
Traveling Salesman Problem with Neighborhoods on a
Sphere in Reflectance Transformation Imaging Scenarios

Jindřiška Deckerováa, Jan Faigla,∗, Vít Krátkýa

aCzech Technical University in Prague, Faculty of Electrical Engineering
Technická 2, 166 27, Prague, Czech Republic

Keywords: Unsupervised Learning, Traveling Salesman Problem, Spherical

Geometry

1. Introduction

The Traveling Salesman Problem (TSP), a well-known NP-hard combi-

natorial optimization problem, stands to determine the shortest tour visiting

a given set of target locations (Applegate et al., 2007). In many practical

scenarios, the tour cost can be significantly reduced for cases where it is suf-

ficient to visit a close neighborhood of the target locations (Faigl, 2018). In

such a case, the TSP becomes the TSP with Neighborhoods (TSPN) (Arkin

and Hassin, 1994) that combines the combinatorial optimization of the TSP

with continuous optimization of finding the optimal locations within the

neighborhoods. The TSPN is a challenging problem (Gudmundsson et al.,

2000) and specific cases for particular types of neighborhoods are studied (El-

bassioni et al., 2009; Gulczynski et al., 2006). Besides, the diversity of the

real-world problems leads to variants of the TSP where the input space is

not Euclidean (as in the regular formulation of the TSP) but a geometrical

∗Corresponding author
Email addresses: deckejin@fel.cvut.cz (Jindřiška Deckerová),

faiglj@fel.cvut.cz (Jan Faigl), kratkvit@fel.cvut.cz (Vít Krátký)

Preprint submitted to Elsevier June 10, 2022

object such as cuboid (Aybars, 2008) or sphere (Uğur et al., 2009).

Figure 1: The motivational scenario of the studied TSPNS is arising from the practical

deployment of the autonomous RTI by a team of UAVs (Krátký et al., 2020).

In this paper, we address a variant of the non-Euclidean TSP with Neigh-

borhoods on a Sphere, further denoted as the TSPNS. The problem is mo-

tivated by practical applications of the Reflectance Transformation Imaging

(RTI) using a team of multi-rotor Unmanned Aerial Vehicles (UAVs) (Krátký

et al., 2020) as depicted in Fig. 1. The RTI is a computational photography

method to capture a surface shape and color of the object of interest and

create a model for the interactive re-lighting of the object from any direc-

tion using a software view, thus revealing details not visible with the naked

eye. The required input of the RTI is a set of images captured by a static

camera, where each image needs to be captured under the illumination of

the constant intensity from different directions. In the UAV-based RTI, the

light can be carried by a UAV that enlightens the object from a set of di-

rections while another UAV holds its position and captures images. Thus,

collecting the required images for the RTI by the UAVs can be formulated

as a problem of determining a cost-efficient path for the moving vehicle to

2

enlighten the object from the necessary directions quickly. Since multiple

lighting directions are required even for a single object of interest, the prob-

lem of finding the best sequence of directions that yields the shortest path

possible becomes a variant of the TSP. However, we need to account for the

practical requirements of the lighting.

The UAV carrying the light has to maintain a constant distance from the

object to satisfy the requirements of the constant intensity of the illumina-

tion. Therefore, we formulate the problem as finding the shortest path on

the surface of the sphere to visit the locations from which the enlightening

of the object forms the desired shadows to be captured by the static UAV.

Particular lighting directions for the RTI can be chosen arbitrarily within the

defined tolerance interval; hence, we can exploit the tolerance on the light-

ing directions by introducing target sites as the neighborhood regions for all

the former lighting locations. Thus, the travel cost to visit the sites can be

saved by finding suitable locations of the regions with respect to (w.r.t.) the

sequence of visits to all the required lighting locations. Hence, the problem

is formulated as the TSPN on a Sphere (TSPNS), where the neighborhoods

are regions on the sphere’s surface, and connections between these regions

are also on the surface of the sphere.

Since a direct solver for the introduced TSPNS is not available, two ways

to address the TSPNS can be applied. First, we can discretize the continuous

neighborhoods and transform the problem to the Generalized TSP (GTSP),

where regions are substituted with sets of discrete locations. The GTSP is

then to determine a cost-efficient path visiting one location per set. Such

discretized instances of the TSPNS can be solved by the available GTSP

solvers such as (Helsgaun, 2015) or (Smith and Imeson, 2017). However, the

transformation method can quickly be too demanding because high-quality

3

solutions require dense sampling. Therefore, the second approach to solve the

TSPNS is to adapt existing direct heuristic approaches to the TSPN. Besides,

a heuristic solution found by both approaches can be further improved by a

local post-processing optimization similarly as reported for the GTSP with

Neighborhoods in (Faigl et al., 2019).

We investigated both mentioned approaches, and we propose to employ

unsupervised learning of the Growing Self-Organizing Array (GSOA) to solve

the TSPNS directly. The reported results indicate that the proposed adap-

tation of the GSOA to the spherical space provides solutions that are about

units of percentage points worse than about two orders of magnitude more

demanding GTSP-based transformation approach with dense sampling. On

the other hand, using a single sample per region, the corresponding dis-

cretized instance of the TSPNS can be solved using the efficient TSP heuris-

tic (Helsgaun, 2000) in a competitive time to the GSOA at the cost of sig-

nificantly worse solutions. However, the initial solutions provided by the

methods can be improved by local post-processing optimization. Based on

the presented results, the proposed methods represent a suitable approach

for solving instances of the TSPNS motivated by the RTI scenarios with

aerial vehicles.

The rest of the text is organized as follows. A brief overview of existing

approaches to the introduced TSPN is summarized in Section 2. The ad-

dressed TSPNS is formally introduced in Section 3. The transformation ap-

proach is presented in Section 4, where the baseline method using a solution

of the TSP is described together with the proposed GTSP-based method.

The employed GSOA-based approach and its adaptation to the addressed

TSPNS are described in Section 5. The local post-processing optimization

is presented in Section 6. Results on the empirical evaluation are reported

4

in Section 7, and concluding remarks are outlined in Section 8.

2. Related Work

The proposed Traveling Salesman Problem with Neighborhoods on a

Sphere (TSPNS) is a variant of the TSP with Neighborhoods (TSPN) extend-

ing the non-Euclidean TSP on a Sphere (TSPS). Therefore, a brief overview

of existing approaches to the Euclidean TSPN and the non-Euclidean TSPS

is provided in this section.

The TSPN is a generalization of the TSP known to be APX-hard un-

less P=NP (Gudmundsson et al., 2000). It includes the sequencing part

of the TSP to determine the optimal sequence of visits to the given tar-

gets. Besides, the TSPN also includes determining the most suitable visiting

location of each target neighborhood such that the cost of the tour visit-

ing the neighborhoods is minimal. Approximation algorithms and heuristic

approaches have been proposed for variants of the TSPN with restricted

types of the neighborhoods, such as neighborhoods shaped to parallel unit

segments, translations of polygonal regions, and circles (Arkin and Hassin,

1994). Even though the TSPN with complex-shaped neighborhoods have

been studied (Dumitrescu and Mitchell, 2003; De Berg et al., 2005; Elbas-

sioni et al., 2009), there are still many neighborhood types not addressed

by the existing approximation methods. For example, non-convex neighbor-

hoods are addressed in (Gentilini et al., 2013), where the authors propose a

non-convex mixed-integer non-linear program to find a solution using opti-

mization solvers.

A widely studied variant of the TSPN is with the disk-shaped neighbor-

hoods referred to as the Close Enough TSP (CETSP) (Gulczynski et al.,

5

2006) with several heuristics and benchmarks reported in (Mennell, 2009).

Therein reported results indicate that fast heuristic solvers for instances with

overlapping neighborhoods can be based on the sampling of Steiner zones;

however, transformation approaches are reported to provide better solution

quality. The transformation methods sample the continuous disk-shaped

neighborhoods into sets of discrete locations; hence, the problem becomes

an instance of the Generalized TSP (GTSP) that is to find the cost-efficient

tour visiting just a single location of each set. Although the GTSP-based

approaches can find high-quality solutions for dense sampling, they quickly

become computationally too demanding with the increasing number of sam-

ples.

A direct unsupervised learning-based heuristic called the Growing Self-

Organizing Array (GSOA) to address routing problems with neighborhoods

is proposed in (Faigl, 2018). The GSOA is reported to provide better results

than the heuristics of (Mennell, 2009) including the transformation GTSP-

based method. At the same time, the computational requirements of the

GSOA are only a fraction of those needed by the existing GTSP solvers.

Regarding non-Euclidean instances of the TSP, they can be found in

multi-goal path planning in finding paths among obstacles (Faigl et al., 2011),

in cuboid domains (Aybars, 2008), and spherical domains (Uğur et al., 2009).

The TSP on a Sphere (TSPS) is of particular interest because it shares

the spherical domain with the TSPNS. The discrete cuckoo search (Ouyang

et al., 2013) has improved probably the first genetic-based solution of the

TSPS proposed in (Uğur et al., 2009). The ant colony optimization has

been used for solving the non-Euclidean TSPS in (Eldem and Ülker, 2017)

that outperforms both the former genetic-based approach and the discrete

cuckoo search. However, its computational requirements are relatively high

6

compared to the results reported for unsupervised learning in (Faigl, 2018;

Faigl et al., 2011). Therefore, we consider the unsupervised learning of the

GSOA (Faigl, 2018) as a suitable technique to address the TSPNS directly.

3. Problem Statement

The herein addressed TSP with Neighborhood on a Sphere (TSPNS)

is a variant of the TSP with neighborhoods that stands to determine the

closed shortest path visiting each of the given set of possibly overlapping

neighborhoods. Since the neighborhoods are regions on the sphere’s surface

in the TSPNS, the problem is to find the closed shortest path connecting

all of the given regions on the sphere’s surface as depicted in Fig. 2. The

TSPNS can be formally defined as follows.

(a) Non-overlapping instance (b) Overlapping instance

Figure 2: Instance of the TSPNS, each with a solution depicted in blue denoting a path

connecting all regions on the sphere’s surface.

Let Q be a sphere given by its center Q ∈ R3 and radius δ > 0, and

let S = {S1, . . . , Sn} be a set of n regions on the surface of Q. For the

motivational RTI scenario, each spherical cap region Si is defined based on

7

the required lightning direction ci and the solid angle Ωi representing the

allowed tolerance to the direction ci. Thus, for the normalized vector x with

the origin at Q, the region Si is a set of all points P at a distance δ from Q

that are within the angle Ωi:

Si = {P |P = Q+ δx and ∥x∥ = 1 and ∠(x, ci) ≤ Ωi}. (1)

The solution of the TSPNS can be described by the sequence of visits to

the regions Σ = (σ1, . . . , σn), 1 ≤ σi ≤ n, and σi ̸= σj for i ̸= j, together

with the set of corresponding waypoints P = {P1, . . . , Pn}, Pi ∈ R3, each

with the distance ∥Pi −Q∥ = δ from the center Q; thus, Pi ∈ Si. The final

path visiting the regions S can be constructed by connecting each pair of

consecutive waypoints of the sequence in the shortest possible way on the

surface of the sphere Q1. Since the TSPNS stands to determine the sequence

Σ and the waypoints P , the length of the multi-goal path is denoted L(Σ, P).

The waypoints P can be represented by a normalized direction vectors

X = {x1, . . . ,xn} from the center Q, because it significantly simplifies the

notation. The waypoints are therefore denoted as the waypoint vectors

Pi = Q+ δ xi, ∥xi∥ = 1. (2)

Having the introduced notation, the TSPNS can be formulated as the

optimization Problem 3.1.

1We restrict the connections of the regions on the sphere’s surface even for an aerial

vehicle in the RTI scenario because of the required lightening from the defined distance δ

for the whole flight of the vehicle.

8

Figure 3: An instance of the TSPNS with the locations S = {S1, S2, S3} on the sphere

Q with the center Q and radius δ. The regions are illustrated with the red boundary of

the spherical cap. The associated direction ci for Si is in green. The solution is in blue,

where Pi represents the waypoint for the region Si.

Problem 3.1 (TSP with Neighborhoods on a Sphere - TSPNS).

minimizeΣ,P L(Σ, P) =

n−1∑
i=1

L(Pi, Pi+1) + L(Pn, P1)

s.t.

Σ = (σ1, . . . , σn), 1 ≤ σi ≤ n; σi ̸= σj for i ̸= j,

P = {P1, . . . , Pn}, X = {x1, . . . ,xn},

Pi = Q+ δ xi, ∥xi∥ = 1, ∠(xi, cσi) ≤ Ωσi , i ∈ {1, . . . , n},

9

where L(Pi, Pj) is the length of the shortest path on the surface of the sphere

Q connecting the waypoint Pi with Pj . The computation of the shortest path

is detailed in the rest of this section. An example of the TSPNS instance

with the defined notation is depicted in Fig. 3.

3.1. Shortest Distance on a Sphere

The shortest path between two waypoints Pi and Pj on the sphere’s

surface is often referred to as the great-circle distance or orthodromic distance

in the literature. It can be computed based on the angle ∠PiQPj and the

radius δ as

L(Pi, Pj) = δ∠PiQPj . (3)

If the solution is represented by the waypoint vectors X, (3) can be

expressed as

L(Pi, Pj) = δ∠(xi,xj) = δ arccos (xi · xj) , (4)

where xi · xj is the scalar product of two vectors.

4. Discretized TSPNS – Transformation-based Solution of the TSPNS

The studied TSPNS with continuous neighborhoods can be addressed by

the transformation approach and creating a discrete instance of the GTSP

using sampling of the regions. Since the regions are spherical caps defined

by ci, we can sample Si and transform the problem into the non-Euclidean

TSP with the distance matrix D,

D =

0 d12 · · · d1n

d21 0 · · · d2n
...

...
. . .

...

dn1 dn2 · · · 0

 , (5)

10

where dij is the shortest distance between the regions’ points Pi and Pj de-

termined by (4) using ci for the regions i ∈ {1, . . . , n}. Since the dot product

in (4) is commutative, dij = dji applies, and the matrix D is symmetric.

Baseline Solution. For a single sample per each region Si, e.g., using the

center of the region computed from ci, the discretized TSPNS becomes an in-

stance of the TSP that can be solved by the LKH solver (Helsgaun, 2018). A

single sample per region does not allow exploiting the tolerance of the light-

ing direction defined by the solid angle Ωi in the motivational RTI scenario.

However, it represents a baseline solution (of the TSPS) to show the benefits

of the introduced TSPNS in the reduction of the solution cost provided by

the proposed GTSP-based and GSOA-based approaches to the TSPNS.

4.1. Proposed GTSP-based Solution to the TSPNS

The identical procedure of determining the distance matrix (5) can be

utilized for the transformation of the TSPNS to an instance of the GTSP.

The only difference is that each spherical cap region Si is sampled into m

discrete locations expressed as the set Bi = {B1
i , . . . , B

m
i }. The problem

is then to determine the shortest path visiting each set Bi exactly once,

i.e., visiting a single sample from each set Bi. Since the solution of the

TSPNS is limited to the sphere’s surface, every path visiting a certain region

has to pass its circular border. Hence, we can sample each region Si by

even distribution of m discrete points along its circular border. The distance

matrix corresponding to an instance of the GTSP can be computed similarly

to the former case, but n2m2 distances have to be determined in total. Then,

the GTSP instance with the pre-computed distance matrix can be solved by

an available purely combinatorial GTSP solver. In this work, we utilize the

GLKH solver (Helsgaun, 2013).

11

5. Proposed GSOA-based Solver to the TSPNS

The proposed direct solution to the TSPNS is based on the Growing

Self-Organizing Array (GSOA) (Faigl, 2018), which is a general heuristic

approach to solve routing problems with neighborhoods. Since the addressed

instances of the TSPNS are non-Euclidean, it is necessary to modify the

learning procedure of the GSOA appropriately. The proposed modifications

can be considered relatively straightforward within the context of the GSOA.

Therefore, an overview of the GSOA is presented in Section 5.1 to make

the paper self-contained. The main proposed modifications are detailed in

Section 5.2. The presented overview of the GSOA follows (Faigl, 2018);

however, we use the notation of the TSPNS for consistency.

5.1. Growing Self-Organizing Array (GSOA)

In the GSOA, the solution of the routing problem is represented as a

growing array of M nodes N = {ν1, . . . , νM} that is iteratively adapted to

the regions (neighborhoods) S in a finite number of the learning epochs.

Each node νj corresponds to a point in the solution domain. In our TSPNS

case, the domain is the sphere’s surface, and νj corresponds to vector νj

denoting a point on the surface of the sphere Q based on (2). Furthermore,

each node νj is associated with a single region Sk and a waypoint vector sp

at which Sk is visited by the current solution encoded in N .

The adaptation is unsupervised learning, where the best matching node

(called the winner node) is iteratively determined for the randomly selected

region Sk. The winner node and its neighboring nodes are then moved

towards Sk. During the determination of the winner node, the waypoint

vector sp is determined as the closest point of the particular region Sk to

the location of the newly determined winner node denoted ν∗. The relation

12

Figure 4: A visualization of the GSOA nodes N at some learning epoch in which a

winner node ν∗ for the region Sk is determined at the location ν∗ = ps together with the

waypoint sp using the shortest distance L from the arc defined by (νj , νj+1) to the region

Sk represented by its center ck and solid angle Ωk.

of the nodes, winner node ν∗, and its waypoint to the region Sk is visualized

in Fig. 4. The learning epoch is an adaptation of N to all the regions S.

The adaptation is repeated until the termination condition is met that is

defined by the maximal number of learning epochs or when the array of nodes

N converges to a stable state (Faigl, 2018). Since a new node is determined

for each region of S together with the waypoint sp in every epoch, a feasible

solution can be retrieved at the end of the epoch by traversing N through sp.

The GSOA algorithm is summarized in Algorithm 1, and it is detailed in the

13

rest of this subsection.

The GSOA starts with the initialization of the array N by randomly se-

lecting three regions from S and for each region creating a node νj with the

lighting direction ck as the node position on the sphere νj = ck that is also

used for the associated waypoint. The actual maximal number of iterations

imax is set to the smaller value of either the pre-specified imax or 1/α to

ensure the utilized learning gain G is always above zero, where α is the gain

decreasing rate. Besides the pre-specified value of imax, the initial value of

G, and the value of the learning rate α, the GSOA can be parameterized

by the learning rate µ. The parameters influence the power of adaptation

and thus the solution convergence; however, as described in (Faigl, 2018)

based on the empirical evaluation, the used values imax = 150, µ = 0.6,

G = 10, and α = 0.0005 provide a suitable tradeoff between the computa-

tional requirements and solution quality. Hence, the GSOA is considered to

be parameterless (Faigl, 2018), and for solving the TSPNS, we follow the rec-

ommended values since there was a negligible influence on the performance

of the solver.

After the initialization, the adaptation of N towards S is performed in

the finite number of learning epochs. During each epoch, all the regions

Sk ∈ S are processed in a random order to escape local optima. For each Sk,

a new winner node ν∗ is determined (Algorithm 1, Line 6) and inserted into

N as follows. The array N is examined as a sequence of paths connecting

νj with νj+1, where νj ≜ νj−M for j > M , to reflect the closed multi-point

path connecting all the regions. Therefore, the winner node ν∗ is determined

as the closest point of the path represented by N to the region Sk on the

sphere’s surface. The location of ν∗ is determined as ps representing the

point of the arc defined by (νj , νj+1) that is an endpoint of the arc with

14

Algorithm 1: GSOA for the TSPNS
Input: S = {S1, . . . , Sn} – a set of the target regions.

Parameters : the maximal no. of iterations imax = 150; learning rate

µ = 0.6; learning gain G = 10; gain decreasing rate

α = 0.0005.

Output: (Σ, P) – Σ sequence of visits to S with the corresponding

waypoints P .

1 N ← {ν1, ν2, ν3} // Random initialization using three regions of S

2 imax ← min(imax, 1/α) // Ensure G will be always above 0

3 i← 1 // Init. epoch counter, the current N is considered the previous

epoch

4 while i ≤ imax and solution (Σ, P) is evolving do

5 foreach Sk in a random permutation of S do

6 (ν∗, νj , νj+1,ps, sp)← selectWinner(N , Sk)

7 N ← insertNode(N ,ν∗, νj , νj+1)

8 N ← adapt(N ,ν∗, sp)

9 i← i+ 1 // Increase the learning epoch counter

10 N ← removeNodes(N , i− 1) // Remove nodes from the previous epoch

11 G← (1− i α)G // Update the learning gain

12 (Σ′, P ′)← extractSolution(N)

13 if L(Σ′, P ′) < L(Σ, P) then

14 (Σ, P)← (Σ′, P ′) // Update the best solution found so far

15 (Σ, P)← twoOpt(Σ, P) // Improve the solution by Two-Opt (Croes, 1958)

16 (Σ, P)← ppOptimization(Σ, P)// Post-processing optimization (Section 6)

17 return (Σ, P)

15

the shortest distance L to Sk. Hence, ps is determined together with the

waypoint of the visit to Sk expressed as sp that lies at the opposite endpoint

of this arc, see Fig. 4. Both vectors ps and sp are determined using the

center ck of the region Sk. If the arc defined by (νj , νj+1) passes the region,

both vectors ps and sp would be identical.

Once all the arcs defined by the consecutive nodes (νj , νj+1) of the array

N are processed, the winner node ν∗ corresponds to the point of N with

the shortest distance L to the currently examined Sk ∈ S. The winner node

ν∗ is then inserted into N between the corresponding νj and νj+1, and its

location ν∗ is set to ν∗ = ps. The region Sk and waypoint sp are associated

with ν∗ to enable solution retrieval. After that, ν∗ is adapted to sp together

with its neighboring nodes. The adaptation of the node ν (the winner node

ν∗ or one of its neighboring nodes) can be considered as an adjustment of

its location ν as

ν ← ν + µf(G, d)(sp − ν), (6)

where µ is the learning rate, G is the learning gain, d is the number of nodes

between the neighboring node ν to the current winner node ν∗, and f(G, d)

is the neighboring function that adjust the power of adaptation according to

f(G, d) =

e−

d2

G2 if d < 0.2M

0 otherwise
. (7)

For the solution of the TSPNS, the vector ν is normalized so that ∥ν∥ = 1

holds after the adaptation.

Because n new nodes are added to N in each learning epoch, the nodes

from the previous epoch are removed from N . Thus, after each learning

epoch, the number of nodes M equals to n, and N encodes a feasible solution

16

by the array of nodes defining the sequence Σ and waypoints sp associated

to the nodes that represent the requested waypoints P (2).

The learning is repeated up to the selected imax epochs or terminated

whenever the solution does not change, such as the node locations ν fit their

waypoints sp. Since learning is randomized, the best solution among the

epochs is maintained. In addition, the Two-Opt heuristic (Croes, 1958) is

used to improve the final sequence Σ and the post-processing optimization

procedure can be further applied to adjust the waypoints P . The proposed

procedure for the TSPNS is detailed in Section 6.

The deployment of the original GSOA (Faigl, 2018) to the addressed

TSPNS is relatively straightforward and the only part that needs to be ad-

justed is the winner node selection by selectWinner() (Algorithm 1, Line 6)

that has to reflect paths on the surface of the sphere. Besides, the paths on

the sphere’s surface are also utilized during the node adaptation in adapt()

(Algorithm 1, Line 8). The proposed winner node determination is detailed

in the remaining part of this section.

5.2. Winner Node Determination in the GSOA-based Solution of the TSPNS

The GSOA has been introduced in (Faigl, 2018) for 2D instances and Eu-

clidean distance for the winner node determination. However, poor solutions

would be found if the problem domain is not Euclidean as for the regions on

the sphere’s surface. Therefore, we propose to determine the winner node

ν∗ and its corresponding waypoint on the sphere as the closest point of the

region Sk to the array N using the following procedure.

Assuming the arrayN represents a sequence of paths connecting two con-

secutive nodes (νj , νj+1), 1 ≤ j ≤ M and νM+1 = ν1, the waypoint vector

ps for the region Sk is determined as follows. First, the vector uk perpen-

17

dicular to the plane formed by the path segment (νj ,νj+1) is determined as

the cross product of two vectors

uk = νj × νj+1, (8)

Figure 5: Visualization of the proposed winner node selection for solving the TSPNS

using the GSOA. The location of the winner node for the arc (νj , νj+1) is defined by

ps that corresponds to the closest point of the arc to Sk that is determined as the cross

product of the vectors vk and uk. The waypoint associated with the winner node denoting

the point of the visit to the region Sk is defined by the vector sp derived from the rotation

of ps to the close neighborhood of ck.

18

where νj and νj+1 are the corresponding vectors defining current locations

of the nodes νj and νj+1, respectively. Then, a perpendicular vector vk to

the plane formed by the region’s center ck and uk is determined as the cross

product

vk = ck × uk. (9)

The vector ps defining the point of the path segment is determined by the

rotation of vk to the plane formed by the path segment

ps = vk × uk. (10)

Having ps of the arc (νj , νj+1) on the sphere, sp defining the waypoint of

visit to Sk is determined by rotating ps so that ∠(ck, sp) ≤ Ωk holds. Hence,

sp is determined for Sk as

sp =
s′p∥∥s′p∥∥ (11)

where

s′p =

ck + tanΩk (ps × ck)× ck, if ∠(ck,ps) > Ωk,

ps otherwise.
(12)

A visualization of the proposed determination of the winner node is depicted

in Fig. 5.

The adaptation is a movement of the node’s corresponding location to-

wards the waypoint locations using the shortest path on a surface.

6. Post-processing Optimization for Waypoints Adjustment in a

Solution of the TSPNS

A solution of the TSPNS consists of the sequencing part of the underlying

TSP and the determination of the optimal waypoints to visit the regions.

19

Having a sequence of visits to the regions, e.g., found by the herein presented

approaches based on the TSP using regions’ centers (Section 4), the GTSP

(Section 4.1), and the GSOA (Section 5), the waypoints’ locations can be

adjusted by a local optimization such as a hill-climbing technique. Since the

optimization is called after a solution of the TSPNS is determined, we call it

the post-processing optimization denoted ppOptimization() in Algorithm 1.

A solution of the TSPNS is represented by the sequence Σ and waypoint

locations P , and the goal of the optimization is adjusting P to shorten the

final path length. The process works as follows.

The idea is to optimize all the waypoint locations P represented by the

vectors X. However, only a single vector xσi ∈ X is optimized at a single

moment to simplify the computation. The individual vectors X are iter-

atively optimized locally one-by-one to converge towards local optima for

each adjusted vector. For a sequence of visits Σ, each vector xσi is opti-

mized taking into account the previous xσi−1 and the next xσi+1 vectors.

Since xσi corresponds to the visit of Sσi , the perpendicular vector uσi to the

plane containing an arc connecting xσi−1 and xσi+1 on the surface of Q is

determined as

uσi = xσi−1 × xσi+1 . (13)

Then, the vector vσi perpendicular to uσi and cσi is determined as

vσi = cσi × uσi . (14)

Using vσi , a vector xσi is determined within the region Sσi using vectors

dσi,1 and dσi,2 defined as

dσi,1 = tanΩσi ((vσi × uσi)× cσi)× cσi

dσi,2 = tanΩσi (dσi,1 × cσi)
. (15)

20

Figure 6: Visualization of the local post-processing optimization of the vector xσi that

represents the waypoint location Pσi ∈ P of visit to the region Sσi denoted as a large disk

with a red outline. During the optimization, the previous waypoint xσi−1 and the next

waypoint xσi+1 of xσi in the sequence Σ are taken into account. New locations where

Sσi is visited are sampled at the boundary of the region (small orange disks) around the

actual waypoint using a decreasing sampling step until the path length is improving.

Then, the initial value of xσi is determined as

xσi =
x′
σi∥∥x′
σi

∥∥ , x′
σi

= cσi + dσi,1. (16)

If xσi can be further improved, it is iteratively rotated on the spherical

21

surface of the region Sσi

xσi =
x′
σi∥∥x′
σi

∥∥ (17)

x′
σi

=

cσi + dσi,1 cos(γ) + dσi,2 sin(γ), if ∠(ck,vσi) > Ωk

vσi otherwise
,

where γ is updated by the sampling step after each iteration of the lo-

cal optimization of xσi . Thus, each waypoint is iteratively optimized to

shorten the path until the sampling step is less than a predefined thresh-

old β = 1× 10−10. The whole sequence is optimized k times. The post-

processing optimization is summarized in Algorithm 2, and a visualization

of the optimization and used vectors are depicted in Fig. 6.

Algorithm 2: Post-processing Optimization for the TSPNS
Input: S – a set of the target regions

Input: (Σ, P) – a solution of the TSPNS as a sequence Σ = (σ1, . . . , σn)

of visits to the regions S and waypoints P represented by the

normalized vectors X = {x1, . . . ,xn}.

Parameters : the sampling step threshold β = 1× 10−10; the no. of

optimization loops k = 5.

Output: (Σ, P) – the solution with the adjusted waypoints P .

1 repeat k times

2 foreach xσi
∈X do

3 xσi ← optimizeWaypoint(xσi , β, Sσi ,xσi−1 ,xσi+1) // Use (17)

4 return Q,Σ

In the presented description, we assume the waypoint vectors correspond

to locations on the boundary of the regions (a cap of the sphere’s surface),

which holds in most cases. If the waypoint vector corresponds to a location

22

inside the region, the local optimization is skipped for such a waypoint be-

cause it would lie on the arc connecting the neighboring waypoints, and local

improvement would not be effective.

7. Empirical Evaluation

The proposed solvers to the TSPNS (both the transformation and GSOA

based) have been empirically evaluated using 28 test instances and compared

with the baseline solutions using the TSPS. Furthermore, the efficiency of

the post-processing optimization procedure on the solution improvement has

been evaluated for all three examined solvers. The structure of the reported

results is following. The solvers have been evaluated on test instances de-

scribed in Section 7.1 using statistical performance indicators. The evalua-

tion setup, together with the description of the used performance indicators,

is presented in Section 7.2. Results on finding a suitable sampling needed for

the transformation-based method are reported in Section 7.3. Finally, the

results on the empirical evaluation are presented in Section 7.4.

7.1. Test Instances of the TSPNS

The instances2 are motivated by the practical RTI scenarios to provide

desired lighting conditions by visiting defined locations on a sphere around

an object of interest. The instances differ in the number of regions n, the

volume of the sphere surface covered by the regions, and the distribution

of regions over the sphere surface. The instance name encodes the instance

character to support the readability of the evaluation results. The size of the

2All the benchmark instances are available at https://github.com/comrob/tspns.

23

https://github.com/comrob/tspns

instances is selected from the range n ∈ {10, 25, 50, 100, 500} and n is added

as a suffix to the instance name.

(a) TSPS-LKH:

L = 13.1, T = 0.03 s

(b) GTSP-GLKH:

L = 9.9, T = 3.97 s

(c) GSOA:

L = 9.9, T = 0.02 s

Figure 7: The sphere_rand_ol_25 instance with the selected solutions found by the

TSPS-LKH, GTSP-GLKH, and GSOA solvers.

The distribution of the regions over the sphere’s surface is random or

tends to the even distribution. The even distribution of the locations cor-

responds to a typical RTI scanning scenario, and a Fibonacci lattice is em-

ployed to achieve an approximately even distribution of the regions (their

centers) over the sphere. The distribution is encoded in the name of the

instance as rand for random regions, and reg for even distribution.

The test instances are also created to distinguish regions located in the

middle part of the sphere, encoded in the instance name as band. The in-

stances with regions on top of the sphere either in the rectangular or spher-

ical pattern are encoded as rect_cap and cap, respectively. Finally, the

instances are divided into two main categories with fully non-overlapping

regions encoded as nol in the instance name, and instances with at least two

overlapping regions encoded as ol. Examples of the selected instances with

their solutions are depicted in Fig. 7 and Fig. 8.

24

(a) TSPS-LKH:

L = 8.7, T = 0.15 s

(b) GTSP-GLKH:

L = 8.0, T = 22.27 s

(c) GSOA:

L = 8.2, T = 0.09 s

Figure 8: The sphere_rect_cap_reg_nol_50 instance with the selected solution found

by the TSPS-LKH, GTSP-GLKH, and GSOA solvers.

7.2. Evaluation Setup

Three solvers to the TSPNS are examined in the reported empirical

evaluation. The baseline approach is the transformation method denoted

TSPS-LKH because the heuristic solver LKH (Helsgaun, 2018) is used for

the solution of the TSP instances created from the transformed TSPNS using

the centers of the regions. Similarly, the transformation method based on

more samples is denoted GTSP-GLKH because the transformed instances

of the GTSP are solved by the heuristic GLKH (Helsgaun, 2013). The

proposed GSOA-based method is denoted simply GSOA. Furthermore, the

results without the procedure are denoted by TSPS-LKH’, GTSP-GLKH’,

and GSOA’, because the post-processing optimization procedure noticeably

improves the solutions with a negligible increase of the computational re-

quirements.

All the examined solvers TSPS-LKH, GTSP-GLKH, and the GSOA are

randomized, and their performance is therefore measured among solving 50

25

trials for each instance. All the solvers are implemented in C++3 and run

within the same computational environment using a single core of the Intel

Core i7-9700 with the base frequency 3.0GHz. The computational require-

ments are thus reported as the real average computational time T in seconds

that can be directly compared. The statistical comparison is based on the

statistical test using a null hypothesis H0 similarly as in (Faigl et al., 2013).

Although the learning parameters of the GSOA can be eventually tuned,

for all herein reported results, we utilize the parameter values suggested

in (Faigl, 2018), where the GSOA is called parameterless. Based on eval-

uating the influence of increasing learning gain up to G = 50 and various

adjustments of the gain decreasing rate α (both affect the maximal number

of learning epochs), we can confirm their negligible influence on the solution

of the TSPNS. Hence, the values reported in Algorithm 1 are utilized.

Only the transformation-based solver GTSP-GLKH requires selection of

the number of samples per region to determine a suitable tradeoff between the

solution quality and computational requirements. The effect of the number

of samples on the solution is reported in Section 7.3, from which we chose

m = 10.

Since all the examined solvers are randomized, the performance indica-

tors are computed among the performed trials. The solution quality obtained

by the particular methods is measured as %PDB that is the percentage de-

viation of the best solution value Lbest found among all performed trials

of the particular solver to the reference solution value Lref. It is deter-

mined as %PDB = (Lbest − Lref)/Lref · 100%, where Lref is the best solu-

3The proposed transformation-based methods TSPS-LKH and GTSP-GLKH, and the

direct GSOA-based method are available at https://github.com/comrob/tspns.

26

https://github.com/comrob/tspns

tion value of the particular instance determined among all solvers exam-

ined. The robustness of the solution is measured as the percentage devia-

tion of the mean solution value Lavg among the trials to Lref computed as

%PDM = (Lavg − Lref)/Lref · 100%.

The statistical significance of the performance indicators is evaluated us-

ing the Wilcoxon test (Arcuri and Briand, 2011) to report that one algorithm

provides statistically better results than the other. The null hypothesis H0

states that the methods provide statistically similar results in the quality of

the found solutions and required computational time. Based on the p-value

obtained by the test, we can accept or reject the null hypothesis. For almost

all the results, the p-values obtained by the Wilcoxon test are less than the

selected significance level 0.001; therefore, the characters ‘+’, ‘−’, and ‘=’

are used to report that a particular algorithm a1 performs better, worse, or

equally as well as algorithm a2.

7.3. Effect of Sampling Density on the Solution Quality of the GTSP-GLKH

For the transformation method GTSP-GLKH, it is desirable to select

a suitable number of samples per each region m, where better solutions

can be expected when increasing m at the cost of increased computational

requirements. Therefore, the performance of the GTSP-GLKH solver has

been studied up to m ≤ 10 because more samples do not provide significantly

better solutions, but the computational requirements are prohibitively high.

The effect of increasing the number of samples m per each target region

to the solution quality and computational requirements has been studied,

and results for the test instances of the TSPNS with n = 25 and n = 100

regions are depicted in Fig. 9 and Fig. 10, respectively. In this case, the

solution quality is reported as the relative solution cost to Lref visualized as

27

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

TSPS-L
KH

GSOA

GTSP-G
LKH

m =
 1

GTSP-G
LKH

m =
 2

GTSP-G
LKH

m =
 3

GTSP-G
LKH

m =
 4

GTSP-G
LKH

m =
 5

GTSP-G
LKH

m =
 6

GTSP-G
LKH

m =
 7

GTSP-G
LKH

m =
 8

GTSP-G
LKH

m =
 9

GTSP-G
LKH m

 =
 10

R
el

at
iv

e
so

lu
ti

on
 c

os
t

TSPS-LKH
GSOA
GTSP-GLKH with m samples

(a) Relative solution cost (non-overlapping).

0
1

2
3

4
5

TSPS-L
KH

GSOA

GTSP-G
LKH m

 =
 1

GTSP-G
LKH m

 =
 2

GTSP-G
LKH m

 =
 3

GTSP-G
LKH m

 =
 4

GTSP-G
LKH m

 =
 5

GTSP-G
LKH m

 =
 6

GTSP-G
LKH m

 =
 7

GTSP-G
LKH m

 =
 8

GTSP-G
LKH m

 =
 9

GTSP-G
LKH m

 =
 10

C
om

pu
ta

ti
on

al
 ti

m
e

T
 [

s]

TSPS-LKH
GSOA
GTSP-GLKH with m samples

(b) Computational time (non-overlapping).

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

TSPS-L
KH

GSOA

GTSP-G
LKH

m =
 1

GTSP-G
LKH

m =
 2

GTSP-G
LKH

m =
 3

GTSP-G
LKH

m =
 4

GTSP-G
LKH

m =
 5

GTSP-G
LKH

m =
 6

GTSP-G
LKH

m =
 7

GTSP-G
LKH

m =
 8

GTSP-G
LKH

m =
 9

GTSP-G
LKH m

 =
 10

R
el

at
iv

e
so

lu
ti

on
 c

os
t

TSPS-LKH
GSOA
GTSP-GLKH with m samples

(c) Relative solution cost (overlapping).

0
1

2
3

4
5

TSPS-L
KH

GSOA

GTSP-G
LKH m

 =
 1

GTSP-G
LKH m

 =
 2

GTSP-G
LKH m

 =
 3

GTSP-G
LKH m

 =
 4

GTSP-G
LKH m

 =
 5

GTSP-G
LKH m

 =
 6

GTSP-G
LKH m

 =
 7

GTSP-G
LKH m

 =
 8

GTSP-G
LKH m

 =
 9

GTSP-G
LKH m

 =
 10

C
om

pu
ta

ti
on

al
 ti

m
e

T
 [

s]
TSPS-LKH
GSOA
GTSP-GLKH with m samples

(d) Computational time (overlapping).

Figure 9: Effect of increasing number of samples m to the relative solution cost and

computational requirements of the GTSP-GLKH for the instances with n = 25 regions,

depicted as the five-number summary.

the five-number summary.

For the relatively small TSPNS instances with 25 regions, finding the

best solutions requires a high number of samples that are more visible for

instances with overlapping regions. On the other hand, solution improve-

ment with increasing m is not directly visible for instances with 100 regions.

However, at least two samples per region (m = 2) are needed to find com-

28

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

TSPS-L
KH

GSOA

GTSP-G
LKH

m =
 1

GTSP-G
LKH

m =
 2

GTSP-G
LKH

m =
 3

GTSP-G
LKH

m =
 4

GTSP-G
LKH

m =
 5

GTSP-G
LKH

m =
 6

GTSP-G
LKH

m =
 7

GTSP-G
LKH

m =
 8

GTSP-G
LKH

m =
 9

GTSP-G
LKH m

 =
 10

R
el

at
iv

e
so

lu
ti

on
 c

os
t

TSPS-LKH
GSOA
GTSP-GLKH with m samples

(a) Relative solution cost (non-

overlapping).

0
20

40
60

80
10

0
12

0

TSPS-L
KH

GSOA

GTSP-G
LKH m

 =
 1

GTSP-G
LKH m

 =
 2

GTSP-G
LKH m

 =
 3

GTSP-G
LKH m

 =
 4

GTSP-G
LKH m

 =
 5

GTSP-G
LKH m

 =
 6

GTSP-G
LKH m

 =
 7

GTSP-G
LKH m

 =
 8

GTSP-G
LKH m

 =
 9

GTSP-G
LKH m

 =
 10

C
om

pu
ta

ti
on

al
 ti

m
e

T
 [

s]

TSPS-LKH
GSOA
GTSP-GLKH with m samples

(b) Computational time (non-overlapping).

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

TSPS-L
KH

GSOA

GTSP-G
LKH

m =
 1

GTSP-G
LKH

m =
 2

GTSP-G
LKH

m =
 3

GTSP-G
LKH

m =
 4

GTSP-G
LKH

m =
 5

GTSP-G
LKH

m =
 6

GTSP-G
LKH

m =
 7

GTSP-G
LKH

m =
 8

GTSP-G
LKH

m =
 9

GTSP-G
LKH m

 =
 10

R
el

at
iv

e
so

lu
ti

on
 c

os
t

TSPS-LKH
GSOA
GTSP-GLKH with m samples

(c) Relative solution cost (overlapping).

0
20

40
60

80
10

0
12

0

TSPS-L
KH

GSOA

GTSP-G
LKH m

 =
 1

GTSP-G
LKH m

 =
 2

GTSP-G
LKH m

 =
 3

GTSP-G
LKH m

 =
 4

GTSP-G
LKH m

 =
 5

GTSP-G
LKH m

 =
 6

GTSP-G
LKH m

 =
 7

GTSP-G
LKH m

 =
 8

GTSP-G
LKH m

 =
 9

GTSP-G
LKH m

 =
 10

C
om

pu
ta

ti
on

al
 ti

m
e

T
 [

s]
TSPS-LKH
GSOA
GTSP-GLKH with m samples

(d) Computational time (overlapping).

Figure 10: Effect of increasing number of samples m to the relative solution cost and

computational requirements of the GTSP-GLKH for instances with n = 100 regions,

depicted as the five-number summary.

petitive solutions to solutions found by the GSOA. It is also not surprising

that instances with overlapping regions need more samples than for non-

overlapping regions, and even for large instances, m = 10 does not yield

competitive solutions; however the computational requirements increase sig-

nificantly. The visible trend is an exponential growth of T with m; therefore,

m = 10 is selected as a suitable tradeoff between the solution quality and

29

required computational time of the GTSP-GLKH for the examined test in-

stances with an only limited number of large instances.

7.4. Results

Detailed evaluation results of the examined TSPNS solvers are presented

in Table 1 and Table 2. The results support the motivation to formulate

the UAV-based RTI tasks as the TSPNS because it allows exploiting the

tolerance in lightning directions as both the GTSP-GLKH and GSOA solvers

provide significantly better solutions than the TSPS-LKH solving the TSPS.

The post-processing optimization (described in Section 6) improves the

solutions, especially for the transformation-based method TSPS-LKH and

GTSP-GLKH, without a significant increase of the computational time. Al-

though the computational requirements of the TSPS-LKH are very small,

the solutions found are significantly more costly than solutions found by the

GTSP-GLKH and GSOA solvers. Regarding the solution quality, most of

the best-found solutions are provided by the GTSP-GLKH with the post-

processing optimization. In a few cases, it stacks in a local optimum that is

significantly worse than the solution of the GSOA. However, smaller values

of the %PDM for the GTSP-GLKH than for the GSOA indicates that the

GTSP-GLKH is more robust hence it provides the best solutons. Therefore,

the statistical Wilcoxon test has been performed for the individual instances

to identify which solution method is better in a statistically significant way.

The statistical comparison of the methods with and without the post-

processing optimization is depicted in Table 3. The results further support

the benefits of the post-processing optimization that helps both the GTSP-

GLKH and GSOA methods. The GSOA provides better results for instances

30

Table 1: Performance indicators of the TSPNS solvers without post-processing optimiza-

tion.

Instance Lref
TSPS-LKH’ GTSP-GLKH’ GSOA’

%PDB %PDM T [s] %PDB %PDM T [s] %PDB %PDM T [s]

sphere_band_rand_nol_25 7.41 217.56 240.54 0.023 0.38 0.38 1.479 0.25 0.80 0.012

sphere_band_rand_nol_50 10.12 324.33 324.33 0.094 0.78 0.86 14.090 1.29 2.85 0.046

sphere_band_rand_ol_50 9.55 165.97 165.97 0.080 0.74 0.75 15.153 0.94 2.38 0.046

sphere_cap_rand_nol_10 6.12 18.89 40.54 0.005 0.11 0.11 0.212 0.15 0.34 0.002

sphere_cap_rand_nol_25 6.18 36.58 36.58 0.021 0.57 0.57 2.512 0.53 1.78 0.011

sphere_cap_rand_nol_50 10.74 75.16 75.16 0.092 0.48 0.84 15.443 1.82 6.11 0.044

sphere_cap_reg_nol_10 5.01 34.90 34.90 0.006 0.38 0.38 0.178 0.21 0.43 0.002

sphere_cap_reg_nol_25 6.74 35.80 35.80 0.018 0.58 0.69 2.474 0.73 3.42 0.011

sphere_cap_reg_nol_50 8.35 58.97 58.97 0.131 1.07 2.64 15.968 2.37 5.78 0.044

sphere_cap_reg_ol_25 4.09 124.08 124.08 0.017 1.54 1.58 3.506 0.52 1.46 0.010

sphere_rand_nol_100 22.79 73.88 73.88 0.495 0.50 3.92 88.627 1.86 5.14 0.177

sphere_rand_nol_10 8.50 19.64 43.43 0.007 0.26 0.34 0.231 0.32 1.73 0.002

sphere_rand_nol_25 10.62 74.68 74.68 0.015 0.70 0.70 2.784 0.31 4.62 0.011

sphere_rand_nol_500 50.26 101.98 109.78 20.712 2.79 4.11 1 277.769 2.17 4.05 4.140

sphere_rand_nol_50 15.21 122.90 122.90 0.180 0.76 2.27 20.422 1.20 5.67 0.044

sphere_rand_ol_100 15.59 149.05 149.05 0.414 7.76 11.20 112.117 1.02 6.15 0.170

sphere_rand_ol_10 7.56 38.98 67.48 0.005 0.27 0.31 0.262 0.10 0.51 0.002

sphere_rand_ol_25 9.86 67.45 86.88 0.019 0.63 0.96 3.295 0.36 3.12 0.011

sphere_rand_ol_50 12.89 126.09 126.09 0.075 0.95 1.63 19.842 1.33 6.28 0.044

sphere_rect_cap_rand_nol_25 8.56 53.24 53.24 0.021 0.31 0.31 2.603 0.71 2.62 0.011

sphere_rect_cap_rand_nol_50 7.60 54.51 54.51 0.107 0.64 1.07 18.279 1.71 3.48 0.044

sphere_rect_cap_reg_nol_10 4.91 32.59 32.59 0.006 0.24 0.24 0.232 0.17 0.76 0.002

sphere_rect_cap_reg_nol_25 6.46 40.25 40.25 0.027 0.67 0.71 2.639 0.79 2.23 0.011

sphere_rect_cap_reg_nol_50 8.00 60.46 60.46 0.095 0.92 2.50 17.978 1.64 4.95 0.043

sphere_reg_nol_100 25.88 105.18 105.18 0.540 2.56 4.91 107.016 1.29 3.72 0.173

sphere_reg_nol_10 10.11 33.11 57.32 0.005 0.11 0.11 0.250 0.20 2.07 0.002

sphere_reg_nol_25 14.92 62.31 62.31 0.019 0.12 0.92 2.915 1.50 4.86 0.011

sphere_reg_nol_50 20.23 84.27 84.27 0.093 0.28 1.33 17.088 1.26 3.58 0.044

Mean values - 85.46 90.76 0.833 0.97 1.66 63.049 0.96 3.25 0.185

The smallest performance indicators per each instance are highlighted in bold.

with 500 regions, which indicates a better scalability of the GSOA than

GTSP-GLKH. It can also be seen that the computational requirements of

the GSOA are statistically increased by the post-processing optimization;

31

Table 2: Performance indicators of the TSPNS solvers with the post-processing optimiza-

tion.

Instance Lref
TSPS-LKH GTSP-GLKH GSOA

%PDB %PDM T [s] %PDB %PDM T [s] %PDB %PDM T [s]

sphere_band_rand_nol_25 7.41 193.52 215.53 0.023 0.00 0.00 1.479 0.00 0.24 0.012

sphere_band_rand_nol_50 10.12 291.03 291.03 0.095 0.00 0.11 14.091 0.00 1.44 0.047

sphere_band_rand_ol_50 9.55 129.35 129.35 0.080 0.00 0.06 15.153 0.17 1.27 0.047

sphere_cap_rand_nol_10 6.12 0.00 18.93 0.005 0.00 0.00 0.212 0.00 0.00 0.002

sphere_cap_rand_nol_25 6.18 9.14 9.14 0.022 0.00 0.00 2.512 0.00 0.79 0.011

sphere_cap_rand_nol_50 10.74 44.94 44.94 0.093 0.00 0.34 15.444 1.08 4.97 0.045

sphere_cap_reg_nol_10 5.01 13.14 13.14 0.007 0.00 0.00 0.179 0.00 0.00 0.002

sphere_cap_reg_nol_25 6.74 5.98 5.98 0.018 0.00 0.15 2.474 0.00 2.10 0.011

sphere_cap_reg_nol_50 8.35 12.26 12.26 0.132 0.00 1.78 15.968 1.24 4.17 0.045

sphere_cap_reg_ol_25 4.09 30.79 31.29 0.017 0.11 0.19 3.506 0.00 0.39 0.010

sphere_rand_nol_100 22.79 42.81 42.81 0.496 0.00 3.38 88.629 0.52 3.82 0.179

sphere_rand_nol_10 8.50 4.46 22.74 0.007 0.00 0.02 0.231 0.00 0.96 0.002

sphere_rand_nol_25 10.62 32.51 32.51 0.015 0.00 0.00 2.784 0.00 3.66 0.011

sphere_rand_nol_500 50.26 69.99 78.30 20.719 2.15 3.47 1 277.778 0.00 2.07 4.148

sphere_rand_nol_50 15.21 68.13 68.13 0.181 0.00 1.50 20.423 0.02 4.24 0.045

sphere_rand_ol_100 15.59 94.84 98.98 0.415 6.45 9.72 112.118 0.00 5.36 0.171

sphere_rand_ol_10 7.56 17.09 40.49 0.005 0.00 0.05 0.263 0.00 0.09 0.002

sphere_rand_ol_25 9.86 29.59 53.94 0.019 0.00 0.37 3.295 0.00 2.52 0.011

sphere_rand_ol_50 12.89 74.05 74.49 0.075 0.00 0.62 19.843 0.71 5.10 0.044

sphere_rect_cap_rand_nol_25 8.56 34.77 34.77 0.022 0.00 0.00 2.604 0.00 1.63 0.011

sphere_rect_cap_rand_nol_50 7.60 8.74 8.75 0.107 0.00 0.44 18.280 0.53 1.82 0.045

sphere_rect_cap_reg_nol_10 4.91 13.44 13.44 0.006 0.00 0.00 0.232 0.00 0.04 0.002

sphere_rect_cap_reg_nol_25 6.46 12.73 12.73 0.027 0.00 0.00 2.640 0.00 0.94 0.011

sphere_rect_cap_reg_nol_50 8.00 8.32 8.32 0.096 0.00 1.73 17.979 0.35 3.33 0.044

sphere_reg_nol_100 25.88 77.46 77.46 0.541 1.90 4.38 107.018 0.00 2.29 0.175

sphere_reg_nol_10 10.11 21.14 45.62 0.006 0.00 0.00 0.250 0.00 0.82 0.002

sphere_reg_nol_25 14.92 46.34 46.34 0.019 0.00 0.78 2.915 0.95 4.04 0.011

sphere_reg_nol_50 20.23 61.51 61.51 0.094 0.00 0.98 17.089 0.07 2.44 0.045

Mean values - 51.72 56.89 0.834 0.38 1.07 63.050 0.20 2.16 0.185

Zero value of %PDB indicates the solver provides the best found solution among the performed trials, i.e., Lref .

however, the absolute increase in the computational time is negligible. The

overall statistical evaluation using the aggregated data on the solution quality

from Table 2 is depicted in Table 4 for non-overlapping and overlapping test

32

Table 3: Comparison of the TSPNS solvers.

Instance
a1: GSOA’ GSOA GSOA’

a2: GTSP-GLKH’ GTSP-GLKH GSOA

Length Time Length Time Length Time

sphere_band_rand_nol_25 − + − + − +

sphere_band_rand_nol_50 − + − + − +

sphere_band_rand_ol_50 − + − + − +

sphere_cap_rand_nol_10 − + = + − +

sphere_cap_rand_nol_25 − + − + − +

sphere_cap_rand_nol_50 − + − + − +

sphere_cap_reg_nol_10 = + = + − +

sphere_cap_reg_nol_25 − + − + − +

sphere_cap_reg_nol_50 − + − + − +

sphere_cap_reg_ol_25 = + − + − +

sphere_rand_nol_100 = + = + − +

sphere_rand_nol_10 − + − + − +

sphere_rand_nol_25 − + − + − +

sphere_rand_nol_500 = + + + − +

sphere_rand_nol_50 = = = = − +

sphere_rand_ol_100 = = = = − +

sphere_rand_ol_10 = = = = − +

sphere_rand_ol_25 = = = = − +

sphere_rand_ol_50 = = = = − +

sphere_rect_cap_rand_nol_25 = = = = − +

sphere_rect_cap_rand_nol_50 = = = = − +

sphere_rect_cap_reg_nol_10 = = = = − +

sphere_rect_cap_reg_nol_25 = = = = − +

sphere_rect_cap_reg_nol_50 = = = = − +

sphere_reg_nol_100 = = = = − +

sphere_reg_nol_10 = = = = − +

sphere_reg_nol_25 = = = = − +

sphere_reg_nol_50 = = = = − +

The symbols ‘+’, ‘−’, and ‘=’ denote the method a1 provides statistically better, worse, and equal results than the

method a2, respectively, by means of the solution length and computational time.

33

Table 4: Comparison of the TSPNS solvers using aggregated results.

Instances
a1: GSOA’ GSOA GSOA’

a2: GTSP-GLKH’ GTSP-GLKH GSOA

%PDB %PDM %PDB %PDM %PDB %PDM

Non-overlapping = − = = − -

Overlapping† = = = = = =

The symbols ‘+’, ‘−’, and ‘=’ denote the method a1 provides statistically better, worse, and equal

results than the method a2, respectively.
†Note that the results are computed only from six overlapping instances.

instances, from which we can see that GTSP-GLKH and GSOA methods

provide competitive solutions. Note that the test instances include only six

overlapping instances; hence, the second row of Table 4 is only indicative,

and detailed results, computed from 50 trials, are in Table 3.

7.5. Discussion

The post-processing optimization procedure improves the solutions, but

the solution quality of the baseline TSPS-LKH remains far below the solvers

of the introduced TSPNS. Even though the post-processing optimization pro-

cedure is similar to the determination of the waypoints used in the GSOA

solver, the procedure improves the GSOA-based solutions, as depicted in Ta-

ble 3. The GTSP-GLKH solver provides most of the best solutions among

the examined instances. However, for the sphere_rand_ol_100 instance,

the determined sequence yields a significantly worse solution than the se-

quence obtained by the GSOA solver. Besides, it is also the case of the

sphere_reg_nol_100 instance, albeit the differences are not that signifi-

cant. Overall, the best solutions are found by the GTSP-GLKH and GSOA

solvers; however, the GTSP-GLKH solver demands significantly higher com-

34

putational times than both TSPS-LKH and GSOA. The used GLKH heuris-

tic (Helsgaun, 2013) in the GTSP-GLKH is computationally expensive for

large instances such as the sphere_rand_nol_500, which took about twenty

minutes to obtain a solution. On the other hand, the GSOA-based solver

provides a better solution in less than a few seconds, which further moti-

vates us to employ it as a construction heuristic with the follow-up solution

improvement using some evolutionary method, which might be a subject for

future work.

8. Conclusion

The TSPNS has been introduced as a suitable problem formulation for

tasks motivated by the RTI using a team of multi-rotor unmanned aerial vehi-

cles. The introduced TSPNS has been addressed by two types of approaches,

the sampling-based transformation methods and a novel direct solution based

on the unsupervised learning of the GSOA. Besides, we propose improving

post-processing optimization, which is most effective for the transformation

methods that otherwise provide relatively poor solutions unless dense sam-

pling is employed. Based on the evaluation results, the proposed GSOA-

based solver performs similarly or provides about units of percentage points

worse solutions than the discretized GTSP-based approach with relatively

dense sampling of ten samples per target region. However, the computa-

tional requirements of the GSOA are about two orders of magnitude lower

than the computational requirements of the GTSP-based solution using the

heuristic GLKH solver. Therefore, the proposed GSOA-based solver can

be preferred in deployments where the available computational time is very

limited. On the other hand, the GTSP-based solver fits scenarios where the

35

computational cost is not an issue or the number of regions is low. However,

for the field deployments and onsite setups of the RTI, the proposed GSOA

solver is much more suitable as it requires typically less than a few seconds

even for the largest solved instance and not tens of seconds or even tens of

minutes as the GTSP-GLKH, which would compare to the overall flight time

of the vehicles.

Acknowledgments

This work was supported by the Czech Science Foundation under re-

search project No. 19-20238S. The support of project No. DG18P02OVV069

under program NAKI II to the third author is also acknowledged. The ac-

cess to the computational infrastructure of the OP VVV funded project

CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics” is

also gratefully acknowledged. The authors would also like to acknowledge the

support of Petr Váňa for the help with the implementation of the proposed

method and its empirical evaluation.

References

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2007). The

Traveling Salesman Problem: A Computational Study (Princeton Series

in Applied Mathematics). Princeton University Press.

Arcuri, A. and Briand, L. (2011). A practical guide for using statistical

tests to assess randomized algorithms in software engineering. In 33rd

International Conference on Software Engineering (ICSE), pages 1––10.

36

Arkin, E. M. and Hassin, R. (1994). Approximation algorithms for the

geometric covering salesman problem. Discrete Applied Mathematics,

55(3):197–218.

Aybars, U. (2008). Path planning on a cuboid using genetic algorithms.

Information Sciences, 178(16):3275–3287.

Croes, G. A. (1958). A method for solving traveling-salesman problems.

Operations Research, 6(6):791–812.

De Berg, M., Gudmundsson, J., Katz, M. J., Levcopoulos, C., Overmars,

M. H., and van der Stappen, A. F. (2005). Tsp with neighborhoods of

varying size. Journal of Algorithms, 57(1):22 – 36.

Dumitrescu, A. and Mitchell, J. S. (2003). Approximation algorithms for tsp

with neighborhoods in the plane. Journal of Algorithms, 48(1):135–159.

Elbassioni, K., Fishkin, A. V., and Sitters, R. (2009). Approximation al-

gorithms for the euclidean traveling salesman problem with discrete and

continuous neighborhoods. International Journal of Computational Ge-

ometry & Applications, 19(02):173–193.

Eldem, H. and Ülker, E. (2017). The application of ant colony optimization

in the solution of 3d traveling salesman problem on a sphere. Engineering

Science and Technology, an International Journal, 20(4):1242–1248.

Faigl, J. (2018). GSOA: growing self-organizing array - unsupervised learn-

ing for the close-enough traveling salesman problem and other routing

problems. Neurocomputing, 312:120–134.

Faigl, J., Kulich, M., Vonásek, V., and Přeučil, L. (2011). An application of

37

the self-organizing map in the non-euclidean traveling salesman problem.

Neurocomputing, 74(5):671–679.

Faigl, J., Váňa, P., and Deckerová, J. (2019). Fast heuristics for the 3-

d multi-goal path planning based on the generalized traveling salesman

problem with neighborhoods. IEEE Robotics and Automation Letters,

4(3):2439–2446.

Faigl, J., Vonásek, V., and Přeučil, L. (2013). Visiting convex regions in a

polygonal map. Robotics and Autonomous Systems, 61(10):1070–1083.

Gentilini, I., Margot, F., and Shimada, K. (2013). The travelling salesman

problem with neighbourhoods: Minlp solution. Optimization Methods and

Software, 28(2):364–378.

Gudmundsson, J., , Gudmundsson, J., and Levcopoulos, C. (2000). Hardness

result for tsp with neighborhoods. Technical report, Lund University.

Gulczynski, D. J., Heath, J. W., and Price, C. C. (2006). The close enough

traveling salesman problem: A discussion of several heuristics. In Alt,

F. B., Fu, M. C., and Golden, B. L., editors, Perspectives in Operations

Research: Papers in Honor of Saul Gass’ 80th Birthday, pages 271–283.

Springer US, Boston, MA.

Helsgaun, K. (2000). An Effective Implementation of the Lin-Kernighan

Traveling Salesman Heuristic. European Journal of Operational Research,

126(1).

Helsgaun, K. (2013). GLKH, ver. 1.0. http://akira.ruc.dk/~keld/research/

GLKH/. [cited 22 Jan 2021].

38

http://akira.ruc.dk/~keld/research/GLKH/
http://akira.ruc.dk/~keld/research/GLKH/

Helsgaun, K. (2015). Solving the equality generalized traveling salesman

problem using the lin–kernighan–helsgaun algorithm. Mathematical Pro-

gramming Computation, 7(3):269–287.

Helsgaun, K. (2018). LKH, ver. 2.0.9. http://www.akira.ruc.dk/~keld/

research/LKH/. [cited 22 Jan 2021].

Krátký, V., Petráček, P., Spurný, V., and Saska, M. (2020). Autonomous

reflectance transformation imaging by a team of unmanned aerial vehicles.

IEEE Robotics and Automation Letters, 5(2):2302–2309.

Mennell, W. (2009). Heuristics for Solving Three Routing Problems: Close-

Enough Traveling Salesman Problem, Close-Enough Vehicle Routing Prob-

lem, Sequence-Dependent Team Orienteering Problem. PhD thesis, Uni-

versity of Maryland.

Ouyang, X., Zhou, Y., Luo, Q., and Chen, H. (2013). A novel discrete

cuckoo search algorithm for spherical traveling salesman problem. Applied

Mathematics & Information Sciences, 7(2):777.

Smith, S. L. and Imeson, F. (2017). GLNS: An effective large neighborhood

search heuristic for the generalized traveling salesman problem. Computers

& Operations Research, 87:1–19.

Uğur, A., Korukoğlu, S., Çalıskan, A., Cinsdikici, M., and Alp, A. (2009).

Genetic algorithm based solution for tsp on a sphere. Mathematical and

computational applications, 14(3):219–228.

39

http://www.akira.ruc.dk/~keld/research/LKH/
http://www.akira.ruc.dk/~keld/research/LKH/

	Introduction
	Related Work
	Problem Statement
	Shortest Distance on a Sphere

	Discretized TSPNS – Transformation-based Solution of the TSPNS
	Proposed GTSP-based Solution to the TSPNS

	Proposed GSOA-based Solver to the TSPNS
	Growing Self-Organizing Array (GSOA)
	Winner Node Determination in the GSOA-based Solution of the TSPNS

	Post-processing Optimization for Waypoints Adjustment in a Solution of the TSPNS
	Empirical Evaluation
	Test Instances of the TSPNS
	Evaluation Setup
	Effect of Sampling Density on the Solution Quality of the GTSP-GLKH
	Results
	Discussion

	Conclusion

