
Variable Neighborhood Search for the Set Orienteering
Problem and its application to other Orienteering

Problem variants

Robert Pěnička∗, Jan Faigl, Martin Saska

Czech Technical University, Faculty of Electrical Engineering,
Technicka 2, 166 27, Prague, Czech Republic

Abstract

This paper addresses the recently proposed generalization of the Orien-

teering Problem (OP), referred to as the Set Orienteering Problem (SOP).

The OP stands to find a tour over a subset of customers, each with an associ-

ated profit, such that the profit collected from the visited customers is max-

imized and the tour length is within the given limited budget. In the SOP,

the customers are grouped in clusters, and the profit associated with each

cluster is collected by visiting at least one of the customers in the respective

cluster. Similarly to the OP, the SOP limits the tour cost by a given budget

constraint, and therefore, only a subset of clusters can usually be served. We

propose to employ the Variable Neighborhood Search (VNS) metaheuristic

for solving the SOP. In addition, a novel Integer Linear Programming (ILP)

formulation of the SOP is proposed to find the optimal solution for small

and medium-sized problems. Furthermore, we show other OP variants that

can be addressed as the SOP, i.e., the Orienteering Problem with Neigh-

borhoods (OPN) and the Dubins Orienteering Problem (DOP). While the

OPN extends the OP by collecting a profit within the neighborhood radius

of each customer, the DOP uses airplane-like smooth trajectories to connect

∗Corresponding author
Email addresses: penicrob@fel.cvut.cz (Robert Pěnička), faiglj@fel.cvut.cz

(Jan Faigl), saskam1@fel.cvut.cz (Martin Saska)

Preprint submitted to European Journal of Operational Research August 10, 2019

individual customers. The presented computational results indicate the fea-

sibility of the proposed VNS algorithm and ILP formulation, by improving

the solutions of several existing SOP benchmark instances and requiring

significantly lower computational time than the existing approaches.

Keywords: Routing, Orienteering Problem, Variable Neighborhood Search

1. INTRODUCTION

The Set Orienteering Problem (SOP) belongs to a large class of routing

problems with profits, where the objective is to find a tour that maximizes

the collected profit for a given budget, or minimizes the tour length while

ensuring at least a predefined profit, or the objective function combines

profit maximization with tour length minimization (Feillet et al., 2005).

One of the well-studied routing problems with profits is the Orienteering

Problem (OP), which was introduced into operational research by Tsili-

girides (1984). The OP stands to find a tour with a limited length that

maximizes the profit collected from a visited subset of the given nodes us-

ing predefined starting and ending depot locations. The OP thus combines

two well-known combinatorial optimization problems, the Knapsack Prob-

lem (KP) and the Traveling Salesman Problem (TSP). While the Knapsack

part of the problem addresses the maximization of the collected profit by

selecting the subset of customers to be visited within the budget, the TSP

part finds the sequence to visit selected customers and minimize the tour

length in order to fit it within the budget.

The OP has multiple variants and generalizations, as it is shown in sur-

veys by Vansteenwegen et al. (2011) and Gunawan et al. (2016). Among

others, the recently introduced SOP proposed by Archetti et al. (2018) is

a generalization of the OP where the customers are grouped in clusters.

2

The profit is associated with the individual clusters, and it is collected by

visiting at least one customer in the respective cluster. The SOP has been

introduced together with a Mixed-Integer Programming (MIP) formulation

and a matheuristic solution algorithm.

Like the OP, the SOP is a combination of the Knapsack problem and

the Generalized Traveling Salesman Problem (GTSP), studied in Laporte

& Nobert (1983). In the GTSP, the customers are grouped in clusters as

in the SOP, and the objective is to minimize the tour length for visiting at

least one customer in each cluster. Therefore, the GTSP is an extension of

the TSP in the same way as the SOP extends the OP.

The profit collection from clusters in the OP has been previously ad-

dressed by the Clustered Orienteering Problem (COP) in Angelelli et al.

(2014). However, in the COP, all customers within the respective cluster

have to be visited to collect the profit. The problem is solved by means of

branch-and-cut and tabu search algorithms.

The Correlated Orienteering Problem (CorOP) by Yu et al. (2016) is

also related to the SOP. In the CorOP, the profit collected from customers

contains a part of the profit of neighboring customers based on the mu-

tual spatial correlation between the visited customers and the neighboring

customers. The CorOP thus creates spatially correlated clusters of the cus-

tomers, where the profit consists of the individual visited customers together

with the distance-weighted profit of the neighboring customers. Therefore,

the CorOP can be seen as a hybrid combination of the COP and the SOP, as

the profit gained from visiting individual customers consists of the portion of

the otherwise unvisited neighboring customer’s profit. However, the profit

can be increased by visiting more customers within the cluster. The therein

presented the exact solution of the CorOP is based on the Mixed-Integer

3

Quadratic Programming Yu et al. (2016).

The applications of the SOP, originally introduced by Archetti et al.

(2018), are in mass distribution, where the carrier chooses to serve only one

customer within a cluster of customers that are afterward served by inter-

nal distribution within the cluster. However, applications of the SOP far

exceed the application originally outlined. In fact, the SOP can be used for

any applications of the GTSP, discussed in Laporte et al. (1996), where the

salesman has a limited budget, and cluster profits can be used for prioritiza-

tion. The travel guide problem is an example of such an application, where

the guide aims to maximize the profit from visiting attractions in a limited

time, but only one attraction of each kind (cluster) would bring the profit.

Similarly, the SOP can be used for a generalization of the traveling sales-

man with profit-rated customers and a limited budget, where multiple modes

of transport are allowed, but with constrained transport changes. Each clus-

ter then consists of multiple departure modes of transport from the individ-

ual customer, and the objective is to maximize the profit while using the

most suitable transport option to fit within the time budget.

The SOP can also be applied to several other variants of the OP. The

Orienteering Problem with Neighborhoods (OPN) is a generalization of the

OP, introduced in Faigl et al. (2016), where the profit from each customer

can be collected anywhere within the circular neighborhood of the customer

location. The OPN can be addressed, like the SOP, by creating clusters of

position samples on a circle around the original customer’s locations (see

Section 4.1). An application example of the OPN is in sensory network

information retrieval, where standalone sensor units displaced throughout

the environment can wirelessly communicate within a close distance radius,

as discussed in Li et al. (2009). To maximize the profit from information

4

collected within a given time, the data collecting vehicle can save travel costs

by retrieving the measured information without visiting the precise position

of the sensors.

The Dubins Orienteering Problem (DOP), proposed in Pěnička et al.

(2017a), can be used for planning package delivery by dropping from an

airplane. The DOP addresses the generalization of the OP for the Dubins

vehicle model, introduced by Dubins (1957), where the modeled airplane

cannot feasibly travel the tour created by the Euclidean OP with sharp

turns between the target locations. The Dubins vehicle has to travel be-

tween the locations using a curvature-constrained path with a minimum

turning radius. By sampling the heading angle of the Dubins vehicle at the

target locations, the DOP can be addressed as the SOP presented here (see

Section 4.1).

The contributions of this paper are as follows. We introduce a novel ILP

formulation of the SOP to find the optimal solution of small to medium-sized

problems within less computational time than the existing MIP formulation.

The definition of the SOP extends the existing definition by allowing dif-

ferent starting and ending depot clusters, both of which can have multiple

nodes. We propose an algorithm for the SOP based on the Variable Neigh-

borhood Search (VNS) metaheuristic, and we show that its computational

times are about one order of magnitude shorter for small and medium-sized

problems than the existing tabu search solution. The best-known solutions

of several benchmark instances are improved by the proposed VNS algo-

rithm for the SOP further denoted as VNS-SOP. Furthermore, we employed

the studied SOP in a solution of other OP variants, such as the DOP and

the OPN, both newly addressed as the sampling based SOP that is solved

optimally. For reuse by the community and to accelerate research on SOP-

5

related problems, both the ILP-based and VNS-SOP algorithms for the SOP

are published as open-source software, together with benchmark datasets for

comparison.

The remainder of this paper is organized as follows. The description

and the formulation of the problem are presented in the next section. The

VNS-SOP algorithm is introduced in Section 3. The computational results

are presented in Section 4, and final conclusions are outlined in Section 5.

2. Problem description and formulation

The Set Orienteering Problem is a generalization of the OP where cus-

tomers are grouped in clusters, and the objective is to find a tour with

a predefined starting cluster and ending cluster, a restricted budget, and

such that the tour maximizes the profit collected from the visited clusters.

A cluster is visited when at least one customer belonging to the cluster has

been visited. The herein presented SOP formulation builds upon the ex-

isting formulation by Archetti et al. (2018) that is extended by considering

possibly two different starting and ending clusters, both with the possibility

of having multiple nodes instead of a single depot cluster with one node, as

in the original formulation.

The SOP can be defined on a directed graph G = (V,A) with a set

of vertices V = {v0, . . . , vm} and a set of arcs A = {aij}. For each pair

of vertices vi, vj , there exists an arc aij with cost cij . The vertices are

clustered into disjoint sets s0, . . . , sn, with S = {s0, . . . , sn}, si ∩ sj = ∅ for

i 6= j, 0 ≤ i, j ≤ n, and each vertex vi=0,...,m is associated with exactly one

set in S. All sets si=0,...,n have the associated profit pi=0,...,n for visiting at

least one vertex within the set. The starting set s0 and the ending set sn are

6

for simplicity the first and the last sets, respectively, both associated with

zero profit (p0 = pn = 0). The objective is to find a tour that maximizes the

collected profit P such that its cost does not exceed the given budget Tmax.

Assuming that the triangle inequality holds for the arc costs, an optimal tour

always includes one vertex per visited cluster (see Archetti et al. (2018)).

For instances with a common depot, as in the original SOP formula-

tion Archetti et al. (2018), an additional copy of such a depot can be used

as the ending set. Furthermore, the proposed formulation allows multiple

vertices in both starting set (|s0| ≥ 1) and ending set (|sn| ≥ 1).

Any solution of the SOP can be described by a permutation Σk of

set indexes, according to which the tour visits the individual sets Σk =

(σ1, . . . , σk) with 0 ≤ σi ≤ n, σi 6= σj for i 6= j and σ1 = 0, σk = n. Beside

determining the permutation of the sets, the SOP also requires the vertices

in the respective visited clusters to be found. The vertices are represented

by their respective indexes Πk = (π1, . . . , πk), 0 ≤ πi ≤ m and vπi ∈ sσi for

i ∈ (1, . . . , k). Using the above notation, the SOP can be defined as follows:

maximize
Σk,Πk,k

P =

k∑
i=1

pσi

s.t.

k∑
i=2

cπi−1,πi ≤ Tmax ,

vπi ∈ sσi ∀i = 1, . . . , k ,

σ1 = 0 , σk = n .

(1)

The SOP can also be formulated as an Integer Linear Program. Unlike

the MIP proposed by Archetti et al. (2018) for the SOP, the proposed formu-

lation does not contain the binary variables of the vertices, and requires only

two variable types. Furthermore, the proposed model uses subtour elimi-

nation constraints (SECs) like the COP formulation (see Angelelli et al.

(2014)), instead of the connectivity cuts of the previous MIP formulation.

7

The decision variables used in the proposed ILP are:

• yi: binary variable equal to 1 if at least one customer is visited in the

set si and 0 otherwise;

• xij : binary variable equal to 1 if arc aij is traversed and 0 otherwise.

The proposed ILP formulation of the SOP is:

maximize
∑
si∈S

piyi, (2)

s.t.
∑
aij∈A

cijxij ≤ Tmax, (3)

∑
vi∈V \{sq}

xij =
∑

vi∈V \{sq}

xji ∀sq ∈ S \ {s0, sn} , ∀vj ∈ sq, (4)

∑
vi∈V \{sq}

∑
vj∈sq

xij = yq ∀sq ∈ S \ {s0}, (5)

∑
vi∈V \{sq}

∑
vj∈sq

xji = yq ∀sq ∈ S \ {sn}, (6)

∑
vi∈U

∑
vj∈U

xij ≤
∑

sq∈U\{st}

yq ∀U ⊂ S \ {s0, sn}, ∀st ∈ U , (7)

y0 = 1, yn = 1, (8)

yq ∈ {0, 1}, sq ∈ S, xij ∈ {0, 1}, aij ∈ A. (9)

The objective function (2) calls for the maximization of the collected

profit. The budget constraint (3) limits the total length of the arcs that

are used. Constraints (4) ensure that each vertex, except for those in the

starting and ending clusters, has the same number of entering and leaving

arcs. Each visited cluster, except for the starting cluster, must have an

entering arc. This is ensured by constraints (5). Similarly, constraints (6)

ensure that one leaving arc must be selected for all visited clusters different

from sn. Constraints (7) are the SECs. Constraints (8) ensure that both the

starting cluster and the ending cluster are visited. Finally, constraints (9)

8

define the domains of the variables.

Both (1) and (2)-(9) aim at finding a permutation of a subset of the

clusters and the vertices to visit inside the selected clusters at the same

time. However, for the VNS-SOP algorithm, the problem can be partially

separated into: (i) selection of the clusters to visit; (ii) determination of

the order of visits to the selected clusters; and (iii) selection of the vertices

to visit in the chosen clusters. For a given permutation of clusters Σk, the

solution of (i) and (ii), the subproblem (iii) of selecting individual vertices

Πk within clusters can be addressed as finding the shortest path in a graph

of the visited clusters, see Fig. 1a.

3. Variable neighborhood search algorithm for the SOP

The designed heuristic solution of the Set Orienteering Problem is based

on the Variable Neighborhood Search metaheuristic proposed by Mladenović

& Hansen (1997) for combinatorial optimization. The metaheuristic uses

a greedy initial solution that minimizes the distance per additional profit

gained by visiting a new, previously not visited cluster. Afterward, the VNS

tries to improve the currently best incumbent solution by a set of predefined

neighborhood operators. The VNS metaheuristic was introduced for the OP

by Sevkli & Sevilgen (2006), and similar neighborhood operators have been

further used for initial solutions of the DOP in Pěnička et al. (2017a) and

the OPN in Pěnička et al. (2017b).

In both the SOP initialization procedure and the VNS-SOP algorithm

itself, the solution of the SOP is represented only by a sequence of clusters

Σk. For a given sequence Σk with k clusters, the resulting path can be

found using a shortest path search in a search graph that is visualized in

Fig. 1a as a path connecting the starting cluster sσ1 = s0 with the ending

9

cluster sσk = sn. The graph contains only the arcs between adjacent clusters

of Σk, and therefore, the shortest path contains exactly one vertex in each

cluster of Σk and defines the vertices used for a given sequence. The shortest

path is found by a dynamic programming breadth-first search storing the

shortest path from the starting cluster sσ1 to all vertices in sσl iteratively

for l = 2, . . . , k by using already-stored shortest paths to vertices in the

preceding cluster and the corresponding arcs connecting adjacent clusters.

The shortest path over Σk is then defined as the shortest path found among

the vertices of ending cluster sσk . The proposed algorithm therefore operates

with the sequence of clusters and internally calculates the vertices Πk within

the visited clusters such that the overall path length is minimized.

sσ1

w1
σ1

w2
σ1

...

w
hσ1
σ1

sσ2

w1
σ2

w2
σ2

...

w
hσ2
σ2

sσ3

w1
σ3

w2
σ3

...

w
hσ3
σ3

sσk

w1
σk

w2
σk

...

w
hσk
σk

. . .

(a) Σk with vertices {w1
σl , . . . , w

hσl
σl } ∈

sσl ,∀l ∈ (1, . . . , k).

(b) Example of the cluster addition lower
bound.

Figure 1: Graph of cluster sequence Σk in (a) and the cluster addition lower bound in (b).

The proposed VNS algorithm for the SOP, including the greedy initial-

ization, consists largely of simple cluster sequence modifications, where a

single cluster is added, moved or removed from an existing cluster sequence

Σk. In the case of the cluster addition, the evaluation of the resulting path

length requires only to calculate the connection from the previous to the fol-

lowing cluster in the sequence. However, the shortest path from the starting

cluster to each vertex in the preceding cluster and also the shortest path

10

from each vertex in the subsequent cluster to the ending cluster has to be

known. Therefore, we propose to employ dynamic programming technique

to store the shortest paths for each vertex (in the current cluster sequence

Σk) from the starting and ending clusters to quickly evaluate the simple

modifications without searching the shortest path in the whole graph.

The proposed VNS algorithm is further time optimized by using fast

denial of the simple sequence modifications that produce solutions with over-

budget length. For a typical SOP near-optimal solution, the total path

length is close to the budget limit Tmax, and almost all modifications, such as

cluster addition or movement, produce an over-budget solution. To quickly

determine such cases, the lower bound distance between each cluster pair,

i.e., the minimal-length arc between the cluster pair, is found and stored

before the initial solution of the SOP is created. Then, e.g., for adding the

cluster s3 between the clusters s5 and s4, as shown in Fig. 1b, the lower

bound is first tested to be within the budget while using the minimal-length

arcs from s5 to s3 and from s3 to s4. The lower bound path further consists

of the shortest paths to cluster s5 from the starting cluster and the shortest

path to the ending cluster from s4, both found as the shortest distance

stored by the dynamic programming technique for an incumbent solution

among the vertices in s5 and s4, respectively. The proposed lower bound

can be unfeasible, as it might use different vertices in the cluster being

added, the previous and following clusters. However, the feasible solution

cannot be shorter, and finding the lower bound is of low complexity, e.g.,

O(|s5|+ |s4|). Thus, simple cluster operations can be found to produce over-

budget solutions without searching the vertices to be used in the previous

s5, the newly added s3, and the following cluster s4 in the cluster sequence

of the feasible solution with the complexity of, e.g., O(|s5||s3|+ |s3||s4|).

11

Since both the proposed ILP-based and VNS-SOP solution algorithms

for the SOP employ the greedy construction of the initial solution, the proce-

dure is described first, followed by the introduction of the VNS metaheuristic

for the SOP.

3.1. Initial solution construction procedure

The proposed construction procedure of the initial solution uses a greedy

approach that minimizes the additional length of the path per additional

profit. The initially empty sequence of clusters Σ2 contains only the prede-

fined starting and ending clusters, and the path uses the shortest arc between

these depot clusters. Then, in each step of the construction procedure, a

non-visited cluster s∗i and a position j∗ for 1 < j∗ < k within the current

sequence Σk is found, using the rule

s∗i , j
∗ = argmin

i 6∈Σk,i∈Σk+1,1<j<k+1,σj=i

L(Σk+1)− L(Σk)

pi
. (10)

The selection rule (10) uses the difference of the lengths L(Σk) and

L(Σk+1) of the shortest paths over the cluster sequences Σk and Σk+1,

respectively. This requires an evaluation of multiple simple addition op-

erations, and therefore, the cluster distance lower bounds and the dynamic

programming technique with storing of the shortest distance to the termi-

nating clusters are used. The initialization procedure terminates as soon as

the budget limit does not allow any other non-visited cluster to be added.

3.2. Variable Neighborhood Search algorithm

The Variable Neighborhood Search algorithm consists of two main proce-

dures, the shake procedure and the local search procedure, which iteratively

try to improve the best found incumbent solution. The shake procedure uses

random changes of the incumbent solution to get away from a possible lo-

cal maximum. The local search procedure then extensively searches around

12

the randomly created solution to find a possibly better solution than the

actual incumbent. The VNS thus optimizes the incumbent solution using

a combination of the shake and local search procedures with the predefined

operators in variably large solution space neighborhoods.

In order to uniquely represent any solution of the SOP inside the VNS,

the solution is represented by a vector u = (sσ2 , . . . , sσk−1
, sσk+1

, . . . , sσn)

of all clusters, including the not visited clusters, with the exception of the

depot clusters sσ1 and sσk . Only the first k − 2 clusters (sσ2 , . . . , sσk−1
) are

feasibly visited between the starting cluster sσ1 = s0 and the ending cluster

sσk = sn within the Tmax budget limit forming the solution sequence Σk.

The individual visited vertices Πk in the respective visited clusters Σk are

always calculated using the breadth-first search for the shortest path over Σk

in the graph Fig. 1a. The number of visited clusters in the solution vector u

is maximized, i.e., we select the largest k possible for the given u and Tmax

such that the ending cluster sσk = sn is reached within the budget.

VNS-SOP algorithm is summarized in Alg. 1. It starts with the construc-

tion of the initial solution and then tries to improve the solution until the

stopping criteria are met. A combination of the maximal computational time

together with the limited number of iterations and the number of iterations

without improvement is used as the stopping rule. In each iteration, the

shake procedure is applied, followed by the local search procedure varying

the neighborhood operators based on the variable l (with 1 ≤ l ≤ lmax = 2).

When the profit P (u′′) of the solution u′′ found by the local search exceeds

the profit of the incumbent solution P (u), and its length L(u′′) is within the

budget, the incumbent solution is changed to the newly-found solution. The

algorithm applies all neighborhood operators during a single iteration and

thus increases the size of the examined solution space neighborhood.

13

Algorithm 1: Variable Neighborhood Search for the SOP
Input : S - customer sets, Tmax - maximal allowed budget
Output: u - solution path

1 u← createInitialSolution(S,Tmax)
2 while stopping conditions not met do
3 l← 1
4 while l ≤ lmax do
5 u′ ← shake(u, l)
6 u′′ ← local search(u′, l)
7 if L(u′′) ≤ Tmax and P (u′′) > P (u) then
8 u← u′′

9 l← 1

10 else
11 l← l + 1

Shake procedure

The shake procedure of the employed VNS randomly changes the actual

incumbent solution to get away from the possible local maximum. It consists

of two random operators that modify the solution vector u. By changing

u, the operators can change the order of traversing the clusters defining Σk

and can also add some previously not visited clusters σi, i > k to Σk. The

Path move operator and the Path exchange operator move or exchange

large parts of the solution vector u, and thus create a new solution u′ away

from the original incumbent. A detail description of the operators follows,

and an example of the operators is shown in Fig. 2.

(a) Path move (b) Path exchange
Figure 2: Examples of the shake operators that (a) move the clusters (s4, s6) after s5; and
(b) an exchange of (s6) with (s1, s5).

14

• The Path move (l = 1) operator randomly selects a part of the solution

vector u and moves it to a randomly selected position. This can be done

by selecting three random positions inside u, e.g., 1 < i1 < i2 < i3 ≤ n,

i1...3 6= k, and moving the sequence of clusters sσj , i1 ≤ j ≤ i2 further in u

after the cluster sσi3 . Alternatively, with the same probability as moving

the cluster sequence further in u, a cluster sequence sσj , i2 ≤ j ≤ i3 is

moved before sσi1 .

• The Path exchange (l = 2) operator exchanges two randomly selected

non-overlapping parts of the solution vector. Similarly to the path move,

the path exchange can be implemented using four randomly selected po-

sitions within u, e.g., 1 < i1 < i2 < i3 < i4 ≤ n, i1...4 6= k. Afterwards,

the cluster sequence sσj , i1 ≤ j ≤ i2 is exchanged with the sequence

sσh , i3 ≤ h ≤ i4.

Local search procedure

The VNS local search procedure is used for an extensive search around

the randomly created solution vector u′ produced by the shake procedure.

A close neighborhood of the solution u′ is searched using the operators One

cluster move and One cluster exchange to find a better solution.

The implemented local search procedure originates from the random-

ized variant of the VNS (RVNS) in which the local search operators are

applied randomly to the solution vector instead of being applied according

to deterministic rules as in the regular VNS. Both operators test simple

modifications of the solution vector u′, where only one (One cluster move)

or two (One cluster exchange) clusters are moved within u′. Each operator

tries n2 such random modifications, and only those not worsening the qual-

ity of the solution are applied to u′ before examining further modifications.

15

Each operator thus implements a hill climbing paradigm guaranteeing that

no decrease occurs in the solution quality.

(a) One cluster move (b) One cluster exchange

Figure 3: Example of cluster sequence modifications made by the local search operator.

The two local search operators examine numerous cluster sequence mod-

ifications to improve the solution. By employing the dynamic programming

technique, with storing the shortest paths inside the solution u′, the evalua-

tion of n2 such modifications is significantly speeded up. Furthermore, each

modification of this type is examined in advance to check whether its lower

bound does not produce a solution with an over-budget length. The local

search operators illustrated in Fig. 3 are as follows:

• The One cluster move (l = 1) operator repeatedly tries modifications

where one random cluster within the solution vector is moved into a dif-

ferent randomly selected position. The modification can be realized by

selecting two random positions 1 < i1 < i2 ≤ n, i1,2 6= k, within the

solution vector u′. Afterwards, one cluster is moved either sσi1 after sσi2

or sσi2 before sσi1 with the equal probability. Only modifications not de-

creasing the solution quality are applied to u′ before examining further

modifications.

• The One cluster exchange (l = 2) is similar to the previous local

search operator; however, instead of moving one cluster, it exchanges two

16

randomly selected distinct clusters within the solution vector. Using two

random indexes 1 < i1 < i2 ≤ n, i1,2 6= k, a single modification of this

operator is made by exchanging clusters si1 and si2 in u′. The operator

examines n2 such exchange modifications and always applies only those

that do not decrease the solution quality.

4. Computational tests

The proposed VNS-SOP algorithm and the novel ILP formulation have

been evaluated on the existing SOP benchmark instances. Furthermore, the

methods are tested on the instances of the OP with Neighborhoods (OPN)

and the Dubins OP (DOP) addressed as a sampling-based SOP.

Both VNS-SOP and the ILP-based solution algorithms are implemented

in C++, and the computational experiments have been performed on a stan-

dard PC equipped with an Intel Core i7, clocked at 3.40 GHz, and 16GB of

RAM, by using a single core for each run. The ILP formulation (2)-(9) pro-

posed to find the optimal solution of the SOP is solved by means of CPLEX

12.6.1. The subtour elimination constraints (7) are dynamically added to

the formulation when found to be violated. The greedy construction proce-

dure used for VNS-SOP is also used for creating an initial feasible solution

for the CPLEX solver when addressing the ILP formulation (2)-(9). The

maximal computational time for the CPLEX solver has been set to 9 hours.

The stopping condition of VNS-SOP is a combination of the following

three criteria: a) the maximum of 2000 iterations, b) 1000 iterations without

an improvement, and c) the maximum computational time of 20 minutes.

Each problem instance has been solved 20 times to obtain valid statistical

results of VNS-SOP.

In the following section, we describe the benchmark datasets that are

17

used. Then, we present the computational results obtained by applying

VNS-SOP and by solving the ILP formulation (2)-(9) by means of the

CPLEX solver on the GTSP dataset instances used for the SOP in Archetti

et al. (2018). Finally, the computational results of the OPN and the DOP

are presented, both addressed as a sampling-based SOP.

4.1. Test instances

The evaluated benchmark instances can be categorized into three types.

The first is based on the dataset created for the GTSP by Fischetti et al.

(1997). The other two datasets are based on the benchmark instances cre-

ated by Tsiligirides (1984) for the OP that are used to generate test instances

for the OPN and DOP with a predefined number of samples forming the clus-

ters for the SOP from the original OP nodes. The OP datasets for the OPN

and DOP are 100× scaled and use the rounded up distances between nodes

instead of the exact Euclidean distances. The benchmark datasets are avail-

able online together with the implementations of the proposed methods1.

GTSP dataset

The GTSP dataset has been previously used for evaluating the perfor-

mance of the matheuristic based on tabu search for the SOP (MASOP)

proposed in Archetti et al. (2018), and it is therefore used for comparison

with the SOP solvers proposed here. To modify the GTSP dataset for the

SOP with a single depot, the authors of MASOP removed the first node in

each dataset instance from its original GTSP cluster and added the node

to a new depot cluster s0. The budget limit Tmax for individual instances

is generated using the ω ratio of the GTSP*, the best known cost of the

1https://github.com/ctu-mrs/vns-sop

18

https://github.com/ctu-mrs/vns-sop

GTSP solution taken from Fischetti et al. (1997) 2. Two types of cluster

profit pg ∈ {g1, g2} are considered in the dataset. The first, g1, uses the clus-

ter profit pi = |si| equal to the number of nodes in the respective cluster.

The second type, g2, uses the pseudo-random profit of each node j, with the

exception of the depot node j = 0 with p0 = 0, equal to 1+(7141j)mod(100)

with the consequent cluster profit summed from its respective nodes3. As

we consider predefined starting and ending clusters in our SOP formulation,

the original single depot cluster is duplicated and is used as both a starting

cluster and an ending cluster.

OPN dataset

The second benchmark instances use the Set 2 dataset with 21 nodes

originally proposed by Tsiligirides (1984) for the OP. In the OPN proposed

by Faigl et al. (2016), the profit of individual nodes can be collected within a

circular neighborhood of each node with predefined neighborhood radius δ.

The solution can be addressed using a sampling-based approach, where for

each original node (except the starting and ending nodes) in the dataset, a

cluster with on equidistantly sampled nodes is created on the δ-radius circle.

For all nonterminating original OP nodes with the position vi = (xi, yi), i ∈

(2, . . . , n− 1), the newly created clusters si have on sampled neighborhood

nodes with the positions (xi,j , yi,j), i ∈ (2, . . . , n− 1), j ∈ (0, . . . on− 1). The

2In Archetti et al. (2018), the solutions with ω = 1 are expected to collect all clusters
within the dataset instance. However, this is not feasible due to the newly created depot
cluster, which necessarily adds a travel cost compared to the GTSP* solution. Further-
more, the SOP dataset uses rounded up ’CEIL 2D’ edge costs, which is reasonable for
the budget limited SOP, but it further increases the length of the shortest cycle over all
clusters. The original GTSP dataset uses rounding to the nearest integer value ’EUC 2D’.

3The originally proposed g2 rule for the SOP in Archetti et al. (2018) and previously
also used for the COP in Angelelli et al. (2014) uses the profit formula 1 + (7141j +
73)mod(100). However, the dataset and its results presented for the SOP match with the
formula 1 + (7141j)mod(100).

19

positions of the neighborhood nodes are determined as:

(xi,j , yi,j) = (xi, yi) + δ

(
cos

(
2jπ

on

)
, sin

(
2jπ

on

))
. (11)

The neighborhood radius used for generating the dataset is δ = 50.

Both terminating clusters contain only the original nodes. The created SOP

dataset for the OPN thus consists of 21 clusters with 2 + 19on nodes. The

dataset does not contain overlapping clusters although the original OPN can

have overlapping δ-radius circles. The SOP dataset for the OPN is approxi-

mation of the original instances where more samples on better approximates

the instances at the cost of the increased number of nodes.

DOP dataset

The second shown variant of the OP solvable as the SOP is the DOP

introduced in Pěnička et al. (2017a). In the DOP, the airplane-like vehicle

is approximated by the Dubins vehicle model proposed in Dubins (1957).

A solution of the OP contains straight line segments between nodes with

sharp turns, which are not feasible for the Dubins vehicle. In the DOP, the

aerial vehicle has to turn with a given turning radius ρ. Dubins showed

that for a curvature-constrained vehicle of this type, the optimal length

maneuver between two locations with initial and final heading angles is one

of the six possible Dubins maneuvers which satisfy the triangular inequality.

The Dubins vehicle state q = (x, y, θ) can be described by its position in

the plane (x, y) ∈ R2 and its heading angle θ ∈ S1, i.e., its state q belongs

to the special Euclidean group q ∈ SE(2). To solve the DOP, we have to

consider the heading angle at each node to connect the consecutive Dubins

maneuvers between nodes feasibly, and thus the selection of the heading

angles is a part of the optimization due to their influence to the length of

the respective Dubins maneuvers. Similarly to the OPN dataset, a sampling-

20

based approach with heading angles at the given nodes can approximate the

original DOP by creating clusters of the SOP. For all original nodes vi,

i ∈ (1, . . . , n), the created clusters si contain oh nodes with equidistantly

sampled heading angle θi,j for j ∈ (0, . . . oh − 1). The individual nodes qi,j

representing the Dubins vehicle states are

qi,j = (xi,j , yi,j , θi,j) =

(
xi, yi,

2jπ

oh

)
. (12)

The minimal turning radius used in the created dataset is ρ = 50. The

dataset for the DOP consists of asymmetric SOP instances, as the Dubins

maneuver has a different length when the initial and final vehicle states of

the maneuver are exchanged.

An example of the found solutions of the SOP on the GTSP, OPN and

DOP test instances is shown in Fig. 4. Figure 4a shows the solution on the

GTSP 11berlin52 dataset for ω = 0.6 and pg = g1. Figure 4b and 4c are

example solutions of the OPN and DOP both with Tmax = 3000 on the Set 2

dataset, using on = 8, δ = 50 in the case of the OPN and oh = 8, ρ = 50 for

the DOP.

(a) 11berlin52 (b) OPN Set 2 (c) DOP Set 2

Figure 4: Example solutions of the SOP on selected dataset instances.

21

4.2. Computational results on the GTSP dataset

The proposed ILP formulation and VNS-SOP have been evaluated on

the GTSP dataset instances, and have been compared with the existing

MIP formulation and the matheuristic based on tabu search (MASOP),

both proposed by Archetti et al. (2018).

The results shown in Table 1 concern small instances with up to 76

nodes and 16 clusters. Both cluster profit types pg ∈ {g1, g2} are considered

together with various ω ratios of the GTSP* solution and the corresponding

budget limit Tmax. For each method are reported the collected profit P and

the computational time T in seconds. The collected profit of VNS-SOP

has been identical in all runs, and the reported computational time is the

average from 20 runs.

Table 1: Comparison with exisitng methods on small GTSP dataset instances.

instance pg ω Tmax
MIP MASOP ILP VNS-SOP

P T P T P T P T
11berlin52 g1 0.4 1616 37 47.07 37 1.75 37 1.08 37 0.11
11berlin52 g2 0.4 1616 1829 65.96 1829 1.70 1829 1.18 1829 0.11
11berlin52 g1 0.6 2424 43 777.88 43 2.40 43 4.24 43 0.16
11berlin52 g2 0.6 2424 2190 1532.91 2190 2.64 2190 1.34 2190 0.15
11berlin52 g1 0.8 3232 47 2648.04 47 7.17 47 4.63 47 0.19
11berlin52 g2 0.8 3232 2384 3833.50 2384 6.61 2384 7.67 2384 0.19
11eil51 g1 0.4 69 24 39.72 24 1.85 24 2.54 24 0.09
11eil51 g2 0.4 69 1279 40.13 1279 1.97 1279 2.81 1279 0.09
11eil51 g1 0.6 104 39 34.64 39 5.13 39 1.67 39 0.14
11eil51 g2 0.6 104 1911 204.65 1911 4.74 1911 3.01 1911 0.14
11eil51 g1 0.8 139 43 1586.67 43 2.30 43 16.51 43 0.18
11eil51 g2 0.8 139 2114 1520.67 2114 1.93 2114 40.32 2114 0.20
14st70 g1 0.4 126 33 9666.29 33 4.43 33 16.65 33 0.14
14st70 g2 0.4 126 1672 4396.77 1672 4.35 1672 28.50 1672 0.15
14st70 g1 0.8 252 65 18227.23 65 8.80 65 959.59 65 0.31
14st70 g2 0.8 252 3355 30851.18 3355 7.89 3355 228.84 3355 0.33
16eil76 g1 0.4 83 40 4987.09 40 3.88 40 86.18 40 0.19
16eil76 g2 0.4 83 2223 4939.08 2223 4.73 2223 37.55 2223 0.20
16eil76 g1 0.6 125 59 29565.85 59 2.40 59 64.31 59 0.31
16eil76 g2 0.6 125 3119 21127.41 3119 6.28 3119 108.75 3119 0.32

Table 1 shows that solving to optimality the ILP formulation (2)-(9)

requires significantly less computational time than solving the MIP formu-

lation proposed in Archetti et al. (2018). Furthermore, the computational

times of VNS-SOP are about one order of magnitude lower than those of

MASOP, while the solution value is optimal for all the runs. We recall

22

that in Archetti et al. (2018) the MIP formulation was solved by means of

CPLEX 12.6 and the experiments were carried on a standard PC equipped

with Intel Core i7 clocked at 2.80 GHz. Thus, the computational time im-

provement obtained can be only partially justified by the newer version of

the CPLEX solver and the better PC used to perform our experiments. The

significantly lower computational times suggest that solving the ILP formu-

lation (2)-(9) and computing solutions by VNS-SOP are both themselves

less computationally demanding. The ILP model (2)-(9) has fewer variables

(no vertex variables) than the MIP formulation. Furthermore, the different

SECs are added only when found to be violated, which can save the insertion

of all SECs (especially when the lower bound is set to the CPLEX solver

using the greedy initial feasible solution).

The results shown in Table 2 compare the performance of the proposed

algorithms against that of MASOP for the budget ratio ω = 1 on large

instances with up to 1084 nodes. The large instances cannot be solved

optimally using the ILP formulation within the given computational time,

except four cases. For both profit types, the table shows the solution value

P and the computational time T for the solution computed by MASOP.

The computational results of VNS-SOP are reported with the maximal P

and the average Pavg solution values, and also with the average computa-

tional time T. The results computed by the CPLEX solver when addressing

the ILP formulation (2)-(9) are shown with the maximally achieved solu-

tion values during the optimization and with the percentage gap (or the

computational time in seconds for the four optimal solutions found). The

profits computed by VNS-SOP appear in bold or underlined when found to

be larger or smaller, respectively, than those computed by MASOP.

Regarding the results presented in Table 2, VNS-SOP requires less com-

23

Table 2: Comparison on large GTSP dataset instances of the SOP with ω = 1.

instance

g1 g2
MASOP VNS-SOP ILP MASOP VNS-SOP ILP
P T P Pavg T P T/gap P T P Pavg T P T/gap

16pr76 74 8.6 74 74.0 0.6 74 1.4% 3765 10.6 3765 3765.0 0.6 3765 26567.7
20kroA100 96 10.5 96 96.0 0.8 96 3.1% 4868 11.5 4868 4868.0 0.8 4868 2.9%
20kroB100 98 13.4 98 98.0 0.8 98 1.0% 4916 10.7 4916 4916.0 0.9 4916 1.9%
20kroC100 97 10.8 97 96.1 0.9 97 2.1% 4882 11.2 4882 4869.2 1.1 4882 2.6%
20kroD100 96 10.3 96 96.0 1.0 96 3.1% 4838 8.9 4838 4838.0 1.1 4838 3.5%
20kroE100 96 9.1 96 96.0 0.9 96 15536.1 4887 9.9 4887 4887.0 1.1 4887 18938.5
20rat99 93 7.6 93 92.9 1.2 85 15.3% 4721 8.1 4721 4721.0 1.0 4483 11.7%
20rd100 97 10.4 97 97.0 1.3 97 2.1% 4929 9.6 4929 4929.0 1.3 4929 1.6%
21eil101 97 8.8 98 97.8 1.2 98 1.0% 4953 20.1 4993 4957.0 1.1 4948 2.1%
21lin105 102 8.1 102 102.0 1.1 102 2.0% 5157 8.4 5157 5157.0 1.1 5101 2.5%
22pr107 101 8.6 101 101.0 0.6 101 5.0% 5109 8.3 5109 5105.4 0.7 5104 5.1%
25pr124 121 11.3 121 121.0 1.3 114 7.9% 6173 11.9 6173 6170.2 1.5 6159 1.2%
26bier127 125 16.0 125 125.0 1.8 125 0.8% 6314 16.2 6314 6314.0 1.8 6314 4967.7
26ch130 127 10.2 127 126.7 1.9 126 2.4% 6412 9.7 6412 6382.3 2.2 6412 1.4%
28pr136 134 10.2 134 134.0 2.1 134 0.7% 6841 12.2 6841 6831.4 1.8 6808 0.6%
29pr144 141 17.4 141 141.0 1.7 139 2.9% 7195 22.0 7195 7157.3 1.6 7137 1.5%
30ch150 144 9.6 147 146.7 2.1 134 11.2% 7315 12.3 7394 7378.2 1.9 6750 11.6%
30kroA150 145 11.3 145 144.7 2.2 140 6.4% 7361 13.8 7361 7356.6 2.3 7145 5.4%
30kroB150 148 15.2 148 148.0 2.5 148 0.7% 7445 15.1 7445 7445.0 2.6 7355 2.4%
31pr152 147 18.2 147 145.6 1.7 137 10.2% 7422 17.8 7422 7355.6 1.9 6545 17.0%
32u159 157 15.5 157 155.1 2.2 143 10.5% 7991 22.9 8011 7965.2 2.8 7666 4.8%
39rat195 189 13.0 189 188.9 5.2 164 18.3% 9558 11.0 9558 9546.3 4.7 8438 16.9%
40d198 196 36.8 196 195.2 5.7 171 15.2% 9934 25.7 9938 9926.3 6.7 8628 15.9%
40kroa200 198 22.8 198 198.0 3.7 189 5.3% 10010 24.5 10010 9976.0 3.6 9577 5.0%
40krob200 198 19.9 198 198.0 5.0 192 3.6% 9990 28.6 9990 9982.7 5.8 9869 1.9%
45ts225 221 34.7 221 220.8 7.3 185 21.1% 11187 26.2 11225 11158.4 7.8 9767 15.8%
45tsp225 219 16.7 220 219.1 6.1 186 20.4% 11103 16.4 11124 11063.9 7.1 9615 17.6%
46pr226 224 26.9 224 224.0 3.6 222 1.4% 11368 26.4 11368 11358.1 4.6 11222 1.4%
53gil262 258 27.2 258 254.2 8.3 215 21.4% 13050 25.9 13050 13003.6 7.8 10957 20.4%
53pr264 262 34.0 262 262.0 7.1 230 14.3% 13277 36.9 13277 13277.0 7.4 13277 0.2%
56a280 273 33.5 273 270.8 10.4 212 31.6% 13971 37.0 13971 13834.9 9.9 11996 18.2%
60pr299 296 31.3 296 295.0 12.0 270 10.4% 15005 36.8 15005 14974.4 12.1 12138 24.5%
64lin318 315 43.4 316 313.8 10.6 295 7.5% 16013 77.3 16013 15948.0 11.2 15170 5.7%
80rd400 397 76.7 398 394.3 28.2 342 16.7% 20055 48.1 20140 19942.2 29.4 17617 14.4%
84fl417 415 103.5 415 414.4 18.0 399 4.3% 21030 114.7 21030 20956.0 18.1 19766 6.5%
88pr439 437 158.0 437 432.4 33.9 415 5.5% 22110 132.8 22110 22032.2 33.1 21058 5.3%
89pcb442 440 129.5 440 438.2 38.6 361 22.2% 22300 95.0 22300 22116.3 36.2 19456 14.7%
99d493 490 120.8 490 487.1 67.3 462 6.5% 24827 153.1 24840 24708.3 66.3 23545 5.6%
115rat575 562 91.2 563 555.0 76.5 459 25.1% 28497 65.9 28361 28043.5 75.6 23192 25.2%
115u574 571 204.5 571 569.9 80.3 509 12.6% 28888 212.7 28888 28866.5 72.2 26118 10.9%
131p654 652 356.0 652 650.6 45.9 640 2.0% 32991 360.1 32950 32894.9 44.2 32450 1.7%
132d657 649 126.1 649 642.1 108.9 551 19.1% 32974 155.9 33022 32901.6 100.3 29198 13.7%
145u724 716 99.6 717 708.6 176.6 564 28.2% 36288 116.7 36316 35964.8 171.4 29195 25.1%
157rat783 767 279.2 760 750.4 225.7 618 26.5% 38953 145.5 38487 37999.8 233.1 31279 26.3%
201pr1002 994 304.9 994 981.8 480.4 877 14.1% 50453 992.7 50172 49760.9 534.7 45314 11.6%
212u1060 1057 873.5 1057 1056.3 679.9 950 11.5% 53450 798.5 53437 53391.8 641.8 48151 11.2%
217vm1084 1078 489.5 1070 1059.7 832.0 942 15.0% 54642 655.5 54363 53744.2 733.7 48955 11.8%

putational time than MASOP for almost all instances with up to 654 nodes.

VNS-SOP does not find the best known result for two instances with g1 profit

and for six instances with g2. For both profit types, the unachieved best

solutions occur for the largest instances with 493 nodes and more, where

also the computational time is the same as, or larger than, the time re-

quired by MASOP. However, VNS-SOP improved the best known solutions

for seven g1 instances and 10 instances with profit type g2. The high VNS-

24

SOP computational time for the largest instances is most probably caused

by the graph search used for finding the optimal selection of the cluster

nodes for the particular cluster sequence that is being examined for possible

improvement. In the case of a large number of clusters in a sequence, as for

the largest SOP instances with ω = 1, the maintenance of the graph with

the shortest path from the starting cluster and the ending cluster to each

vertex of the current solution requires a significant amount of time in each

VNS-SOP iteration. The four ILP optimal solutions that were found show

that for ω = 1, the paths do not visit all the clusters in the dataset instance,

and VNS-SOP finds solutions with the same optimal value.

A comparison of the results shown in Tables 1 and 2 shows that VNS-

SOP robustly finds high quality solutions, and in most cases significantly

faster than MASOP. For several instances, VNS-SOP does not find the best

known solution, but it improves the solution of a larger number of dataset

instances. Furthermore, solving the ILP formulation (2)-(9) by means of the

CPLEX solver requires a fraction of the computational time needed to solve

the MIP formulation in Archetti et al. (2018).

4.3. Application of the SOP to other OP variants

VNS-SOP and the ILP formulation (2)-(9) are further tested when used

to solve the OPN and the DOP. Both problems can be addressed as the SOP

by sampling either the neighborhood positions in the OPN or the heading

angles in the DOP. In both cases, the resulting problem is an approximation

of the original one, i.e., its solution space is a subset of the solution space

associated with the corresponding original problem. A similar VNS-based

algorithm has previously been used by the authors for solving the DOP in

Pěnička et al. (2017a); however, it was not addressed as the SOP studied

here, nor solved using the ILP.

25

Orienteering Problem with Neighborhoods

The performance of the proposed methods is tested for the OPN dataset

instances derived from the Tsiligirides (1984) Set 2 (see Section 4.1-OPN

dataset). The results are shown in Table 3 for various budget limit Tmax

and number of neighborhood samples on ∈ {4, 8, 12}. The different values

of on lead to instances with 78, 154, and 228 nodes, respectively. The max-

imal collected profit P and the average computational times T are reported

for both VNS-SOP and the solutions found by the CPLEX solver when ad-

dressing the ILP formulation. For the instances with a medium budget and

a large number of samples, the optimal solutions of the ILP formulation are

not found within the given computational time, and the optimization gap is

reported instead.

Table 3: Computational results of the OPN solved as the SOP.

Tmax

on = 4 on = 8 on = 12

ILP VNS-SOP ILP VNS-SOP ILP VNS-SOP

P T/gap P T P T/gap P T P T/gap P T
1500 180 3.3 180 0.2 180 96.8 180 0.4 180 1710.5 180 0.7
2000 230 8.6 230 0.3 230 63.5 230 0.6 230 242.9 230 1.0
2300 230 10.9 230 0.4 240 1798.1 240 0.8 240 14971.0 240 1.2
2500 260 39.5 260 0.4 260 6462.2 260 0.8 260 10.7% 260 1.2
2700 280 99.6 280 0.5 290 12165.4 290 0.8 270 16.3% 290 1.3
3000 320 432.4 320 0.4 320 7.0% 340 1.0 320 15.6% 340 1.5
3200 360 261.3 360 0.5 370 2.7% 370 0.9 360 25.0% 370 1.4
3500 410 708.3 410 0.6 410 9.8% 430 1.0 390 15.4% 430 1.5
3800 450 35.0 450 0.4 450 4314.8 450 0.9 430 4.7% 450 1.6
4000 450 6.9 450 0.4 450 6.2 450 1.0 450 8.3 450 1.6
4500 450 0.2 450 0.5 450 321.7 450 1.1 450 284.8 450 1.8

VNS-SOP finds the same optimal solutions in all cases where the optimal

solution of the ILP formulation is found. In other cases, VNS-SOP achieves

either the same results as, or better results than, the solutions found when

addressing the ILP. The maximal computational time of VNS-SOP is 1.8 s,

while the optimal solution of the ILP formulation is found within maximally

14 971.0 s. The selected numbers of samples on demonstrate how the solution

quality improves when the OPN is better approximated using more samples.

26

Dubins Orienteering Problem

The DOP solved as a sampling-based SOP is evaluated on instances also

derived from the Tsiligirides (1984) Set 2 (see Section 4.1-DOP dataset).

For the DOP, the heading angles of the airplane-like Dubins vehicle are

sampled into oh ∈ {4, 8, 12} values, creating datasets with 84, 168, and 252

nodes, respectively. Such SOP instances have starting and ending clusters

with oh nodes and the heading angles in these clusters have to be found

during optimization. Table 4 reports on the achieved results of the solution

methods for various budget limit Tmax and number of heading samples oh.

Table 4: Computational results of the DOP solved as the SOP.

Tmax

oh = 4 oh = 8 oh = 12

ILP VNS-SOP ILP VNS-SOP ILP VNS-SOP

P T P T P T P T P T P T
1500 115 2.97 115 0.21 120 8.18 120 0.39 120 20.62 120 0.62
2000 175 1.62 175 0.26 190 6.14 190 0.50 190 14.34 190 0.88
2300 190 1.96 190 0.31 200 9.14 200 0.61 200 17.76 200 1.00
2500 205 2.76 205 0.45 220 8.45 220 0.70 220 13.23 220 1.12
2700 215 3.14 215 0.39 230 5.67 230 0.70 230 17.25 230 1.18
3000 240 9.05 240 0.48 255 12.15 255 0.87 255 33.35 255 1.48
3200 265 4.11 265 0.50 280 12.06 280 0.90 290 51.76 290 1.31
3500 295 5.55 295 0.41 315 18.57 315 0.74 315 30.02 310 1.26
3800 330 9.17 330 0.47 345 23.15 345 1.10 345 46.18 345 1.91
4000 360 3.75 360 0.54 375 14.71 375 1.08 375 50.30 375 1.74
4500 415 3.54 415 0.59 430 14.29 430 0.93 440 21.31 440 1.85

According to the presented results, the optimal solution is found by

the CPLEX solver when addressing the ILP formulation for all the tested

instances with the maximally required computational time 51.76 s. VNS-

SOP finds solutions that are optimal in all instances with the exception of

one case with Tmax = 3500, oh = 12. The maximal computational time of

VNS-SOP is 1.91 s. Similarly to the OPN, the DOP is better approximated

using more samples oh, as can be seen for oh = 4 and oh = 12. We can also

observe that the optimal solution when addressing the ILP formulation is

found much faster in the case of the asymmetric DOP than for the OPN. The

branch-and-cut algorithm used by the CPLEX solver thus performs better

for the DOP with a large difference in the lengths of the Dubins maneuvers

between samples of the heading angle connecting the same clusters.

27

The results in both Table 3 and Table 4 show that the SOP can be

successfully used for solving the sampled OPN and DOP. VNS-SOP can

find high-quality solutions within 1.91 seconds for problems with up to 252

nodes. Furthermore, the solution of the ILP formulation, found with very

low computational time in the case of the DOP, indicates that VNS-SOP

can achieve the optimal solution of the sampled DOP and OPN for almost

all evaluated instances.

5. CONCLUSIONS

In this paper, we introduce a Variable Neighborhood Search (VNS) meta-

heuristic and a novel Integer Linear Programming (ILP) formulation for the

Set Orienteering Problem (SOP). The SOP is a generalization of the OP

where customers are grouped in clusters, and the objective is to find a tour

with a predefined starting cluster and ending cluster, a restricted budget,

and such that the tour maximizes the profit collected from clusters with at

least one visited customer. The VNS algorithm for the SOP (VNS-SOP)

robustly provides high-quality solutions and improves the solution of several

benchmark instances. The computational times of finding the SOP solution

using both the novel ILP formulation and VNS-SOP are significantly lower

than those of the existing approaches, especially in low to medium-size test

instances. Furthermore, we show other variants of the Orienteering Problem

that can be addressed as the SOP using a sampling-based approach. The

Orienteering Problem with Neighborhoods, with profit collection within the

neighborhood radius of each customer, and the Dubins Orienteering Problem

for an airplane-like vehicle constrained by the minimum turning radius, can

both be addressed as the studied SOP. The implementation of VNS-SOP

and of the ILP formulation in the CPLEX solver are published as open-

source software together with the dataset instances that have been used.

28

ACKNOWLEDGMENT

The work has been supported by the Czech Science Foundation under

project No. 16-24206S and project No. 17-16900Y, and by OP VVV MEYS

funded project CZ.02.1.01/0.0/0.0/16 019/0000765 ”Research Center for In-

formatics”. The support of CTU in Prague grant No. SGS17/187/13 is

gratefully acknowledged. Finally, we thank the anonymous reviewers whose

comments and suggestions helped to significantly improve this manuscript.

References

Angelelli, E., Archetti, C., & Vindigni, M. (2014). The clustered orienteering

problem. European Journal of Operational Research, 238 , 404–414.

Archetti, C., Carrabs, F., & Cerulli, R. (2018). The set orienteering problem.

European Journal of Operational Research, 267 , 264–272.

Dubins, L. E. (1957). On curves of minimal length with a constraint on

average curvature, and with prescribed initial and terminal positions and

tangents. American Journal of Mathematics, 79 , 497–516.

Faigl, J., Pěnička, R., & Best, G. (2016). Self-organizing map-based solution

for the orienteering problem with neighborhoods. In IEEE International

Conference on Systems, Man, and Cybernetics (pp. 1315–1321).

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems

with profits. Transportation Science, 39 , 188–205.

Fischetti, M., Gonzlez, J. J. S., & Toth, P. (1997). A branch-and-cut algo-

rithm for the symmetric generalized traveling salesman problem. Opera-

tions Research, 45 , 378–394.

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering prob-

lem: A survey of recent variants, solution approaches and applications.

European Journal of Operational Research, 255 , 315–332.

29

Laporte, G., Asef-Vaziri, A., & Sriskandarajah, C. (1996). Some applica-

tions of the generalized travelling salesman problem. The Journal of the

Operational Research Society , 47 , 1461–1467.

Laporte, G., & Nobert, Y. (1983). Generalized travelling salesman problem

through n sets of nodes: An integer programming approach. INFOR:

Information Systems and Operational Research, 21 , 61–75.

Li, J., Andrew, L., Foh, C., Zukerman, M., & Chen, H.-H. (2009). Connec-

tivity, coverage and placement in wireless sensor networks. Sensors, 9 ,

7664–7693.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Com-

puters & Operations Research, 24 , 1097–1100.

Pěnička, R., Faigl, J., Váňa, P., & Saska, M. (2017a). Dubins orienteering

problem. IEEE Robotics and Automation Letters, 2 , 1210–1217.

Pěnička, R., Faigl, J., Váňa, P., & Saska, M. (2017b). Dubins orienteering

problem with neighborhoods. In International Conference on Unmanned

Aircraft Systems (pp. 1555–1562).

Sevkli, Z., & Sevilgen, F. E. (2006). Variable neighborhood search for the

orienteering problem. In 21th International Symposium on Computer and

Information Sciences (pp. 134–143).

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. The Jour-

nal of the Operational Research Society , 35 , 797–809.

Vansteenwegen, P., Souffriau, W., & Oudheusden, D. V. (2011). The ori-

enteering problem: A survey. European Journal of Operational Research,

209 , 1–10.

Yu, J., Schwager, M., & Rus, D. (2016). Correlated orienteering problem

and its application to persistent monitoring tasks. IEEE Transactions on

Robotics, 32 , 1106–1118.

30

	INTRODUCTION
	Problem description and formulation
	Variable neighborhood search algorithm for the SOP
	Initial solution construction procedure
	Variable Neighborhood Search algorithm

	Computational tests
	Test instances
	Computational results on the GTSP dataset
	Application of the SOP to other OP variants

	CONCLUSIONS

