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Abstract— In this paper, we present a novel improvement
heuristic to address the Close Enough Traveling Salesman
Problem in environments with obstacles (CETSPobs). The
CETSPobs is a variant of the Traveling Salesman Problem
(TSP), where the goal is to find a sequence of visits to
given disk-shaped regions together with the points of visits to
the regions. We address challenging instances in a polygonal
domain with polygonal obstacles, where the final path con-
necting the regions must be collision-free. We propose a novel
Post-Optimization procedure using Mixed Integer Non-
Linear Programming (MINLP) to improve existing heuristic
solutions to the CETSPobs. We deploy the method with existing
heuristic solvers, and based on the presented evaluation results,
the proposed Post-Optimization significantly improves the
heuristic solutions of all examined solvers and makes them com-
petitive regarding the solution quality. The statistical evaluation
reveals that the sequence found using relatively sparse sampling
of the disk regions yields the best solutions among the evaluated
solvers. The results support the benefit of the proposed MINLP-
based solution to the continuous optimization of the CETSPobs.

I. INTRODUCTION

The studied problem is motivated by multi-goal path

planning [1] that is a robotic variant of the well-known

combinatorial Traveling Salesman Problem (TSP) [2], where

paths connecting the given set of locations are collision-free

among possible obstacles in the environment. In the TSP,

we search for a cost-efficient closed-loop tour visiting the

locations, and we thus determine an optimal sequence of

visits to the locations. Hence, the TSP represents a suitable

problem formulation for various robotic sequencing tasks [3].

Furthermore, in remote data collection missions [4], [5], it is

sufficient to visit a close region around the particular location

and thus save the travel cost. In such scenarios, the TSP

becomes the TSP with Neighborhoods (TSPN), where we

need to determine the optimal sequence to visit the regions

and also the optimal point of the visit to each region.

The neighborhoods in the TSPN can be represented as

continuous regions [4], [6], [7], [8], or as clusters of re-

gions [9], [10], [11], [12], or as clusters of locations [13]. In

general, the TSPN is an APX-hard [14], and many heuristic

approaches [15], [16], [17], [18], and approximation algo-

rithms [19], [20], [14], [21] have been proposed. Further, the

TSPN with disk-shaped neighborhoods has been introduced

as the Close Enough TSP (CETSP) in [4]. Although exact

methods have been proposed to solve the CETSP [22], [23],
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Fig. 1. Instances of the CETSPobs with found solutions depicted in blue.

they do not account for possible obstacles, and connections

between the regions are only straight line segments with the

length determined as the Euclidean distance between points

of visits to the regions.

In this paper, we address the robotic variant of the CETSP

in the polygonal domain with polygonal obstacles, further

referred to as the CETSPobs; see examples of instances

in Fig. 1. When compared to the CETSP, the main chal-

lenge of the CETSPobs is determining collision-free paths

between points of visits to the regions that can be arbitrarily

located in the regions while finding the optimal sequence.

Thus, the shortest paths connecting the regions need to be

determined quickly, as many queries can be expected during

the optimization of the sequence and points of visits to the

regions. For the regular TSP with point locations or sampled

regions to a discrete set of points, visibility graph can be

constructed [24], [25] for shortest path queries; however, it

is not the case of the CETSPobs with continuous regions.

Only two approaches explicitly address the CETSPobs (to

the best of the authors’ knowledge). The first is based on

the shortest-path approximation employed in an unsuper-

vised learning-based solution of the TSP in the polygonal

domain [26], [27]. The second is the GLNSC [28] based on

the decomposition of the CETSPobs to the continuous opti-

mization of the CETSP and the point-to-point optimization

using Delaunay triangulation. Besides, the discretized variant

of the CETSPobs can be solved as the Generalized TSP

(GTSP) [13] using pre-computed shortest paths among the

obstacles and each sampled location of the regions. However,

the optimal solution of such a discretized instance would

be only the approximate solution of the original CETSPobs

depending on the sampling density.

We propose to address approximations of existing so-



lutions to the CETSPobs by the Post-Optimization

procedure that improves any existing heuristic solution. The

procedure is based on formulating the problem as Mixed

Integer Non-Linear Programming (MINLP) and exploits the

given sequence of visits to the regions. We employed the

procedure to existing solvers GLNSC [28] and unsupervised

learning of the Self-Organizing Map (SOM) [27]. In addition,

we adopted GTSP-based approach [18] to the Generalized

TSPN (GTSPN), which first determines the sequence of visits

to the regions’ centers and then computes the points of visits

using the local iterative optimization. Based on the empirical

evaluation, the proposed Post-Optimization procedure

improves solutions found by the existing solvers and makes

the sampling-based GTSP the best-performing solver.

The rest of the paper is organized as follows. The

CETSPobs is formally defined in Section II. The examined

SOM and GTSP-based solvers are briefly described in Sec-

tion III. The proposed Post-Optimization procedure

is presented in Section IV. The results of the empirical

evaluation are summarized in Section V, and the paper is

concluded in Section VI.

II. PROBLEM STATEMENT

The studied CETSPobs is to find the shortest multi-point

path that visits each of the n disk-shaped regions S =
{S1, . . . , Sn} while avoiding m polygonal obstacles O =
{O1, . . . , Om}. Each region Si ∈ S is defined by its center

ci ∈ R
2, radius δi g 0, and it is entirely inside the free

space of the polygonal domain. A polygon obstacle Oj ∈ O
is defined by a sequence of lj vertices represented as points

in R
2, Oj = (o1

j , . . . ,o
lj
j ), o

t
j ∈ R

2, for 1 f t f lj .

A solution of the CETSPobs is defined by a sequence Σ of

visits to regions together with the points of visits P further

referred to as waypoints. The final multi-point path is formed

by a sequence of (shortest) paths among obstacles connecting

P according to Σ. Hence, for the purpose of finding a path

among obstacles connecting two waypoints, we consider a set

of obstacles’ points Q denoting the vertices of the obstacles’

borders. Thus, the multi-point path is denoted (Σ,P,Q),
where the terms can be defined as follows.

• Σ – Sequence of visits defining the order of visits to the

regions: Σ = (σ1, . . . , σn), σi ̸= σj for i ̸= j.

• P – Waypoints are the points of visits to the regions:

P = {p1, . . . ,pn}, pi ∈ R
2. For each waypoint pi, it

holds ∥ci − pi∥ f δi.
• Q – Obstacles’ points forming the final path connect-

ing P according to Σ, Q = ∪n
i=1{q

0
i , . . . , q

ki

i }, where

ki g 0 denotes the number of obstacles’ points of the

path connecting consecutive waypoints pσi
and pσi+1

.

Note that for a closed multi-point path, pσ1
is the

consecutive waypoint of pσn
.

The length L∗ of the path between two waypoints pi and

pj can be defined according to the number of obstacles’

points ki. If the straight line connection of the waypoints is

collision-free, the length is directly the Euclidean distance

L∗(pi,pj) =
"

"pi − pj

"

" and ki = 0; for ki = 1, it is

Fig. 2. A solution of the CETSPobs instance with n = 4 regions and one
obstacle, m = 1. Regions’ centers are small green disks. Vertices of the
obstacles are small red disks, while obstacles’ points Q are in orange. The
determined waypoints P are visualized as small blue disks.

L∗(pi,pj) =
"

"pi − q1
i

"

"+
"

"q1
i − pj

"

"; otherwise

L∗(pi,pj) =
"

"pi − q1
i

"

"+

ki−1
"

l=1

"

"ql
i − ql+1

i

"

"+
"

"

"
qki

i − pj

"

"

"
.

(1)

The used notation is visualized in an example of the solution

instance in Fig. 2. The CETSPobs is formulated as the

optimization problem in Problem 1.

Problem 1 (CETSP with polygonal domain (CETSPobs)):

L∗ = min
Σ,P,Q

L∗(pσn
,pσ1

) +

n−1
"

i=1

L∗(pσi
,pσi+1

) (2)

s.t.

Σ = (σ1, . . . , σn), σi ̸= σj if i ̸= j, 1 f σi f n, (3)

P = {pσ1
, . . . ,pσn

}, pi ∈ R
2, (4)

"

"pσi
− cσi

"

" f δσi
∀i ∈ {1, . . . , n}. (5)

III. BACKGROUND

The studied CETSPobs is solved using existing heuris-

tics and applying the proposed Post-Optimization

procedure to their provided solution. In addition to the

GLNSC [28] that directly solves the addressed CETSPobs,

an unsupervised learning approach has been proposed to

solve the CETSPobs with polygonal regions in [27]. Besides,

the GTSP-based approach [18] can be utilized to solve a

discretized variant of the CETSPobs. Therefore, the two

additional methods are briefly overviewed with the relatively

straightforward modifications for the CETSPobs to make the

paper self-contained.

A. SOM-based Unsupervised Learning for the CETSPobs

The unsupervised learning approach presented in [27] is

based on the SOM for the TSP [29] and has been deployed

in the polygonal domain in [26] using an approximation of

the shortest path based on the underlying convex partition-

ing of the polygonal domain. Although there are multiple

improvements of the SOM-based unsupervised learning for

various routing problems, such as [30], [31], [32] and its

generalization Growing Self-Organizing Array (GSOA) [17]

deployed in [18], we directly utilize the available solver [27].



The unsupervised learning [27] is an iterative procedure

in which a ring of 2n nodes (representing the multi-point

path) is adapted to the regions during learning epochs. For

each region, the closest node of the ring is determined as

a winner node. Then, the winner node is adapted (moved)

toward the region together with its neighboring nodes with

the decreasing power of adaptation based on the neighboring

function. The adaptation’s power is controlled by the learning

gain decreased every learning epoch to converge the ring to a

stable solution. Note that the adaptation (movement) is along

the shortest paths (or their approximation) among obstacles.

Besides, the regions are examined in a random order in each

epoch to avoid local minima [26].

After a finite number of epochs, the ring represents a

multi-point path as each region has a unique winner node

because of inhibition of the winners for each epoch [27].

Since the ring is represented as an array of nodes, the se-

quence of visits to the regions can be retrieved by traversing

the ring. Besides, the winner node is associated with the

point of the visit to the polygonal region.

Fig. 3. Illustration of the winner node ν∗ for the region Sk and its point
of visit to the region p

∗ determined in the SOM solver [27]. The ring of
nodes is represented as connected small blue disks.

The main modification of [27] for the herein addressed

CETSPobs with disk-shaped regions is to represent each disk

as the polygonal region with l vertices pl
i. However, unsuper-

vised learning can still benefit from continuous regions. It is

because the point of the visit to the region p∗ is determined

as the point on the region’s boundary that intersects the

shortest path between a node ν∗ and disk’s center, see Fig. 3.

If the winner node is already inside the region, which can be

caused by the adaptation of other nodes, its position is used

as p∗. The final multi-point path is retrieved by traversing

the ring and connecting the associated points to the winner

nodes. The reader is referred to [27] or [26] for further details

on the utilized unsupervised learning.

B. GTSP-based Solver to the CETSPobs

Fig. 4. An example of the GTSP-based solution of the CETSPobs using
visibility graph. The found solution is depicted in blue.

The GTSP-based solver [18] has been proposed to solve

a continuous variant of the GTSPN by discretization to

the GTSP using regions’ centers and deploying the heuris-

tic GTSP solver [33] to determine the sequence of vis-

its. Deploying the GTSP-based solver to the CETSPobs is

straightforward. The disk-shaped regions are discretized into

a finite set of samples on the disks’ boundaries. Then, the

visibility graph [34] is employed to determine the shortest

paths between the samples; see Fig. 4. The following four

steps summarize the usage of the GTSP-based solver [18].

• Step 1. Sample each region Si into l samples Ξ on the

region’s border.

• Step 2. Construct visibility graph G in the polygonal

domain for the samples Ξ.

• Step 3. Create an instance of the GTSP for the GTSP

solver [33] using samples Ξ as a set of locations and

the shortest paths between samples determined with G
as the lengths between sets.

• Step 4. Use the GLKH solver [33] to find a sequence

of visits and G to determine the solution (Σ,P,Q).

IV. PROPOSED POST-OPTIMIZATION PROCEDURE

The proposed Post-Optimization procedure is based

on the MINLP mathematical model to find locally optimal

solutions of the studied problem using the given sequence

of visits Σ from some feasible solution (Σ,P,Q). The

optimization idea is to minimize the path connecting the

waypoints; however, we need to account for the obstacles’

points through which a path among obstacles connects the

waypoints. Therefore, in the MINLP model, we have two

types of waypoints. The first waypoints are denoted P , fur-

ther also called the disks’ waypoints, and are being optimized

according to the problem statement in Section II. The second

type of waypoints are the obstacles’ points Q, further referred

to as the obstacles’ waypoints.

We do not need to include all obstacles’ points in the

model, but only those connected with a region’s waypoint

by a straight line segment in the multi-point path. A connec-

tion between two consecutive obstacles’ points (vertices) is

guaranteed to be collision-free (e.g., using a visibility graph),

and we do not change the topology of the multi-point path.

Thus, depending on the number of obstacles’ vertices of

the path connecting two consecutive waypoints pi and pj ,

we add zero, one q1i or two obstacles’ waypoints q1i and

qki

i as defined in (1). Furthermore, if an obstacle’s point

(vertex) is included in two (or multiple) paths, such as the

(orange) vertex in Fig. 4, the point is added to the model as

the obstacle waypoint multiple times. Thus, the number of

waypoints n′ in the model can be n′ g n.

Since all the waypoints have disk-shaped regions in the

MINLP formulation, we consider zero disk’s radius for

obstacles’ waypoints, and we get a sequence of regions S ′.

Hence, a position of the waypoint with δi = 0 is thus not

effectively optimized in the MINLP solution. The model is

summarized in Model 1 with the following variables.

• Decision variables x ∈ R
n′

×2 represent the optimized

waypoints Popt = (p1, . . . ,pn′).



• Auxiliary variables f ∈ R
n′

and w ∈ R
n′

×2 used

to minimize the squared difference of two consecutive

waypoints (6–8).

• Further auxiliary variables v ∈ R
n′

×2 used to ensure

that each waypoint pi is within δi distance from the

particular region’s center ci (9–10).

Model 1 (MINLP model):

min
x∈Rn′×2

n′

"

i=1

fi (6)

s.t.

f2
i g wT

i wi, ∀i ∈ {1, . . . , n′} (7)

wi = xi+1 − xi, ∀i ∈ {1, . . . , n′ − 1} (8)

δ2i g vT
i vi, ∀i ∈ {1, . . . , n′} (9)

vi = xi − ci, ∀i ∈ {1, . . . , n′} (10)

In solving the created Model 1, we aim to optimize the

position of the disks’ waypoints within the particular disk.

However, the optimized position might yield a collision

of the straight line segment connecting two consecutive

waypoints (regions of S ′) and an obstacle. Therefore, three

constraints are added if and only if there is an obstacle Oj

between two consecutive regions of S ′ as follows.

The first constraint

di = xi+1 − xi (11)

uses auxiliary variables di ∈ R
n′

×2 to express a straight

line segment of two consecutive waypoints as the difference

in coordinates. The second and third constraints are for lj
obstacle’s vertices

−di,2 o
l
j,1 + di,1 o

l
j,2 + di,2 xi,1 − di,1 xi,2 f M yi,j (12)

and

−di,2 o
l
j,1 + di,1 o

l
j,2 + di,2 xi,1 − di,1 xi,2 g −M (1− yi,j)

(13)
for 1 f l f lj to ensure that the straight line segment

expressed as di does not intersects the obstacle Oj repre-

sented by a sequence of points Oj = (o1
j , . . . ,o

lj
j ). The

constraints express that two waypoints are on the same half-

plane. Therefore, only one of the constraints (12) or (13)

is activated in the model. That is achieved by using the

Big-M method (we use M = 100 000) and binary variables

y ∈ {0, 1}n
′

are used to activate the particular constraints.

The proposed Post-Optimization is based on the

MINLP model’s construction, summarized in Algorithm 1.

Adding constraints (11–13) corresponds to Lines 9, 11 and

12 of Algorithm 1, respectively. Note that the implementation

of isObstacleBetween() depends on the type of the regions

as a determination of an obstacle between two disk regions

or between a disk and a point (disk region with zero radius

for the obstacle’s waypoint), as depicted in Fig. 5.

The proposed improvement procedure is a relatively

straightforward adjustment of the waypoints within the disk-

shaped regions. The procedure has been applied to the ex-

isting solutions of the CETSPobs and examined empirically.

The results are reported in the following section.

Algorithm 1: Post-Optimization of the given

CETSPobs solution (Σ, P , Q)

Input: S = {S1, . . . , Sn} – a set of the regions.
Input: O = {O1, . . . , Om} – a set of the obstacles.
Input: (Σ, P , Q) – Σ is a sequence of visits to S with the

corresponding waypoints P and obstacles’ points Q.
Output: (Σ, Popt, Q) – Optimized solution.

1 S ′ ← () // Sequence ordered by Σ

2 for σi in Σ do

3 S ′ ← insert(S ′, Sσi
)

4 for l in 0 : kσi
do

5 S ′ ← insert(S ′, S(c = ql
σi
; δ = 0)) // Insert

obstacle’s point as a new region with zero

radius.

6 M← createModel(S ′) // According to Model 1 with

decision variables x

7 forall consecutive regions (Si, Si+1) ∈ S
′ and Oj ∈ O do

8 if isObstacleBetween((Si, Si+1), Oj) then
9 M← addConstraint(M,di = xi+1 − xi)

10 for l in 1 : lj do

11 M← addConstraint(M,−di,2 o
l
j,1 +

di,1 o
l
j,2 + di,2 xi,1 − di,1 xi,2 ≤M yi,j

12 M← addConstraint(M,−di,2 o
l
j,1 +

di,1 o
l
j,2 + di,2 xi,1 − di,1 xi,2 ≥

−M (1− yi,j))

13 Popt ← solveMINLP(M) // Extract the optimized

disks’ waypoints

14 return (Σ,Popt,Q)

S'i

S'i+1

(a) Two disk regions.

S'i

S'i+1

(b) Disk with zero radius of the ob-
stacle’s waypoint and disk region.

Fig. 5. Visualization of the detecting obstacles between two consecutive
regions. For two disk regions (left), the tangents are determined from the
connection of the disks’ centers. The disk has zero radius for the obstacle
waypoint; thus, tangents are determined from the cone. Each obstacle’s
vertice must be on one side of the tangents, ensuring no obstacle between
the regions.

V. EMPIRICAL EVALUATION

The proposed Post-Optimization procedure has

been evaluated with the existing GLNSC [28], SOM [27],

and GTSP [18] adjusted as described in Section III.

All the methods are examined with and without the

Post-Optimization procedure. The optimized solutions

are denoted as GLNSC+, SOM+, and GTSP+. The evalua-

tion has been performed for a set of 32 randomly generated

instances of the CETSPobs, and one instance based on a real

data collection scenario using a wheeled vehicle in an elec-

trical substation depicted in Fig. 6. Each instance is named

tn_x, where n ∈ {5, 6, 7, 8, 9, 10, 26} denotes the number

of regions, and x denotes the instance label, where x ∈
{1, . . . , 6} for n = 5 and n = 8, and x ∈ {1, . . . , 5} for each

n ∈ {6, 7, 9, 10}. The SOM-based and GTSP-based solvers

depend on the discretization l, selected to l = 6 providing

the best trade-off between the computational requirements



TABLE I

PERFORMANCE INDICATORS OF THE EXAMINED CETSPobs SOLVERS INSTANCES AGGREGATED BY THE NUMBER OF NODES n.

Instance
GLNSC [28] GLNSC+ SOM (l = 6) [27] SOM+ (l = 6) GTSP (l = 6) GTSP+ (l = 6) GTSP (l = 1) GTSP+ (l = 1)

%PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM %PDB %PDM

t5 0.00 32.75 0.00 31.98 1.66 35.49 0.08 32.91 1.37 33.98 0.00 32.67 15.38 51.96 0.00 33.13

t6 0.00 38.35 0.00 38.33 0.72 40.97 0.00 38.76 0.40 38.94 0.00 38.33 19.59 55.69 0.00 38.99

t7 0.00 48.91 0.00 48.91 0.44 51.91 0.00 49.51 0.25 49.39 0.00 48.60 15.99 66.04 0.16 48.91

t8 0.00 27.20 0.00 27.20 0.70 25.60 0.00 23.98 0.58 22.94 0.08 22.53 16.07 38.23 0.00 23.59

t9 0.00 15.74 0.00 15.74 1.67 17.73 0.00 16.15 0.96 16.08 0.00 15.45 18.11 30.40 1.15 16.84

t10 0.56 20.68 0.00 20.14 1.69 20.70 0.56 18.93 1.65 19.40 0.56 18.48 17.12 40.11 0.56 21.41

t26 0.00 1.58 0.00 1.09 1.95 4.46 0.00 2.74 2.46 2.46 1.89 1.89 30.89 30.89 8.47 21.92

(a) Map of an electrical
substation with buildings as
obstacles

(b) GLNSC,
L = 1507.44, L+ =

1480.38

(c) SOM (l = 6),
L = 1517.5, L+ =

1465.32

(d) GTSP (l = 6),
L = 1470.69, L+ =

1462.57

(e) GTSP (l = 1),
L = 1878.87, L+ =

1557.07

Fig. 6. A map of an electrical substation utilized as an real-world CETSPobs instance t26_001. Solutions of this instance CETSPobs instance found
by the particular solver are depicted in blue, and the optimized solutions by the Post-Optimization procedure are in red.

and solution quality among l ∈ {6, 12, 24, 64, 128}. Besides,

we include the GTSP solver with l = 1 using the disks’

centers in the evaluation to highlight the benefit of the

proposed Post-Optimization to improve the solution

quality even for sparse sampling.

The proposed Post-Optimization procedure and

the GTSP solver are implemented in Julia v1.7. using

JuMP and the MINLP solver Juniper [35]. The GLNSC

and SOM are implemented in C++, and the GLNSC uses

SOM-based initialization in a fast mode [28]. Each solver

was executed for 20 trials on the Intel i7-9700 pro-

cessor running at 3GHz, and two performance indicators

are used for the evaluation. The solution quality %PDB

for each instance is measured as the percentage deviation

from the best overall solution L∗
best of the best solution L∗

among all performed trials of the particular method %PDB =
(L∗ − L∗

best)/L
∗
best 100%. The solution robustness %PDM

for each instance is measured as the percentage deviation

from the best overall solution L∗
best of the mean solution

value L̄∗ among all performed trials of the particular method

%PDM = (L̄∗ − L∗
best)/L

∗
best 100%. Besides, we report the

computational times T in milliseconds.

n=5 n=6 n=7 n=8 n=9 n=10 n=26

0

10

20

30

40

50

60

T
[m

s]

GLNSC

GLNSC+

SOM (l=6)

SOM+ (l=6)

GTSP (l=6)

GTSP+ (l=6)

GTSP (l=1)

GTSP+ (l=1)

Fig. 7. Median computational times T aggregated from instances with the
size n with standard deviation visualized as area around the medians.

The aggregated results are reported in Table I. The results

support the expected improvement of the CETSPobs solutions

and make the examined solvers competitive regarding the

solution quality. Although the robustness varies and there is

no clear winner, regarding the %PDB, the best-performing

method is GLNSC, which can be considered the most

complex algorithm. On the other hand, solutions of the very

straightforward GTSP with l = 1, which can be solved as

an instance of the TSP, are significantly improved by the

proposed Post-Optimization.

The computational requirements of all solvers are expo-

nential with n; see Fig. 7. Here, it is worth noting that the

GLNSC method requires preprocessing the input instances

by creating supporting structures, which is not included

in the presented results, and similarly for the SOM-based

solver. However, in both cases, the preprocessing time is

competitive to the reported times, but the GLNSC becomes

very demanding for larger instances.

TABLE II

STATISTICAL EVALUATION RESULTS OF THE CETSPobs SOLVERS.

a1: GLNSC+

=
a1: GLNSC [28]

+
a1: GLNSC [28]

-
a1: GLNSC [28]

+
a2: GLNSC [28] a2: SOM (l = 6) [27] a2: GTSP (l = 6) a2: GTSP (l = 1)

a1: SOM+ (l = 6)
=

a1: SOM (l = 6) [27]
+

a1: SOM (l = 6) [27]
-

a1: SOM (l = 6) [27]
+

a2: GLNSC+ a2: SOM+ (l = 6) a2: GTSP (l = 6) a2: GTSP (l = 1)

a1: GTSP+ (l = 6)
=

a1: GTSP+ (l = 6)
+

a1: GTSP+ (l = 6)
+

a1: GTSP (l = 6)
+

a2: GLNSC+ a2: SOM+ (l = 6) a2: GTSP (l = 6) a2: GTSP (l = 1)

a1: GTSP+ (l = 1)
-

a1: GTSP+ (l = 1)
-

a1: GTSP+ (l = 1)
-

a1: GTSP+ (l = 1)
+

a2: GLNSC+ a2: SOM+ (l = 6) a2: GTSP+ (l = 6) a2: GTSP (l = 1)

Symbols +,−, and = denote the method a1 provides statistically better, worse, or similar results than the method a2, respectively.

We further report a statistical comparison of the solvers

using the Wilcoxon Signed Rank Test [36], where the null

hypothesis H0 is that the solvers a1 and a2 provide solutions

with statistically similar costs. H0 is rejected if the obtained

p-values are less than 0.001. In the statistical evaluation

depicted in Table II, the symbol = denotes a1 performs

similarly to a2, or + and − if it performs better and worse,

respectively, depending on the average solution cost. The re-

sults further support the statistically significant improvement

of the solutions by the proposed Post-Optimization

procedure. The GTSP-based solver with l = 6 performs best,

and SOM is competitive with the GLNSC.



VI. CONCLUSION

We propose the Post-Optimization procedure to im-

prove the heuristic solutions of the CETSPobs. The procedure

is based on the MINLP model to optimize the waypoints,

and additional constraints are added to account for the

polygonal obstacles. The procedure is employed with three

solvers, the GLNSC, currently the only direct method to the

CETSPobs with disk-shaped regions, and two existing heuris-

tics straightforwardly modified for the disk-shaped regions.

Based on the evaluation results, the proposed procedure

improves all the found solutions and makes the methods

competitive. Furthermore, based on a statistical comparison

of the found solutions, the best-performing method is the

GTSP with just six samples per each disk region. The

sequence of visits to the disks is thus found on the discretized

instance of the CETSPobs, and the MINLP model enables

finding the optimal solution of the continuous optimization

part of the CETSPobs for that sequence. Hence, the proposed

Post-Optimization represents a groundwork toward an

optimal solution for finding the sequence using a branch-and-

bound method, similar to the developed solvers to the CETSP

without obstacles.
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