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Abstract— In this paper, we address robot localization using
Simultaneous Localization and Mapping (SLAM) with Light
Detection and Ranging (LiDAR) perception enhanced by visual
odometry in scenarios where laser scan matching can be
ambiguous because of a lack of sufficient features in the scan.
We propose a Graph-based SLAM approach that benefits from
fusing data from multiple types of sensors to overcome the
disadvantages of using only LiDAR data for localization. The
proposed method uses a failure detection model based on the
quality of the LiDAR scan matching and inertial measurement
unit data. The failure model improves LiDAR-based localization
by an additional localization source, including low-cost black-
box visual odometers like the Intel RealSense T265. The
proposed method is compared to the state-of-the-art localization
system LIO-SAM in cluttered and open urban areas. Based on
the performed experimental deployments, the proposed failure
detection model with black-box visual odometry sensor yields
improved localization performance measured by the absolute
trajectory and relative pose error indicators.

I. INTRODUCTION

The localization is important for many mobile robotics

applications, including underground exploration, indoor in-

spection, and outdoor navigation. In these scenarios, the

robot’s sensors-based localization is needed if external local-

ization systems, such as satellite navigation, are unavailable

or do not work reliably because of signal reflections from

tall structures. The widely adopted method for localizing

a robot using its sensors is Simultaneous Localization and

Mapping (SLAM) [1], which becomes the de-facto standard

in applications where a prior map of the environments cannot

be utilized. SLAM can be based on data from various

sensors, including Light Detection and Ranging (LiDAR)

laser scanners [2], visual cameras [3], Inertial Measurement

Units (IMU), or wheeled odometry, to name just a few.

Using exteroceptive sensors to build a map of the op-

erational environment within which the robot is localized

allows for decreasing the localization drift compared to

purely proprioceptive incremental methods such as odometry

and dead reckoning. Even matching only consecutive frames

using Visual Odometry (VO) [4] helps to overcome drifts

of IMU measurements or slippage of wheeled odometry.

Nevertheless, the map’s quality is important and related to
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Fig. 1. A situation where LiDAR scan can be aligned with the previous
scans (map) in multiple ways since the area covered by the scan is
mostly flat, which prompts scan-matching ambiguity. A dense map of the
environment is in purple. Distance data of the current scan are denoted in
blue to red.

the data quality, specifically the depth estimates of the range

measurements. Current LiDAR sensors provide relatively

precise range measurements and can have resolution over

one hundred lines [5]. These properties make them suitable

for localization, especially in cluttered environments, where

LiDAR scans can be precisely matched with respect to

(w.r.t.) each other [6]. However, the scan matching may

be ambiguous in long corridors or flat fields, leading to

localization failure or high drift, as depicted in Fig. 1.

Incremental localization methods, such as IMU and

odometry-based methods, including VO, might help to over-

come areas where LiDAR scan matching is ambiguous

locally, albeit it can lead to higher drift than the LiDAR-

based SLAM in the long run. Thus, combining data sources

can be advantageous in SLAM, and two main sensor fusion

approaches can be found in the literature. The first is

tightly-coupled methods that account for sensor raw data,

such as in LiDAR Inertial Odometry via Smoothing and

Mapping [7] (LIO-SAM), where an IMU displacement mea-

surement serves as an initial guess for the scan-matching.

The second class of methods uses a loosely-coupled ap-

proach to fuse multiple localization sources, meaning that

two displacement outputs from localization systems are fused

at the top. Consequently, the resulting estimation tends to be

more robust as a failure of one source does not provoke

the failure of another one. Also, loose coupling allows

the integration of several independent localization systems,

making the whole system modular and easily replaceable

compared to tightly-coupled systems.

In this paper, we propose an extension of the Pose-
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Fig. 2. Result of the proposed Graph-based LiDAR-Inertial SLAM with
loosely coupled visual odometry on the rural dataset. Notice that even
though the matching of the LiDAR scans was unsuccessful in some areas,
the proposed method can use scale and pose drifting visual localization
VINS-Mono to overcome such areas and close the loop.

Graph SLAM, combining tightly and loosely coupled ideas.

We propose to use tightly coupled sensory fusion between

LiDAR and IMU, similar to LIO-SAM. Besides, the de-

veloped solution allows utilizing additional sources of pose

estimates in a loosely-coupled manner, improving the SLAM

performance when LiDAR data matching fails. Various

methods of incremental localization can be loose-coupled

in the proposed method, such as visual localization, wheel

odometry, RADAR-based localization [8], or thermal-inertial

odometry [9]. Nevertheless, the properties of the proposed

method are demonstrated while using a black box embed-

ded stereo visual localization system, the Intel RealSense

T265 (T265) [10], and visual-inertial localization VINS-

Mono [11].

We propose a relatively straightforward failure detection

model that triggers the incorporation of the additional low-

quality pose estimate into the developed Pose-Graph SLAM.

The model assesses LiDAR scan matching quality to indicate

possible matching failure and IMU-based pose change pre-

diction to confirm the failure for switching the pose estimate.

Incorporating the additional localization source is enhanced

by an auto-scaling mechanism and improved graph structure.

The triggering threshold has been experimentally estab-

lished using a real robotic system; the proposed Graph-based

SLAM has been deployed in several deployments and com-

pared with the selected state-of-the-art LiDAR-based SLAM.

Based on the experimental results, the proposed method

demonstrates improvement of the localization performance

by the additional source of the incremental localization while

not sacrificing LiDAR-based performance in scenarios where

LiDAR scan matching performs well, see Fig. 2. We consider

the main contributions of the proposed approach as follows.

• Modular enhancement of existing Pose-Graph SLAM

by a loosely coupled additional localization system.

• Two-step failure detection model, allowing detection of

scan matching failure.

The rest of the paper is organized as follows. Section II

overviews the related literature, including a brief descrip-

tion of the selected reference LIO-SAM framework. The

proposed method is described in Section III. Experimental

results are reported and discussed in Section IV. Finally, the

paper is concluded in Section V.

II. RELATED WORK

Many SLAM systems have been proposed [2], [3] and

evaluated in the Kitti benchmark [12]. Based on the results

reported in [12], most of the top ten performing methods use

LiDAR measurements for robot pose estimation. One of the

top-performing LiDAR-based methods is LOAM [13], albeit

it lacks an explicit loop closure and is limited to only one

type of sensor. On the other hand, multiple possible sensors

are used in the RTAB-Map [14], which is a general tightly-

coupled LiDAR-Visual SLAM framework using multiple

graph frameworks. However, failure handling is not resolved

in the framework yet, and the authors mention it as a future

research direction.

Contrary to the RTAB-Map, the authors of [15] loosely

coupled several localization sources. The first step of the

coupling is the sanity check, where localization failures are

identified for each localization source using the dynamic

model of the vehicle. Then, Chamfer distance-based [16]

score is used to select the best pose estimate. The advantage

of [15] is high robustness, but since the localization sources

are completely independent, the visual odometry cannot help

the LiDAR-based SLAM to close the loop in the case

of temporal LiDAR-based SLAM failure. Furthermore, the

Chamfer distance-based score measures the alignment of the

LiDAR scans. It does not directly detect when the perfect

alignment of LiDAR scans may correspond to a wrong

displacement in monotonous corridors or fields.

In [17], the authors review available sensory fusion ap-

proaches for LiDAR-Visual SLAM. They mention that the

graph-based SLAM [1] is often used for sensor fusion

because it abstracts from raw measurements. The approach

represents measurements, poses, and observations in a graph

structure. Pose-graph SLAM [18] is a specific kind of

graph-based SLAM that is the most used nowadays. It

restricts the graph’s nodes to be poses and positions of

robots and landmarks and edges to be measurements-based

constraints between them. The authors of [19] demonstrate

the computational advantages of the pose-Graph SLAM for

large-scale maps, comparing the solution with conventional

filtering approaches. The approach is further explored in

[20], where the authors review iSAM2 [21], which iteratively

re-optimizes only nodes influenced by new observations.

Multiple graph optimization frameworks have been proposed,

but ORB-SLAM3 [22] uses the g2o library [23] in Loop

Closure for Bundle Adjustment [24] to improve the Visual-

Inertial Odometry. In VINS-Mono [11], the authors present a

Visual-Inertial SLAM solution that fuses a monocular camera

and IMU in a tightly-coupled manner for obtaining odometry

and optimizing the global trajectory with pose-graph SLAM.

LiDAR-Inertial odometry is the core of LIO-SAM [7]

that uses scan matching based on LOAM [13], where the

initial guess of the LiDAR pose is based on integrated



KF1

KF2

KF3

KF4

sf13

sf41 sf42

sf12

sf11

Lidar-based

 odometry factor

sfij
j-th subframe

after i-th keyframe

Inital guess

by IMU

Currently inserted

subframe

Keyframes, used for

scan-matching (distance)

Keyframes, used for

scan-matching (time)

Loop closure

factor

KFi

i-th keyframe

(pose + scan)

LiDAR-based

odometry

(temporal)

Fig. 3. Map optimization graph in LIO-SAM [7].

IMU measurements. The scans aligned by LiDAR odom-

etry are marked as keyframes if the distance from a pose

corresponding to the previous keyframe is above a certain

threshold. Otherwise, the pose is treated as a temporal sub-

frame. The relations between the keyframes are represented

by constraints that are used to construct a sparse graph within

the GTSAM [25] optimization framework. Loop closure is

then performed as a parallel process using the Iterative

Closest Point (ICP) [26], and the loop constraints are added

if the ICP converges. For the loop closure detection, the

latest keyframe is attempted to be matched against the nearby

keyframes, including recent keyframes and keyframes that

are close to the current robot pose. If the matching of the

keyframes is successful, the transformation between them is

inserted into the graph as a constraining factor. The graph

structure is illustrated in Fig. 3.

LIO-SAM is further extended by tightly-coupled VO in

LiDAR-Visual-Inertial Odometry via Smoothing and Map-

ping (LVI-SAM) [27]. LVI-SAM tightly couples LIO-SAM

with Visual SLAM VINS-mono [11] to improve performance

in challenging scenarios using sensor-specific failure detec-

tors for LiDAR and VO. However, such an approach does not

support flexibility in changing the source of additional local-

ization systems and restricts end-users to specific additional

sensors (camera) and algorithms (VINS-mono).

Based on the literature review, we opt for LIO-SAM

as a suitable base system for integrating the additional

sensor for localization. It provides the advantage of a great

performance of LiDAR-based methods [12] while avoiding

the disadvantage of the tightly-coupled visual odometry of

LVI-SAM, which supports only the specific method of visual

odometry. LIO-SAM framework accounts for ambiguities of

the scan-matching by checking scan-matching convergence.

The convergency is then reflected in uncertainties while

optimizing IMU measurements. On the other hand, the sys-

tem is developed for structure-rich environments. Besides, it

does not explicitly handle situations where the scan-matching

results are completely unusable. Both the drawbacks are

addressed by the proposed loosely-coupled combination of

LiDAR-Inertial SLAM and VO.

III. PROPOSED METHOD

The proposed loosely coupled VO with the graph-based

LiDAR-Inertial SLAM leverages LIO-SAM [7]. It uses the

same way of calculating LiDAR-Inertial odometry (referred

to as LiDAR-based odometry). However, we modify the

factor graph construction to incorporate measurements from

an additional localization system, such as VO. The inputs to

the proposed method are LiDAR scans, IMU measurements,

and pose estimates of the additional localization system(s).

Although the proposed approach is general, we consider

Visual-Inertial Odometry (VIO) as the additional localization

system that produces a 6 DoF robot pose estimate to present

the proposed concept. The following assumptions are made

in the design of the proposed method.

• For simplicity of the description, only a single addi-

tional localization system VIO is used, albeit multiple

localization sources can be straightforwardly utilized.

• The additional localization system provides pose esti-

mates w.r.t. to the same coordinate frame as the LiDAR-

based odometry.

• All sensors’ data is synchronized in time.

The proposed method consists of two parts: (i) failure de-

tection, which indicates that LiDAR-based odometry failed,

and (ii) visual localization integration, which integrates the

additional localization into the factor graph in the case of

the detected failure.

A. Failure Detection

Failure detection starts with the failure indication defined

by the Failure indicator Ifail. If the indication is positive,

Failure resolution determines if VIO provides a more suitable

pose estimate than the LiDAR-based odometry. The overview

of the failure detection process is depicted in Fig. 4, and it

works as follows.
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Fig. 4. Failure detection algorithm.

The failure indicator IFail is combined from two compo-

nents: convergence indicator IConv and IMU-based indicator

IIMU as

IFail = IIMU or IConv. (1)

IConv is triggered when the LiDAR scan matching does

not converge, but it might not cover all cases when it is

suitable to switch to VIO. Therefore, we also use IIMU to

increase the failure detection rate, which is supported by the

experimental results reported in Section IV-A. The advantage

of IIMU is that it is not directly influenced by a lack of

spatial and visual features in the environment. The indicator

uses a rough estimation of the robot motion by IMU-based

odometry increment TIMU ∈ SE(3) to estimate the adequacy



of the LiDAR-based odometry increment TLiDAR ∈ SE(3).
Using LiDAR scans at 10Hz to improve the estimate of the

robot motion ensures that the IMU-based motion estimates

do not suffer from localization drift by integrating IMU

measurements for an extended period. The difference of the

increments DIMU-LiDAR is computed as

DIMU-LiDAR = TIMU · T−1

LiDAR. (2)

We analyze the norm of the rotational component and a

translational component of the difference defined by

rIMU-LiDAR = || rot(DIMU-LiDAR)||
ANG

tIMU-LiDAR = || trans(DIMU-LiDAR)||
(3)

where rot(DIMU-LiDAR) ∈ SO(3) is the rotational component

and trans(DIMU-LiDAR) ∈ R3 is the translational component

of DIMU-LiDAR. The term || · ||ANG denotes the angular metric

of the rotation that is determined as a rotation angle of the

angle-axis representation of the rotation.

The IMU indicator IIMU works as an outlier detector [28],

and it is defined as logical or of two threshold values

IIMU = (rIMU-LiDAR > cr) or (tIMU-LiDAR > ct) (4)

that triggers when either the rotational or translational

component of the difference DIMU-LiDAR is larger than the

corresponding thresholds cr and ct, respectively. The thresh-

olds are determined experimentally using outlier detection

methodology; see the following section.

The failure resolution begins if the failure indicator IFail (1)

is true. The VIO pose estimate is used if it is significantly

closer to the IMU-based odometry than the LiDAR-based

odometry. Thus, the resolution is defined by the following

condition
(rIMU-VIO < α · rIMU-LiDAR)

and

(tIMU-VIO < α · tIMU-LiDAR)
(5)

where rIMU-VIO and tIMU-VIO are defined similarly to the IMU-

LiDAR difference DIMU-LiDAR defined in (3).

Note that the LiDAR-based odometry failure might be

indicated based on IFail, but failure resolution (5) would not

activate the usage of VIO pose estimate if the latter does not

improve the LiDAR-based one. We incorporate an empiri-

cally obtained α = 0.8 factor in the IMU-LiDAR difference

when considering additional odometry over LiDAR. It is

done to ensure the significance of any potential improvement

by additional odometry and account for IMU noise.

B. Visual Odometry Integration – Scale Self-Adjustment

Let us suppose the LiDAR-based odometry failure is indi-

cated, and VIO provides more precise localization according

to the rule (5). In that case, the VIO is incorporated into the

factor graph in place of the LiDAR-based odometry, intro-

ducing a constraint between the keyframes if the keyframe

is inserted. Since the additional odometry (such as visual

or wheeled) might suffer from a wrong scale or slow scale

drift, the proposed method performs dynamic scale self-

adjustment, estimating the scale of the odometry when the

LiDAR-based localization is considered sufficiently precise.
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Fig. 5. The proposed method for combining the LiDAR-based odometry
with VIO-based pose estimate increments.

We propose to utilize the median value of the moving

window to compute the scale. In particular, 500 keyframes-

long window includes the past ratios of the absolute values

of the translations tVIO/tLiDAR, where tïsourceð is the norm

of the translational part of the odometry increment. Then,

the factor graph structure is created according to the scheme

depicted in Fig. 5 as follows.

• The LiDAR-based odometry creates constraints be-

tween the previous and the new keyframes based on

scan-matching when the LiDAR-based odometry works

successfully. When the new LiDAR scan (frame) is

available, it is scan-matched against a reference map

combined with the nearby keyframes to create such a

constraint. Similarly to LIO-SAM, only if the estimated

pose increment exceeds a configurable threshold the

frame is inserted into the map as a keyframe. Otherwise,

it is treated as a temporal sub-frame to improve the ini-

tial guess of the next frame pose and output localization

information.

• On the other hand, the VIO constraint is inserted instead

of the LiDAR-based one if the failure is detected.

However, in contrast to LiDAR-based constraints, the

VIO-based ones are not guaranteed to be optimized

for the keyframes alignment as they optimize visual

features alignment and may suffer from the incorrect

and drifting scale. Thus, combining keyframes con-

nected with VIO-based constraints can result in a poorly

aligned reference map, and a new LiDAR scan would

not be successfully matched against such a reference

map. Therefore, only keyframes inserted after the last

VIO usage are combined in the reference map when the

new LiDAR scan is processed.

Finally, it is necessary to properly handle Loop closure

constraints of the graph-based SLAM that aim to match

keyframes that are far from each other. These constraints

may fix the drift introduced by the VIO constraints. How-

ever, false loop closures may appear for the structure-



less keyframes, consequently breaking the graph. Therefore,

keyframes corresponding to the LiDAR-based odometry fail-

ure are deemed unsuitable for loop closures. Further, the

inserted VIO constraints are set to have ten times larger

uncertainty than the LiDAR-based ones to ensure that loop

closure constraints will fix only VIO constraints without

affecting LiDAR-based constraints significantly. The effect

of the proposed loop closing system has been experimentally

examined, and results are reported in the following section;

in particular, the effect is demonstrated in Fig. 10.

IV. EXPERIMENTAL RESULTS

The proposed method has been experimentally validated

using a four-wheeled skid-steered robot Husky. The robot

was equipped with the Ouster OS0 LiDAR with 128 lines,

and the maximum range is approximately 50m, a 9-axis

IMU Xsens MTi-30, and a fisheye stereo tracking camera,

the Intel RealSense T265 (T265). T265 provides out-of-

the-box VIO odometry, but its internal loop closures have

been disabled to make it compliant with made assumptions

on the additional localization systems. The careful extrinsic

calibration by measuring the relative pose of T265 w.r.t. the

LiDAR was done to comply with the proposed method’s

assumptions. Thus T265 pose estimations were transformed

into the LiDAR frame before using them by the proposed

method. The 3 DoF ground truth localization of the robot

has been recorded using the Leica TS16 total station, shown

in Fig. 6a.

(a) Total station setup (b) Bird’s-eye view on urban campus area

Fig. 6. The urban experimental scenario at the Czech Technical University
in Prague campus at Charles Square.

The LIO-SAM itself was already evaluated using publicly

available datasets in [7]. In this work, we primarily focus

on areas that induce the scan matching ambiguity. Thus, two

environments have been considered for system performance

evaluation. The first environment is the backyard area of

the Czech Technical University (CTU) in Prague campus at

Charles Square, depicted in Fig. 6b. The second environment

is a parking lot at Prague’s outskirt visualized in Fig. 7.

While the first environment can be considered structure-rich,

the parking lot in the rural area contains wide-open loca-

tions where LiDAR scans do not provide sufficient features

for successful scan matching. The testing environments are

denoted as campus and rural scenarios.
The length of the traveled trajectory is 285m and 300m

for the campus and rural scenarios, respectively. The pro-

posed method is examined with different failure indicators to

(a) Used wheeled robot (b) Bird’s-eye view on a parking lot

Fig. 7. Experimental parking lot scenario in Prague’s outskirts.

justify the combined indicator denoted IMU + Convergence.

Besides, the performance is compared with the LIO-SAM [7]

as the former localization method to show the benefits of the

proposed loosely-coupled VIO.

The evaluation is based on the methodology [29] using

medians of the absolute trajectory error ATEt and relative

pose error RPEt indicators considering the translational parts

of the localization error. In particular, ATEt evaluates the

global accuracy of the trajectory, while the median RPEt

estimates the local consistency of the localization (drift).

For RPEt, the step ∆ is set to 1m, which corresponds to

the minimum distance between consecutive poses. Besides,

the standard deviation STDt of the RPEt is reported to

account for outliers. The indication Fail is used in cases

when the system received corrupted odometry, which led to

wrong IMU bias estimation. Such situations prevented the

localization system from recovering.

A. Parameterization of the Failure Detection

The failure detection model’s parameters have to be es-

timated, and the following intent describes the estimation.

Note that these results are only used to calibrate the pro-

posed method but do not serve to estimate the performance

of the proposed method. The proposed IMU-based failure

detection model is based on outlier detection [28] for differ-

ences between IMU-based and LiDAR-based pose increment

DIMU-LiDAR as of (4) with two established threshold values cr
and ct, which single out the outliers (failures). The threshold

values are set as follows.
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Fig. 8. Histograms of DIMU-LiDAR differences in the campus scenario. The
threshold values cr and ct are established as 95 percent quantiles depicted
by the vertical line segment.

We model the baseline distributions of differences

rIMU-LIDAR and tIMU-LIDAR in the non-failure scenario and

set the outliers thresholds as 95 percent quantiles of the



distributions as shown in Fig. 8. LiDAR-based odometry

provides satisfactory results that can be treated as ”Non-

Failure” in the full-range campus dataset; thus, the data

is used to model the distribution. Note that the data used

does not intersect with data from the campus dataset in

reported evaluation tables, ensuring that the model tuning

and evaluation are performed using different data.

B. Performance in the Campus Scenario

The robot has been operated in the campus scenario where

the total station provides the ground truth data for evaluation.

We examine the localization performance of the proposed

method based on the scan-matching failure indicator IConv

only and with both indicators IConv and IIMU. First, we

examine the method using only the scan-matching failure

indicator and using both indicators. Limiting the LiDAR

range to 10m has induced the scan-matching ambiguity as

illustrated in Fig. 1.

TABLE I

LOCALIZATION PERFORMANCE IN THE CAMPUS SCENARIO WITH AND

W/O FAILURE DETECTION AND LIDAR RANGE CROPPED TO 10m

Method / Failure Indicator ATEt [m] RPEt [m] STDt [m]

LIO-SAM [7] (No indicator) Fail Fail Fail

Proposed IMU Fail Fail Fail

Proposed Convergence 5.35 0.08 0.22

Proposed IMU + Convergence 4.70 0.06 0.26

Fail indicates the method has not been able to produce reasonable results.

The results in Table I indicate that a solo IMU-based indi-

cator cannot detect failure by itself but significantly improves

the performance when combined with the convergence-based

indicator, reflected in more precise localization results.

TABLE II

LOCALIZATION PERFORMANCE IN THE CAMPUS SCENARIO WITH FULL

LIDAR RANGE AND LIMITED RANGE TO 10m

Full range Limited range

Method ATEt RPEt STDt ATEt RPEt STDt

[m] [m] [m] [m] [m] [m]

LIO-SAM 0.08 0.04 0.03 Fail Fail Fail

T265 16.40 0.83 0.50 16.40 0.83 0.50

T265 scaled* 7.06 0.20 0.30 7.06 0.20 0.30

Proposed
method (w/o lc)

0.13 0.04 0.03 4.70 0.06 0.26

Proposed
method (with lc)

0.13 0.04 0.03 2.8 0.08 0.3

Fail indicates the method has not been able to produce reasonable results.
*Odometry scaled to optimize ATEt with the constant scale factor after the
experiment.

Next, we examine the proposed method and LIO-SAM

in two setups: full range and limited range. Besides, we

consider the method in two setups: without and with the

loop closure (lc). The methods are fed with data directly

captured by LiDAR without any range restrictions for the

full range. However, for the limited range, LiDAR’s range is

cropped to 10m to examine the localization system perfor-

mance under conditions where LiDAR scan matching might

be ambiguous. In addition to LIO-SAM and the proposed

method, we evaluate the localization provided by the T265

with its and with the optimal scale. The optimal scale is the

scale minimizing the ATEt for the T265 trajectory, estimated

after the experiment and applied to the entire T265 trajectory.

It is considered to estimate the best possible reachable

result using T265 with the constant scale. Nevertheless,

the proposed method is inputted with the raw T265 data,

estimating the scale online using the method introduced in

Section III-B. The performance indicators are depicted in

Table II and trajectories in Fig. 9.
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Fig. 9. Aligned trajectories in the campus dataset.

The presented results support the hypothesis that the

environment is structure-rich for the full range and that LIO-

SAM and the proposed method provide competitive results.

On the other hand, T265 suffers from localization drift and

provides worse results, but as rarely used, it only slightly

worsens the performance of the proposed method compared

to LIO-SAM. However, when the LiDAR range is cropped to

10m, LIO-SAM fails to output any feasible result once the

robot enters the area where it is too far from the buildings.

The limited LiDAR scans are ambiguous for the scans-

matching algorithm, and the whole localization fails. The

proposed method handles these ambiguous LiDAR scans by

switching to VIO, as shown in Fig. 9b. Although it introduces



(a) Before loop closure

(b) After loop closure

Fig. 10. Loop closure example conducted by the proposed method in the
campus scenario.

a drift caused by the additional odometry, it performs best.

Finally, we examined the loop closure of the proposed

method. The obtained maps and trajectories before and after

the loop closure are depicted in Fig. 10. It can be observed

that the loop closure compensates for the drift introduced by

the relatively low-quality VIO. The resulting map is aligned

because the loop closure constraint optimized the trajectory

where the LiDAR-based odometry was ambiguous, which

is the flat region at the right part of the map. At the same

time, LiDAR-based constraints that align keyframes with no

ambiguity are almost not changed because those have much

lower uncertainty in the graph structure. In Table II, it can be

seen that for the limited range setup, the loop closure highly

improved global consistency reflected by the ATEt metric

while slightly worsening local consistency reflected by the

RPEt metric.

C. Performance in the Rural Scenario

The next deployment took place in the rural scenario with

wide open areas. In this case, we use fisheye images from

the T265 processed by the VINS-mono [11] odometry to

show the flexibility of the proposed method to incorporate

measurements from various types of additional localization

systems. Thus, we examine the performance of LIO-SAM,

TABLE III

LOCALIZATION PERFORMANCE IN THE RURAL SCENARIO

Method ATEt [m] RPEt [m] STDt [m]

LIO-SAM Fail Fail Fail

VINS-Mono 10.9 0.39 0.25

VINS-Mono scaled* 4.97 0.42 0.18
Proposed method (w/o lc) 7.7 0.19 0.13

Proposed method (with lc) 2.4 0.15 1.0

Fail indicates the method has not been able to produce reasonable results.
*The odometry scaled to optimize ATEt with the constant scale factor after the
experiment.

VINS-Mono, and two variants of the proposed method, with-

out and with loop closure (lc). The results are summarized

in Table III.

From the results, it can be seen that the proposed method

performed better than LIO-SAM since it did not fail. VINS-

mono provided the robot with smooth but scale and pose

drifted odometry. It can be seen in Fig. 11a that due to

the loop closure, the proposed method is able to re-estimate

the whole trajectory, mainly altering the part where the

additional odometry was used. The trajectories the evaluated

methods provide are depicted in Fig. 11b.
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Fig. 11. Proposed method results in parking dataset.



V. CONCLUSION

We propose an augmentation of the graph-based SLAM

based on LiDAR-Inertial odometry in a modular way for

incorporating an additional localization source. Although

the additional localization is combined with the LiDAR-

Inertial odometry in a loosely-coupled manner, the resulting

factor graph can be optimized by identifying loop closures

based on LiDAR data even in cases when LiDAR scans

matching failed at some part of the trajectory. The proposed

improvement is based on failure detection by an IMU model,

setting the graph constraints uncertainties according to the

nature of localization sources and setting the selection rules

for keyframes usage. The proposed method has been tested in

urban and rural scenarios demonstrating competitive results

compared to LIO-SAM when LiDAR scan matching is not

ambiguous. The proposed method outperforms LIO-SAM

when the ambiguity of the scan matching induced high

localization drift and even a failure of LIO-SAM. The results

also indicate that the proposed method can utilize additional

localization systems. Moreover, the automatic auto-scale of

the data from additional localization supports drifting black-

box localization systems like the utilized T265.
For future work, we plan extensive evaluation and com-

parison of the proposed method with other SLAM methods,

including vision-based ones.
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[14] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale
and long-term online operation,” Journal of Field Robotics, vol. 36,
no. 2, pp. 416–446, 2019.

[15] A. Reinke, X. Chen, and C. Stachniss, “Simple but effective redundant
odometry for autonomous vehicles,” in IEEE International Conference

on Robotics and Automation (ICRA), 2021, pp. 9631–9637.
[16] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, “Para-

metric correspondence and chamfer matching: Two new techniques
for image matching,” in Proceedings: Image Understanding Workshop,
1977, pp. 21–27.

[17] C. Debeunne and D. Vivet, “A review of visual-lidar fusion based
simultaneous localization and mapping,” Sensors, vol. 20, no. 7, p.
2068, 2020.
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