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Abstract— The Dubins traveling salesman problem (DTSP)
combines the combinatorial optimization of the optimal se-
quence of waypoints to visit the required target locations
with the continuous optimization to determine the optimal
headings at the waypoints. Existing decoupled approaches
to the DTSP are based on an independent solution of the
sequencing part as the Euclidean TSP and finding the optimal
headings of the waypoints in the sequence. In this work, we
focus on the determination of the optimal headings in a given
sequence of waypoints and formulate the problem as the Dubins
touring problem (DTP). The DTP can be solved by a uniform
sampling of possible headings; however, we propose a new
informed sampling strategy to find approximate solution of the
DTP. Based on the presented results, the proposed algorithm
quickly converges to a high-quality solution, which is less than
0.1% from the optimum. Besides, the proposed approach also
improves the solution of the DTSP, and its feasibility has been
experimentally verified in a real practical deployment.

I. INTRODUCTION

Curvature-constrained path planning aims to provide a cost
efficient path for a non-holonomic vehicle such as Dubins
vehicle [1] that models car-like or aircraft vehicles with the
minimal turning radius ρ moving with a constant forward
velocity. Probably the most utilized problem formulation for
surveillance missions with Dubins vehicles is the Dubins
traveling salesman problem (DTSP) [2], [3] which is a
variant of the NP-hard combinatorial optimization TSP. The
DTSP stands to find a closed shortest path to visit a given
set of target locations in a plane while the path satisfies the
motion constraints of Dubins vehicle [4]. The DTSP is also
NP-hard [5] as it includes a solution of the TSP; however,
it includes additional challenge related to the determination
of the optimal heading of the vehicle at each target location.
The total tour length depends not only on the sequence of the
visits but also on the vehicle heading at each target location.

The difficulty of simultaneous determination of the head-
ings with finding the optimal sequence of the visits motivated
researchers to address the DTSP by relaxing the mutual de-
pendency of these two subproblems and assume a sequence
of the targets is given, or finite sets of possible headings are
assumed in sampling-based approaches [6]. In this paper, we
focus on the approach that relies on a given sequence such
as, e.g., Alternating algorithm (AA) [4], receding horizon
methods [7], or Local iterative optimization (LIO) [8].

Having the sequence, the problem of determining the
optimal headings can be called the Dubins touring problem
(DTP). Although the DTP can be considered as a subproblem
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(a) Uniform sampling – N = 224,
L = 19.8, LU = 13.8, t = 128 ms
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(b) Proposed sampling – N = 128,
L = 14.4, LU = 14.2, t = 76 ms

Fig. 1. A solution of the DTSP for a given sequence of the targets (the
green disks) with the total number of samples N , final path length L, and
lower bound LU . The found solution is the blue curve, and the red curve
is its lower bound determined as a solution of the Dubins interval problem
(DIP) with the cost LU . The uniform sampling utilizes 32 heading values
per each target. The required computational time is denoted t.

of the DTSP, we believe the DTP is the fundamental building
block of routing problems with Dubins vehicle, and thus
it deserves a dedicated formulation. For example in the
recently introduced Dubins orienteering problem (DOP) [9],
a solution of the DTP is a part of the target insertion/deletion
step, and the solution of the DOP depends on the sum of the
collected rewards, and thus it may not necessarily depend
only on the final tour length as in the DTSP. Therefore, in
this paper, we focus on the solution the DTP to quickly find
a high-quality solution with the estimation of its gap to the
optimal solution. The presented approach is motivated by
practical needs of the robotic competition MBZIRC [10],
[11], where a high-quality solution found in the shortest time
possible is desirable because of limited time to plan how to
quickly collect as many of high rewarding object as possible.

In particular, we investigate a sampling of the headings
in the DTP to reduce the number of required samples.
Based on the recent results on the so-called Dubins interval
problem (DIP) [12] utilized to establish a lower bound of the
DTP solution, we developed a new informed sampling-based
strategy to quickly determine the most promising headings
for the optimal solution of the DTP. The proposed approach
quickly converges to a solution of high-quality, and it is less
computationally demanding than using a uniform sampling
of the headings utilized in [13]. The practical influence of
the guided sampling is demonstrated in Fig. 1.



II. RELATED WORK

One of the first DTP-based approaches to the DTSP
is the AA [4] in which headings are first established for
even edges of the sequence by straight line segments, and
then, the optimal Dubins maneuvers are determined for the
odd edges. Later on, this approach has been improved by
a metaheuristic procedure based on a greedy randomized
adaptive search [14]. In [15], the same authors consider a
distance between two consecutive targets to improve the
basic idea of the AA. Only two consecutive targets in the
sequence are considered in all these approaches, and thus
these algorithms are computationally efficient and their time
complexity for n targets can be bounded by O(n).

A look-ahead approach based on more targets in the
sequence has been proposed in [7] where three consecutive
targets are considered, and the authors report improved
results over the simple AA. The idea has been further
investigated in [16] for a combination of the k-look-ahead
technique with the local improvement of the 2-Opt heuristic;
however, the authors do not report on the number of utilized
headings per each target and also do not report on the
computational time.

An optimal solution of the DTP based on the convex
optimization has been proposed in [17] for instances where
each pair of consecutive targets are more than four times the
minimal turning radius apart. The authors reduce the DTP to
a family of n-dimensional convex optimization sub-problems
where the number of sub-problems can be bounded by 22n−2.

The aforementioned heuristic approaches provide a solu-
tion of the DTP, but none of them provides a tight-lower
bound. The first systematic procedure to provide both a
solution and its lower bound has been presented in [18] and
further evaluated in [13], but without presenting computa-
tional requirements. The herein proposed informed sampling
strategy directly builds on the results of the lower bound
presented in [13] and also on the solution of DIP introduced
by the same authors in [12]. The main contribution of the
current paper is in the increased computational efficiency by
avoiding dense uniform sampling of the headings, and thus
a better solution can be found for a limited computational
time than for the uniform sampling.

III. PROBLEM STATEMENT

The Dubins touring problem (DTP) stands to determine a
shortest curvature-constrained tour to visit a given sequence
of n target locations, P = (p1, . . . , pn), pi ∈ R2. The state q
of Dubins vehicle [1] is represented as a triplet q = (x, y, θ)
and q ∈ SE(2), where (x, y) ∈ R2 is the vehicle position in
a plane and θ ∈ S1 is the vehicle heading at (x, y). Dubins
vehicle is constrained to move only forward at the constant
speed v and has the minimum turning radius restricted to ρ.
The motion of the vehicle can be described as: ẋ

ẏ

θ̇

 = v

 cos θ
sin θ
u
ρ

 , |u| ≤ 1, (1)

where u is the control input.

In the DTP for the DTSP, Dubins vehicle is requested to
visit a given sequence of n target locations P and return to
the starting location. Since the order of the targets is given,
the problem is to find a particular heading for each target
while the tour constructed from Dubins maneuvers [1] is the
shortest possible. This can be formulated as an optimization
problem for n variables representing particular headings T =
{θ1, . . . , θn} with the piecewise continuous cost function:

L(T,P) =

n−1∑
i=1

L(qi, qi+1) + L(qn, q1), (2)

where L(qi, qj) is the length of the shortest Dubins maneuver
between the configurations qi and qj . The optimization
problem can be stated as follows.

Problem 3.1 (DTP):

minimize T L(T,P) =

n−1∑
i=1

L(qi, qi+1) + L(qn, q1)

subject to qi = (pi, θi), pi ∈ P, i = 1, . . . , n

The proposed approach for the optimal solution of the DTP
is based on a solution of DIP, which is detailed in Section III-
A. Therefore, we further distinguish a particular value of the
heading θ and an interval of heading values Θ in this paper.
Moreover, based on the heading intervals we can establish
a lower bound of the optimal solution of the DTP, while a
feasible solution represents an upper bound.

A. Dubins Maneuvers and Dubins Interval Problem (DIP)

In [1], Dubins shows that for two states qi and qj the
optimal path for a vehicle with the minimal turning radius
ρ is one of the six possible maneuvers that consist of the
straight line segment S and a part of the circle with the radius
ρ denoted by the C-segment, which is further distinguish
based on the orientation of the circle as L and R. Each
optimal path can have at most three segments (zero length
segments are allowed) which provide two types of paths:

• CCC type: LRL, RLR;
• CSC type: LSL, LSR, RSL, RSR.

The optimal path connecting two states is called Dubins
maneuver, and it can be computed by a closed-form ex-
pression. The optimal path is easy to compute if headings
at the locations are prescribed. However, the length of
Dubins maneuver is only a piecewise continuous with the
discontinuity between CCC and CSC maneuvers, depending
on the mutual distance of the states and headings.

A generalization of this simple Dubins planning for in-
tervals of possible headings at the locations instead of a
single heading value at the particular state has been proposed
in [12]. The authors call the problem as the Dubins interval
problem (DIP), and it is detailed in the next paragraph.

DIP stands to find the shortest Dubins maneuver for two
locations pi and pj for which the departure angle from pi
is in the given interval θi ∈ Θi and the arrival angle at
pj must be in θj ∈ Θj , where Θi = [θmini , θmaxi ] and
Θj = [θminj , θmaxj ], see Fig. 2. The authors of [12] provide



RSR maneuver

Fig. 2. An instance of the Dubins interval problem to connect pi and pj
using the departure angle θi ∈ Θi and the arrival angle θj ∈ Θj

a list of all possible Dubins maneuvers for particular cases
of the departure and arrival angles. The types of Dubins
maneuvers S, R, and L are further classified as special cases
of R and L if parts of the circling maneuver are longer (in
an angular distance) than π and they are called as Rψ and
Lψ , respectively. The optimal solution of DIP is one of the
following nine maneuvers according to the particular values
of the headings θi ∈ Θi and θj ∈ Θj :

1) S or Lψ or Rψ 1

2) LSR for θi = θmaxi and θi = θmaxj ;
3) LSL or LRψL for θi = θmaxi and θj = θminj ;
4) RSL for θi = θmini and θj = θminj ;
5) RSR or RLψR for θi = θmini and θj = θmaxj ;
6) LS or LRψ for θi = θmaxi and θj ∈ Θj ;
7) RS or RLψ for θi = θmini and θj ∈ Θj ;
8) SR or LψR for θi ∈ Θi and θj = θmaxj ;
9) SL or RψL for θi ∈ Θi and θj = θminj .

The particular optimal maneuver can be selected regarding
the shortest Dubins maneuver for these nine cases, which is
a bit more complex than a solution of the original Dubins
maneuver for single heading values, but the optimal solution
of DIP is still determined by a closed-form expression.

Notice, if we allow a full range of heading values, i.e.,
Θi = Θj = [0, 2π), the solution is the CSC maneuver with
the zero length circle parts and the length of the straight line
segment equals to the Euclidean distance between pi and pj .

IV. PROPOSED SAMPLING STRATEGY FOR THE DTP
Based on the analysis and solution of DIP, we propose

a new iterative sampling-based algorithm to solve the DTP.
The key idea of the proposed approach is to sample heading
at the targets by the informed way using a lower bound of the
DTP [18]. The lower bound solution is utilized for determin-
ing the promising candidates of the heading intervals. Such
candidate intervals are iteratively refined, and the process is
repeated until a selected angular resolution ε is reached or
after a finite number of refinements. Moreover, since a more
precise estimation of the lower bound is determined at each
iteration, the iterative refinement can be terminated once the
ratio of the length of the found DTP solution to the value of
the lower bound reaches the requested approximation ratio α.
Particular components of the proposed algorithm are detailed
in the following paragraphs.

1Authors of [12] claimed that LψRψ or RψLψ could also be the optimal
solution of DIP, but it is not necessary to consider this case because this is
not locally optimal in any instance of DIP.

A. Heading Intervals

The lower bound of the DTP is computed from a solution
of DIP for which the heading values at the target locations
are constrained to particular intervals [18]. Thus, for each
target location pi ∈ P , a set of heading intervals Hi is main-
tained. Hi splits the whole range of possible heading values
θi ∈ [0, 2π) into ki not necessarily equally sized heading
intervals Hi = {[θ1i , θ2i ], [θ2i , θ3i ], . . . , [θ

ki
i , θ

1
i ]}. For a better

readability, we denote the symbol Θl
i to a particular heading

interval Θl
i = [θli, θ

l+1
i ]. Hence, for each target location pi,

the set of heading intervals is Hi = {Θ1
i , . . . ,Θ

ki
i }. Having

this notation, we consider the problem of finding a solution of
the DTP as a problem to efficiently create a set of particular
heading intervals H = {H1, . . . ,Hn}.

B. Lower Bound Solution of the DTP

For the heading intervals H with up to k intervals per each
target, the lower bound of the DTP solution is determined
by computing an optimal solution of the corresponding
DIP [18]. Since the number of intervals is finite, it is
possible to create an oriented graph with n layers. Each
layer corresponds to one target location pi and consists of ki
nodes, each for one heading interval in Hi. The graph nodes
are connected by edges representing a solution of DIP, i.e.,
the weight associated with each edge is the length of the
solution of DIP. The graph is visualized in Fig. 3.
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Fig. 3. An example of the search graph for the Dubins touring problem

In this graph, the lower bound LU (P,H) is determined for
the current heading intervals H using a feed-forward search
evaluating all possible paths from the starting target p1 with
up to k headings per each target in the sequence P . Since
the problem contains n target locations with up to k heading
intervals for each target, the graph can have up to nk2 edges.
Therefore, the time complexity to find the shortest tour in the
graph can be bounded by O(nk3). Notice, if a single heading
value is used for each heading interval θli ∈ Θl

i for 1 ≤ i ≤ n
and 1 ≤ l < ki, the same procedure can be used to find a
feasible solution of the DTP.

C. Refinement of the Heading Intervals

The current lower bound solution is a correct estimation
of the minimum tour length; however, it is not necessarily a
feasible solution. In fact, the lower bound solution is rarely
feasible because of a discontinuity in the heading at each
target. Therefore, we introduce the angular resolution ε to



denote the size of the intervals which directly limits the
maximal discontinuity of the vehicle heading.

The algorithm starts with a relatively high ε and iteratively
refines promising intervals to avoid dense uniform sampling,
and thus decrease the computational burden. Having a lower
bound solution of the DTP for the current H, the algorithm
splits only the intervals presented in the current lower bound
solution without losing candidate headings presented in other
intervals. By repeating this procedure, the length of the lower
bound solution can increase and, eventually, it converges to
the optimal solution. Moreover, a single heading value can be
sampled for each interval and determine a feasible solution
of the DTP for the current H by the same procedure as the
determination of the lower bound.

Notice that even though the solution of DIP may cause
discontinuities in particular heading values at the waypoints,
any heading value from the interval can be selected and fixed
for solving the DTP. Therefore, a feasible solution of the
DTP for such fixed heading values is always determined.

D. Proposed Informed Sampling Algorithm for the DTP

The proposed algorithm for solving the DTP is directly
based on the aforementioned refinement procedure denoted
by refineDTP(P, ε,H), which refines H up to the angular
resolution ε. Then, for the refined H, a feasible solution
is found by the solveDTP(P,H) procedure, i.e., using the
forward search graph in Fig. 3. The value of ε is gradually
decreased to the requested εreq, and for each ε, both the
lower and upper bound solutions are determined. Hence, the
proposed algorithm has any-time property, and an updated
feasible solution is available at the end of each iteration.
The refinement procedure is summarized in Algorithm 1.

Algorithm 1: Proposed Iterative Algorithm for the DTP
Input: P – Target locations to be visited
Input: εreq – Requested angular resolution
Input: αreq – Requested quality of the solution
Output: T – A tour visiting the targets

1 ε← 2π // initial angular resolution

2 H ← createIntervals(P, ε) // initial intervals

3 LL ← 0 // init lower bound

4 LU ←∞ // init upper bound

5 while ε > εreq and LU/LL > αreq do
6 ε← ε/2
7 (H,LL)← refineDTP(P, ε,H)
8 (T,LU )← solveDTP(P,H)
9 end

10 return T

The algorithm is terminated after reaching the requested
angular resolution εreq, which guarantees a termination after
a finite number of iterations because there is a finite number
of the heading intervals for εreq. Alternatively, the refinement
can be terminated when the solution quality of the feasible
solution is below αreq. However, this may not properly
stop the algorithm in a reasonable time for very small αreq

if the solution requires very fine sampling. Therefore, it
is convenient to combine both conditions together. If the
anytime property of the algorithm is utilized, the refinement
loop can be terminated after a given computational time as
the first solution is found in a few milliseconds.

V. RESULTS

The performance of the proposed algorithm has been
evaluated in randomly generated instances of the DTP and
compared with the uniform sampling strategy to verify if
the sampling strategy guided by the solution of the lower
bound of the DTP provides better solutions with lower com-
putational requirements than the uniform sampling. Then, the
proposed DTP solver has been deployed in solving the DTSP
for a given sequence of visits to the targets and compared
with the existing heuristics for the DTSP in instances with
increasing number of target locations n. For brevity and
without loss of generality, we consider Dubins vehicle with
v = 1 m.s-1 and ρ = 1 m in the evaluated problems. Finally,
a feasibility of the solution found by the proposed solver
has been verified in an experimental deployment with the
real vehicle that follows the planned path. All the evaluated
algorithms have been implemented in C++, and the presented
results have been obtained using a single core of the AMD
Phenomtm II X6 1090T CPU running at 3.2 GHz, and thus
the required computational times can be directly compared.

A. Computational Requirements of the DTP Solvers

The DTP can be directly used in the solution of the
DTSP, and therefore, we studied computational requirements
of the sampling-based solvers of the DTP for randomly
generated DTSP instances for which the sequence of the
targets is determined as an optimal solution of the Euclidean
TSP found by Concorde [19], e.g., similarly as for the AA
approach [4]. It is known that a solution of the DTSP and
also DTP depends on the mutual distance of the targets
with respect to the minimal turning radius ρ. Therefore,
we generate random instances of the DTSP according to
the relative density of the targets d inside an area with the
dimensions s × s, where s is determined as s = (ρ

√
n)/d.

Due to the limited space, d = 0.5 is considered in the
presented results, and 20 random instances are created for
n ∈ {10, 20, 50, 70, 100}, which gives 100 instances in total.

The real computational requirements of the proposed al-
gorithm are mostly related to the number of headings for the
current intervals H. It can be expected that for a finer angular
resolution or a low requested ratio α, the computational
time will increase. Therefore, we consider the any-time
property of the algorithm and evaluate its computational
requirements as the quality of found solutions α for the given
computational time. The value of α is the ratio of the feasible
path length L and the length Lu of the lower bound solution,
α = L/LU .

Summarized results are shown in Fig. 4, where the solution
quality is presented as average values from 20 trials of the
sequences with 50 target locations and the error bars denote
the standard deviations. The results indicate the proposed
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Fig. 4. Average solution quality α computed as the ratio of the solution
cost to its lower bound cost determined by the proposed algorithm according
to the given computational time. Notice both axes are in log-scale.

algorithm is able to find solutions that are less than 0.1%
from the optimal solution (lower bound) in about 10 seconds.
Further improvement of the solution for more computational
time can be observed; however, from a practical point of
view, a solution closer than 0.01% from the optima might
be considered as the optimum.
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Fig. 5. Average solution quality α according to the given computational
time. The results are average values of 20 trials of the DTP instances with
n = 50 targets and the relative density d = 0.5. Notice both axes are in
log-scale.

The proposed approach has been compared with the uni-
form sampling utilized in [13], where the authors use 128
samples of the heading values per each target location to
uniformly split possible heading intervals (two times each
step). Since a solution of the DTP with 128 samples per
each of 50 targets can be computationally demanding, we
incrementally increase the number of samples (two times
each step) and solve the problem for each individual number
of uniformly distributed headings up to the resolution for
which the solution of the DTP is found in less than 100
seconds. The results of the evaluation depicted in Fig. 5
indicate that even though the uniform sampling with a high
number of samples provides high-quality solutions, from the
practical point of view, the proposed refinement converges to

the optimal solutions much faster. In particular, the proposed
refinement strategy provides solutions in less than 10%
from the optimal solution in less than one second, while
the uniform sampling needs about 10 seconds. Moreover,
the proposed refinement strategy is capable of providing
solutions that are less than 1% from the optima in less
than 10 seconds on the utilized computer, and it is even
capable of providing solutions that are less than 0.1% from
the optima. To find such high-quality solutions with uniform
sampling, a high number of samples is needed, and the com-
putational requirements are significantly higher. Therefore,
for high-quality solutions, e.g., in solving the Orienteering
problem [9] where the evaluation of the Dubins tour is
used to add or remove particular targets to/from the current
reward collecting tour, it is preferable to utilize the proposed
refinement strategy.

B. Performance of the Proposed Algorithm in the DTSP

The proposed algorithm has been compared with the
existing heuristic solvers for the DTSP, where the sequence
of the visits to the targets is determined by a solution
of the underlying Euclidean TSP. We consider the same
problems as in the previous evaluation and the AA [4] and
LIO [8] heuristic algorithms for this evaluation. In addition,
the Memetic algorithm for the DTSP [20] is considered to
evaluate an influence of the high-quality solution of the DTP
provided by the proposed algorithm with the DTSP algorithm
that does not rely on the sequence of the visits to the targets.
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Fig. 6. Average solution length (from 20 trials) for the DTSP instances with
n targets and d = 0.5. The computational time for the proposed algorithm
has been restricted to 10 seconds and for the Memetic algorithm to 1 hour.

The heuristic algorithms AA and LIO found solutions in
less than few seconds for a given sequence, and the solutions
are not further improved if more computational time is
available. On the other hand, the Memetic algorithm can pro-
vide high-quality solutions at the cost of high computational
requirements. Therefore, we restrict its computational time
to 1 hour per each trial and use a computational grid (with
the Intel Xeon CPUs). The results are presented in Fig. 6.

It can be observed that the proposed algorithm provides the
best solution of the underlying DTP of the DTSP instances.
Regarding the lower bound and the feasible solution provided
by the proposed algorithm, the found solutions are very close



to the optimal solution of the DTP, albeit the computational
time of the proposed algorithm has been limited to 10 sec-
onds. Moreover, quite surprisingly, the solutions provided by
the proposed DTP algorithm are very close to the solutions
provided by the computationally very demanding Memetic
algorithm, which in addition optimizes the sequence of the
visits to the targets. This is a source of motivation to employ
the proposed DTP solver in the DTSP to further improve
the solution once a sequence is determined, especially for
instances with high values of the targets density d.

C. Real Experiment

A feasibility of the found solution has been experimentally
verified with the hexacopter Unmanned Aerial Vehicle (UAV)
with forwarding velocity limited to v = 4 m.s-1, the minimal
turning radius ρ = 6 m, and limited acceleration amax =
2.67 m.s-2. The scenario is motivated by a visual inspection
of objects of interest that have to be captured by a downward-
looking camera in the MBZIRC competition [10]. A visu-
alization of the real deployment is shown in Fig. 7, where
the objects of interest can be seen as small light regions
inside the disk-shaped target locations with the diameter
corresponding to the field of view of the used camera.

Fig. 7. Planned path (in black) and real executed path captured by the
DGPS (in red) of the hexacopter UAV in the DTSP problem with 10 targets

VI. CONCLUSION

In this paper, we investigate the Dubins touring problem
(DTP) as the fundamental building block of routing problems
with Dubins vehicle. The DTP is an important subproblem
of the DTSP approaches that rely on a sequence of visits to
the targets. A new informed sampling-based algorithm for
the DTP has been proposed. It uses an iterative refinement
of the possible heading intervals where the optimal headings
can be found, and it provides high-quality solutions of the
DTP. The proposed algorithm utilizes a tight lower bound of
the DTP to guide sampling of the suitable heading intervals,
and thus the algorithm can provide a quality guarantee of the
found solution. The presented results support the feasibility
and quick convergence of the proposed algorithm. Moreover,
the comparison with the Memetic algorithm indicates that a
near-optimal solution of the DTP can significantly improve
a solution of the DTSP, albeit a single sequence is utilized in

the DTP-based approaches. Based on the presented results,
our further work aims to use the proposed algorithm in a
solution of the DTSP, where it can provide a quick evaluation
of the candidate sequences of the visits to the targets.
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TSP Solver,” 2003, [cited 14 May 2017]. [Online]. Available:
http://www.tsp.gatech.edu/concorde.html

[20] X. Zhang, J. Chen, B. Xin, and Z. Peng, “A memetic algorithm for
path planning of curvature-constrained uavs performing surveillance
of multiple ground targets,” Chinese Journal of Aeronautics, vol. 27,
no. 3, pp. 622–633, 2014.


