
Motion Planning for Multi-legged Robots using Levenberg-Marquardt

Optimization with Bézier Parametrization

David Valouch Jan Faigl

Abstract— This paper presents a novel formulation of motion
planning for multi-legged walking robots. In the proposed
method, a single-step motion is formulated as a nonlinear
equation problem (NLE): including kinematic, stability, and
collision constraints. For the given start and goal configurations,
the robot’s path is parametrized as Bézier curve in the config-
uration space. The resulting NLE is solved using Levenberg-
Marquardt optimization implemented using a sparse matrix
solver. We propose handling the trigonometric kinematic con-
straints with the polynomial path parametrization. A relaxation
of the constraint is used while guaranteeing a desired tolerance
along the planned path. Although the proposed method does
not explicitly optimize any criterion, it produces high-quality
paths. The method is deployed in transforming a sequence of
discrete configurations produced by a step sequence planner
into a valid path for a multi-legged walking robot in challenging
planning scenarios where a regular locomotion gait cannot be
used because of sparse footholds.

I. INTRODUCTION

Motion planning for multi-legged robots [1], [2] can be

considered challenging because of many controllable degrees

of freedom. In addition to collision constraints, multi-legged

robots are subject to kinematic and stability constraints [3],

[4]. Moreover, the constraints change as the robot takes steps

resulting in a multimodal constrained planning problem [5],

[6]. Although popular approaches to motion planning are

based on a random sampling of the configuration space or

control space [7]–[9], optimization-based approaches have

also been successfully deployed [2], [10], [11] that are

reminiscent of the early motion planning using potential

functions [12].

We focus on motion planning for multi-legged walking

robots, such as the SCARAB II hexapod robot [13], depicted

in Fig. 2a. In particular, we investigate scenarios where a

correct sequence of steps is necessary for traversing chal-

lenging structured terrain with limited footholds as depicted

in Fig. 3. In our previous work [14], [15], we address

finding the sequence of steps to cross a gap with limited

footholds. The sequence of steps is represented by discrete

configurations that subsequently need to be connected with

continuous motions that satisfy the required constraints.

Since single-step motions do not require solving maze-like

obstacle avoidance, we opt for a local optimization technique

as motion planning.
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Fig. 1. Visualization of the planned motion of a legged robot.

The former work [14] is based on the Levenberg-

Marquardt method to find valid configurations validating the

feasibility of individual steps. In this work-in-progress report,

we present an extension of the method to determine a valid

path connecting two configurations while satisfying the mo-

tion constraints. Although we focused solely on constraint

satisfaction, the developed motion planner yields relatively

high-quality, smooth paths. Our results support a similar

observation by [8] that a well-formulated simple method can

produce near-optimal solutions without explicitly optimizing

any criterion.

The rest of the paper is organized as follows. The studied

problem is formulated in the following section. The proposed

method is described in Section III. The validation results are

reported in Section IV. The paper is concluded in Section V.

II. PROBLEM STATEMENT

Let C be the configuration space of the multi-legged robot.

Specifically for a robot with only revolute joints, C can be

defined as

C = SE(3)× SO(2)CDOF , (1a)

SE(3) ≡ R
6 , SO(2) ≡ R , (1b)

where CDOF is the number of controllable degrees of

freedom. The six-legged walking robot SCARAB II has three

revolute joints on each leg. Hence, with the pose of the base

link, it has 24 degrees of freedom (DOF) in total, and its

configuration is isomorphic with R
24.

Now assume we have obtained a sequence of discrete

configurations

q1, q2, . . . , qk ∈ C (2)



as a result of step-sequence planning, such as [4], [6], [14],

[15]. In our case, the sequence consists of configurations

in which the robot’s leg switches between swinging and

supporting state. Thus, the sequence represents the steps of

the walking robot.

Then, for every pair of two consecutive configurations

qi, qi+1 = qstart, qend, we aim to find a path Ã connecting

them that can be defined as

Ã : [0, 1]→ C , (3a)

Ã(0) = qstart , Ã(1) = qend . (3b)

The motion is subject to holonomic constraints that can

be expressed as

f(Ã(t)) = 0 : ∀t ∈ [0, 1] , (4a)

g(Ã(t)) f 0 : ∀t ∈ [0, 1] , (4b)

g, f : C → R
∗ . (4c)

The equality constraint function f represents the kinematic

constraints for the supporting legs that have to stay at the

assigned footholds during the whole motion. The inequality

constraint g enforces stability and collision-freeness. Note

that we do not specifically define the collision-free sub-

set Cfree, as collisions are covered by the inequality con-

straint (4b).

Further, we request the path Ã to be optimal under some

quality criterion Q : Π → R; here it is expressed using

derivatives of Ã:

Q(Ã) =
∞
"

i=1

� 1

t=0

wi

�

�

�
Ã(i)(t)

�

�

�
dt , (5)

where wi g 0 are arbitrary weights, and Ã(k) represents the

k-th derivative of Ã. The rationale behind the criterion is

to minimize the length of the path:
�
�

�Ã(1)(t)
�

� dt, and the

complexity or ‘roughness’ of the path: contributing to the

integral of the higher derivatives.

III. PLANNING METHOD

The proposed motion planning follows the problem for-

mulation (3–5). We present the used parametrization of the

path (3). Then, we formulate the utilized representation of the

constraints (4). Finally, we describe the proposed algorithmic

solution to the problem. Although the method is applied to

a particular SCARAB II robot [13], which determines the

used motion constraints, the method can be adapted to other

planning scenarios with different robots.

A. Bézier Curve Parametrization

The proposed path Ã representation is based on Bézier

curve [16] already used for robot motion parametriza-

tion [17], [18]. Bézier curve of the degree d is parametrized

by d+ 1 control points P = (p0, p1, p2, . . . .pd). Each point

on the curve is a linear combination of the control points

Ãd(P, t) =

d
"

i=0

Bd
i (t) pi , (6)

where Bd
i is the i-th Bernstein polynomial of the degree d.

In our case, the control points are vector representations of

the robot’s configurations P = (qstart, q1, . . . , qd−1, qend).
Further, we use the property that for any Bézier curve, an

equivalent Bézier curve of a higher degree can be constructed

as

Ãd(Pd, t) = Ãd+1(Pd+1, t) ; ∀t ∈ [0, 1] , (7a)

Pd+1 = (p0, p̃1, . . . , p̃d, pd) , (7b)

p̃i =
i

d+ 1
pi−1 +

�

1− i

d+ 1

"

pi ; ∀i ∈ 1 . . . d . (7c)

Here, it is worth noting that the degree of Bézier curve can

be used to limit the path complexity, an important rationale

behind the proposed planning algorithm.

B. Constraints

The constraints considered for planning the steps of the

SCARAB II walking robot are as follows.

1) The kinematic constraint ensures that the legs in the

support phase remain in their assigned footholds during

the planned step. The constraints function is formulated

using the forward kinematics of the supporting legs

using standard methods [19].

2) Stability constraint ensures the stability of the robot

that we constrain the robot’s center of mass to be above

the support polygon, defined as the convex hull of the

footholds. The constraint is a simple affine inequality

constraint.

3) Collisions are distinguished as self-collisions and col-

lisions with the terrain. For the SCARAB II robot,

the motion ranges of the joints avoid self-collisions.

The collisions with the terrain are modeled using a

signed distance field (SDF) [20]. In particular, using

implementation [21]. A simplified collision model con-

sisting of spherical primitives is used (see Fig. 2b) to

efficiently check robot collisions using the SDF. A

sphere is in a collision if and only if the signed distance

of its center is less than its radius. The collision

constraint is relaxed around the footholds as in [14],

allowing the foot tips to reach the terrain.

(a) The SCARAB II robot (b) Collision model

Fig. 2. The SCARAB II robot used for the evaluation of the proposed
method, and its collision model using sphere primitives.

Note that, in our implementation, the inequality constraint

(4b) is replaced by an equality constraint

g̃(Ã(t)) = 0 ; ∀t ∈ [0, 1] , (8a)

g̃(q) = min(g(q), 0) . (8b)



C. Path Constraint

The constraints (4a) and (8a) are used to form a path

constraint

F(Ã) =
� 1

t=0

∥f(Ã(t))∥2 + ∥g̃(Ã(t))∥2 dt = 0 . (9)

Computing (9) directly would be computationally intractable.

However, in practice, the constraint functions are “well-

behaved”, with bounded derivatives. Therefore, the integral

is approximated by a Riemann sum with a uniform partition

of the size N :

F(Ã) ≈
N
"

i=0

∥f(Ã(ti))∥2 + ∥g̃(Ã(ti))∥2 , ti =
i

N
. (10)

It is clear that (10) is 0, if and only if ∥f∥ and ∥g̃∥ are both

0 in all sample points, which is exploited in the proposed

planning algorithm.

The function f represents the kinematic constraint and

thus contains trigonometric terms. Therefore, a curve repre-

sented by a polynomial spline, such as Bézier curve, cannot

fully satisfy it. Hence, we allow a tolerance ∥f∥ f ε for

a small ε > 0 to ensure compatibility with Bézier curve

parametrization. It is achieved by introducing slack vectors Ài
such that

f̃(Ã(ti), Ài) = f(Ã(ti))− Ài = 0 , (11a)

∥Ài∥ f ε . (11b)

The inequality (11b) is included in g̃ in the same way as the

inequality constraint (4b) is included in (8b).

Now, we can formulate the constraint for the Bézier

parametrized path with the slack ε and sampling N as

F̃ε,N (P, ξ) =





















f̃(Ã(P, t1), À1)
...

f̃(Ã(P, tN ), ÀN )
g̃ε(Ã(P, t1), À1)

...

g̃ε(Ã(P, tN ), ÀN )





















= 0 . (12)

D. Levenberg-Marquardt Method

Levenberg-Marquardt (LM) method, also called damped

least squares method [22], is a more numerically stable

version of the Newton-Raphson method for finding roots of

nonlinear equations. It is used to solve nonlinear systems of

equations in the form h(θ) = 0 by iteratively improving an

initial guess for θ by a step ∆θ:

∆θ = (Jh(θ)
TJh(θ) + ¼I)−1Jh(θ)

Th(θ) , (13)

where Jh is the Jacobian of h and ¼ > 0 is the damping

parameter. The process is repeated until the solution error

∥h∥ is reduced below numeric precision, ∥h∥ < ϵnum. Note

that (13) minimizes the criterion

∥Jh(θ)∆θ − h(θ)∥+
√
¼ ∥∆θ∥ . (14)

Furthermore, for ¼→ 0, the LM method becomes equivalent

to the Newton-Raphson method using the pseudo-inverse of

the Jacobian.

The choice of the damping parameter ¼ regulates the

convergence speed and numeric stability of the method.

A dynamic damping strategy [23] is used, which updates

¼ at each iteration for better performance. The damping

is reduced and increased by multiplying it by constants

¼drop ∈ (0, 1) and ¼boost > 1, respectively. The LM algorithm

is described in the SolveLM subroutine of Algorithm 1.

E. Planning Algorithm

The proposed step planning is summarized in Algorithm 1.

It finds a path parametrized by the Bézier control points P

satisfying the constraint F̃ε,N for the given ε and N . Note

that the path quality criterion (5) is tackled indirectly as we

aim for a similar effect as in [8], where a “cost-indifferent”

sampling-based path-planning algorithm produced paths of

competitive quality to cost-aware algorithms. The proposed

planning algorithm works as follows.

Algorithm 1: Plan Step

PlanStep(qstart, qend, ε,N, dmax)

1 P ← (qstart, qend)
2 for d← {2, . . . , dmax} do

3 P ← Pd (7) s.t. πd(Pd, t) = πd−1(P, t) ; ∀t ∈ [0, 1]

4 ξ ← 0

5 P, ξ ← SolveLM(F̃ε,N , P, ξ)
6 if

�

�

�
F̃ε,N (P, ξ)

�

�

�
f ϵnum then

7 END SUCCESS – return P

8 END FAILURE

SolveLM(F̃ ,P, ξ)

1 ¼← ¼init

2 P⋆, ξ⋆ ← P, ξ
3 for i← {1, . . . ,MaxIt} do

4 ∆P,∆ξ ← (JT

F̃
J
F̃
+ ¼I)−1 JT

F̃
F̃(P, ξ)

5 if

�

�

�
F̃(P⋆ +∆P , ξ⋆ +∆ξ)

�

�

�
<

�

�

�
F̃(P⋆, ξ⋆)

�

�

�

then

6 ¼← ¼¼drop

7 P⋆, ξ⋆ ← P +∆P , ξ +∆ξ

8 else

9 ¼← ¼¼boost

10 if

�

�

�
F̃(P⋆, ξ⋆)

�

�

�
< ϵnum then

11 BREAK for

12 return P⋆, ξ⋆

The algorithm starts with a naive linear interpolation P =
(qstart, qend). We increase the degree d of Bézier curve at each

step as in (7). The current P is then used as an initial guess

for the solution to F̃ε,N (P, ξ) = 0 in the LM method. If

the constraint is satisfied, we find a valid path; otherwise,

we continue with the increased d. By iterative increasing



d, the procedure ensures we minimize the degree of Bézier

parametrization. Bézier curve of the degree d satisfies

Ã(i) = 0 ; ∀i g d . (15)

Thus, we eliminate unnecessary terms from the path quality

criterion (5).

Also, note that the LM algorithm only accepts steps that

improve the objective. Even if the final iteration does not

fully satisfy the constraint, we obtain a local optimum for the

current d. The LM method minimizes the constraint function

“efficiently,” without unnecessary changes to the parame-

ters. The pseudo-inverse method used in (13) produces the

smallest step minimizing (14), and the term ¼ ∥∆θ∥, in the

criterion (14), further penalizes the change in the parameters.

Our intuition is that, in the d-th iteration, Algorithm 1 makes

a minimal necessary change mostly to the d-th derivative Ã(d)

of the path. Therefore, it is indirectly optimizing (5). The

resulting performance of the proposed method is reported in

the following section.

IV. RESULTS

The proposed planning method has been validated on a

testing scenario with sequences of configurations generated

by our step-sequence planner [14]. A sequence is planned

for a challenging scenario, illustrated in Fig. 3, which is

selected for demonstrating the ability of the planner to plan

the individual steps. The robot is requested to cross a wide

gap in the terrain using only a narrow beam and a single

additional support. The modeled constraints are derived for

the SCARAB II robot [13] depicted in Fig. 2a.

Fig. 3. A gap-crossing evaluation scenario, where only a singular pillar
and a narrow beam can be used to cross the wide gap.

The proposed algorithm has been implemented in C++,

compiled with GNU C++ compiler v9.4.0 with -O3 level

optimization. For computing the collision function, an imple-

mentation of the SDF provided with the GridMap library [21]

is used. The Jacobian of the path constraint is constructed

as a sparse matrix in the compressed column format using

the Eigen 3 linear algebra library [24]. The inversion of the

matrix JTJ + ¼I in (13) is computed using LLT Cholesky

decomposition provided in Intel® MKL Pardiso sparse solver

[25]. The method has been run on a computer with the Intel®

i7-10700 processor running at 4.8GHz and 64GB RAM.

TABLE I

PARAMETERS OF THE PLANNING ALGORITHM.

N 100

dmax 10

MaxIt 100

λinit 1

λdrop 0.1

λboost 1.5

ε 1× 10
−3

m

The chosen values of the algorithm parameters are summa-

rized in Table I. The selection of the values of the damping

strategy parameters ¼init, ¼drop, ¼boost is based on [23]. Values

of the other parameters were chosen based on our practical

experience.
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(a) Histogram of the overall planning times; runs marked red failed to
find a path satisfying the given tolerances. The green column represents
runs under 10 s shown in detail in Fig. 4b.
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(b) Detailed histogram of the planning times under 10 s

Fig. 4. Histograms of planning times for ε = 10
−3.

The results are summarized in Fig. 4 and Table II. In total,

89 steps have been planned. Most results have been obtained

in less than 50 s, with most results in less than 10 s. The

results found under 10 s are plotted in a separate histogram

depicted in Fig. 4b to show the details of their distribution.



TABLE II

SUMMARY OF RESULTS

Steps planned 89

Steps succeeded 85

Worst constraint violation 1.73× 10
−3

m

Average planning time 24.3 s

Median planning time 6.7 s

Average, t <50 s 6.7 s

Average, 1 s< t < 50 s 11.1 s

The concentration of results near 0 s is caused by the steps

that can be solved within the desired tolerance by a simple

linear interpolation of qstart, qend.

The average achieved planning time is 24.3 s; however,

the median planning time is only 6.7 s, which corresponds

to the average time if outliers above 50 s are excluded. Also,

excluding the ultra-short planning times shorter than 1 s, we

obtain an average planning time 11.1 s for most non-trivial

steps. It can be highlighted that the worst constraint violation

across all configurations on a planned path is 1.73×10−3 m,

including the failed attempts. That is below the real-world

accuracy of the robot’s mechanical precision and the utilized

localization using only the onboard sensors. We, therefore,

believe that with further optimization, and relaxation of the

tolerances, the method is viable for practical deployments.

An example of the generated motion is visualized in Fig. 1.

Note that the path taken by the robot’s leg is not produced by

any motion primitive. It results from the numeric solver sat-

isfying the collision constraint with a 2 cm collision margin

locally relaxed around the footholds [14]. The motion results

from satisfying the constraints by iteratively increasing the

degree of the polynomial representation and alternating with

a run of the LM solver.

V. CONCLUSION

We present our work-in-progress on optimization-based

motion planning that targets single-step motions for multi-

legged walking robots. The planner produces paths fitted to

the submanifold defined by the kinematic constraint of the

supporting legs up to a defined tolerance while satisfying

stability and collision-freeness criteria. The method has been

validated in a challenging planning scenario to connect a

sequence of discrete preplanned configurations. Even with a

relatively tight tolerance of 1mm, the method successfully

finished in 85 out of 89 cases. The worst constraint violation

in the remaining four cases remained under 2mm. Besides,

the motions are planned with the median planning time of

6.7 s. The method produces smooth natural looking motions

without using any motion primitives. Thus, based on the

reported results, the proposed optimization-based planning

is a viable approach to motion planning for multi-legged

walking robots.

REFERENCES
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