσ0

as

fπQ,σ(Q) = max
t
‖fσ,0(πQ(t))‖2 (9)

where the control points are initialized to a linear interpola-
tion of qi and qi+1 such that qc,0 = qi and qc,d = qi+1. The
position of the control points qc,1, . . . qc,d−1 are adjusted by
using the Newton-Raphson method to solve fπ,σ(Q) = 0.

Algorithm 2: Find Path
FindPath(σ,q1,q2, d)

1: Q←
[
q1 + i

d (q2 − q1) | for i ∈ {0, . . . , d}
]

2: for i in MaxIteration do
3: tworst ← argmaxt∈[0,1] ‖fFσ (πQ(t))‖2
4: qworst ← πP(tworst)
5: v← f(qworst)
6: if ‖v‖2 ≤ ε then
7: RETURN Q
8: end if
9: δ ← Jf

† · v
10: α← 1
11: while ‖f(qworst − αδ)‖2 > f(qworst) do
12: α← α/2
13: end while
14: Q← Q− αδ · bd,0(tworst)

T
/ ‖bd,0(tworst)‖2

15: end for
16: if d = MaxDegree then
17: END failure
18: else
19: FindPath(σ, q1, q2, d+ 1)
20: end if

In each iteration of the optimization, the curve is sampled
with the desired granularity, and the value for tworst with the
most severe constraint violation is picked. A single iteration
of Newton-Raphson method is performed for πQ(tworst).
The control points are shifted by the resulting step weighted
by the coefficients of bd,0(tworst), where

bd,0(t) =


0(

d
1

)
(1− t)d−1ti

...(
d
d−1

)
(1− t)td−1

0

 , (10)

and normalized such that the coefficients sum to 1. The path
finding procedure is summarized in Algorithm 2.

C. Collision Constraint

We do not use mesh interference methods to detect col-
lisions with the environment as in [4]. We consider mesh
interference relatively slow, but more importantly, it does not
measure how much the collision-free constraint is violated
or how close we are to violating it. Furthermore, it also does



not provide any hints on how to move the robot out of the
collision. Therefore, we use a method based on geometric
primitive and a distance-to-terrain look-up table to avoid
those shortcomings.

Fig. 2. Sphere-based robot collision model approximation.

The shape of the robot is approximated by enveloping
its links with a small set of spheres, see Fig. 2. Signed
Distance Field (SDF), a 3D look-up table, is obtained using
the ANYbotics grid map package [23]. The SDF can
be efficiently computed using a “distance transform of a
sampled function” [6]. Using the SDF, it is possible to
compute the direction and distance to the nearest obstacle
quickly. If the distance of the sphere’s center to the terrain
is shorter than its radius, it is in a collision. The information
about the direction to the obstacle allows us to compute
Jacobian of the collision constraint used in the Newton-
Raphson method.

Let the robot be covered by a set of m collision spheres
(ri, ci(q)), i ∈ {1, 2, . . . ,m}, where ri is the radius of the
i-th sphere and ci(q) is the position of its center given
the configuration q. The collision margin function c̃σ(q) is
defined as

c̃σ(q) =


SDFσ (c1(q))− r1

SDFσ (c2(q))− r2

...
SDFσ (cm(q))− rm

 (11)

and the collision constraint function cσ(q) can be then
defined similarly to (3) as

[ cσ,i(q) ] = [ max (0,−c̃σ,i(q)) ] . (12)

The function SDFσ : R3 → R is the SDF with the collision
threshold relaxed near the footholds of the stance σ. It returns
a distance to the terrain reduced by the collision threshold.
It gives a negative distance if the query point is inside the
collision threshold. Note that when planning the step in Fσi
(using Algorithm 2) the collision threshold also needs to be
relaxed near the footholds of σi−1 and σi+1.

V. EMPIRICAL EVALUATION RESULTS

The empirical evaluation of the proposed gait-free plan-
ning for hexapod walking robots has been performed in a
testing scenario motivated by [9] that is depicted in Fig. 3
for a comparison. In that setup, the robot has to cross a

gap using two “beams” with “holes” in them. However, the
scenario is solvable using a “terrain-aware” crawling gait.

Fig. 3. The setup used in [9]

The proposed planner targets more challenging scenarios
where not all legs can find a foothold in the gait-defined
stance and support phases. Therefore, we create a more

(a) Narrow gap scenario

(b) Wide gap scenario

Fig. 4. Visualization of the evaluation scenarios and the respective
candidate sequences.

challenging virtual experimental setup, where we replace one
of the beams with a “stepping stone” with only a single
foothold. The created problem requires precise motion plan-
ning and a solution of the sequencing part to determine the
suitable sequence of stance and swing phases. Furthermore,
we modify the scenario to create an even more challenging
planning problem with a wider gap to be passed. Thus,
the proposed planner has been examined in two evaluation
scenarios that are visualized in Fig. 4 with a set of footholds
distributed in a grid pattern for simplicity. Besides, the
performed planned motion is also shown.

The computational kinematic model is of the hexapod
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(b) Wide gap scenario

Fig. 5. Leg contact diagram in narrow and wide gap scenarios. Blue cells signify the leg is in the stance phase.

(a) Single step in the narrow gap scenario (b) Single step in the wide gap scenario

Fig. 6. Single step parametrized as the Bézier curve in the configuration (joint) space.

walking robot deployed in [24]. The planner has been imple-
mented in C++, and the computational environment consists
of the Intel i7-8565U running at 4.6 GHz accompanied by
32 GB RAM.

TABLE I
SEQUENCING RESULTS

Scenario γ
Time No. of Stance Sequence
[min] Expansions Length

Narrow 1000 55 4677 155
Wide 1000 31 3375 155

A summary of the sequencing part of the planning is
depicted in Table I; it lists the planning time, the number of
expanded stances, and the length of the resulting sequence.
The heuristic scaling factor γ = 1000 is used in both cases.
The contact diagrams representing which legs are assigned
to a foothold by individual stances in the found sequences

are visualized in Fig. 5.
One “interesting” step is selected in each sequence to

demonstrate the proposed step planning with the Bézier curve
parametrization. The stances at which the step is taken and
the two adjacent stances are marked in the contact diagram
in Fig. 5. In the narrow gap scenario, the step is chosen
for the situation where the right-rear leg is moved between
two distant footholds, see Fig. 6a. In the wide gap scenario,
the chosen step is when the robot switches the right-front
leg for the right-middle leg on the stepping stone, shown in
Fig. 6b. The planning results for the two described steps are
summarized in Table II showing the maximal degree of the
Bézier curve, the number of iterations of Algorithm 2, the
planning time, and the used tolerance ε.

Discussion: The feasibility of the proposed gait-free plan-
ning has been validated in the evaluation scenarios. The gait-
free property can be observed in the diagram of the individual



TABLE II
STEP PLANNING RESULTS FOR SINGLE STEP

Scenario Max No. of Time ε
Degree Iterations [sec] [m]

Narrow 5 747 4.0 0.001
Wide 6 1465 8.3 0.001

legs’ contact with the ground. Notably, in the scenario with
the wide gap, the right-middle leg is placed on the “stepping
stone” for a significant portion of the sequence. The right-
rear leg is not in any foothold for most of the sequence,
demonstrating the gait-free capability of the hexapod walking
robot. The sequencing part is computationally demanding
because each sequence induces expensive sampling of the
intermediate configurations needed to validate the graph
edges. However, we expect the performance can be improved
by a more informed heuristic and employing fast rejection
of infeasible edges. Early results support that idea, but a
detailed description is out of the scope of the paper. On the
other hand, the single-step planning using low-capacity path
parametrization shows to be a suitable choice. Even the steps
with a substantial difference between the initial and the final
configurations have been successfully determined up to the
specified precision.

VI. CONCLUSION

In this paper, we present a gait-free planning framework
for hexapod walking robots based on decomposition into
the sequence determination and sequence validation parts.
In the sequencing part, a candidate sequence of stances
with intermediate configurations provides a necessary con-
dition heuristic on feasible paths connecting the stances
in the sequence. In the sequence validation part, finding
smooth paths that connect the intermediate configurations
is attempted considering the robot’s motion constraints. A
feasible solution is provided if a complete path is found.
The sequencing procedure is relatively slow in the current
state; however, it provides the candidate sequences needed
for planning while considering all the constraints – even
collisions with the terrain. We believe it can be further
accelerated by a more refined heuristic function and a fast
test for rejecting infeasible edges. The proposed low-capacity
parametrization in single-step planning showed to be a viable
approach; however, we plan to validate the generalizability
of the parametrization to platforms with different kinematics.
Besides, we aim to validate the approach on real hexapod
crawlers.
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