
Combinatorial Lower Bounds for the Generalized Traveling

Salesman Problem with Neighborhoods

Jindřǐska Deckerová∗, Petr Váňa, Jan Faigl

Faculty of Electrical Engineering,Czech Technical University in Prague,
Technická 2, 166 27, Prague, Czech Republic

Abstract

In this paper, we study the Generalized Traveling Salesman Problem with Neighbor-
hoods (GTSPN), a variant of the Traveling Salesman Problem (TSP), where the goal
is to find the shortest path visiting each of the given neighborhood sets represented
as a set of convex regions. The GTSPN is motivated by the sequencing problem of
robotic manipulators, where an operation can be achieved from multiple locations,
such as the visual inspection that can be performed from several possible views.
The GTSPN formulation allows for exploiting continuous optimization to find the
most suitable locations for the inspection, yielding possible solution cost reduction.
Moreover, instances with overlapping high-dimensional convex regions further allow
modeling neighborhood sets with complex shapes. We propose a novel approach to
determine the first lower bounds to the studied GTSPN by employing the Branch-
and-Bound (BB) method and the Mixed-Integer Second-Order Cone Programming
(MISOCP) model for particular BB subproblems. In addition, the proposed method
allows for solving the GTSPN to optima. The developed lower bound determination
is further exploited in the empirical evaluation of existing heuristic approaches to
the GTSPN and assesses the solution quality using the relative optimality gap. Re-
garding the presented results, the proposed BB-based approach provides tight lower
bounds and solutions with up to 20% optimality gap for the GTSPN instances with
less than 15 neighborhood sets for the given limited computational time. Further-
more, the presented results support that the proposed approach is suitable for solving
high-dimensional instances of the GTSPN that can be found in inspection tasks with
robotic manipulators.

Keywords: Combinatorial Optimization, Generalized Traveling Salesman Problem
with Neighborhoods, Lower bounds

∗Corresponding author
Email addresses: deckejin@fel.cvut.cz (Jindřǐska Deckerová), vanapet1@fel.cvut.cz

(Petr Váňa), faiglj@fel.cvut.cz (Jan Faigl)

Preprint submitted to Expert Systems with Applications November 5, 2024

1. Introduction

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimiza-
tion problem with a wide range of approaches proposed over the past decades (Gutin
and Punnen, 2007). The TSP stands to determine the most cost-efficient path for
visiting a given set of locations; hence, an optimal sequence of visits to the locations
is to be found. The sequence can be utilized in robotics as the robot sequencing
problem (Suárez-Ruiz et al., 2018) or routing problem with aerial vehicles (Oberlin
et al., 2010).

The TSP with Neighborhoods (TSPN) is a practical generalization of the TSP
motivated by tasks where it is sufficient to visit a region (neighborhood) instead of the
exact location. The additional degrees of freedom allow for saving the total travel cost
by determining the suitable locations for visits to the neighborhoods. The problem
formulation with neighborhoods is suitable for surveillance missions, data collection
planning (Faigl, 2019; Yuan et al., 2007), robotic environment monitoring (Dunbabin
and Marques, 2012), and also tasks for robotic manipulators (Gentilini, 2012; Vicen-
cio et al., 2014). The TSPN combines the combinatorial optimization of finding
the optimal sequence of visits with continuous optimization to determine the loca-
tions of visits to the neighborhoods. The continuous optimization can be addressed
by discretizing the neighborhoods, the constant factor approaches (Dumitrescu and
Mitchell, 2003), or approximation schemata (Arkin and Hassin, 1994; de Berg et al.,
2005; Elbassioni et al., 2009). However, these approaches are parameter sensitive.

The exact approaches to the TSPN, such as (Gentilini et al., 2013) based on the
Mixed-Integer Nonlinear Programming (MINLP) formulation, are relatively complex
and computationally demanding. Therefore, various heuristics have been proposed
to provide time-efficient solvers to the TSPN. Yang et al. (2018) propose a fast
double-loop hybrid algorithm based on the particle swarm optimization and genetic
algorithm. The unsupervised learning of the self-organizing map has been deployed
to address the continuous optimization of determining the suitable locations for vis-
its to the neighborhoods of the non-Euclidean TSPN in the polygonal domain (Faigl
et al., 2013). The method is further improved by Faigl (2018) as the Growing Self-
Organizing Array (GSOA), a general heuristic for routing problems with neighbor-
hoods employed in the solution of data collection planning (Faigl, 2019) and also the
herein addressed Generalized TSPN (GTSPN) (Faigl et al., 2019).

The TSPN becomes the Generalized TSP (GTSP) if the neighborhoods are
formed by discrete locations, such as sampling the continuous neighborhoods into
finite discrete sets. The GTSP is to determine the most cost-efficient tour that visits
all the given sets, where a set is considered visited if the tour visits at least one
location (vertex) of the set. The GTSP can be transformed into the TSP using

2

the transformation by Noon and Bean (1993) at the cost of increased instance size.
Alternatively, meta-heuristics can be utilized, such as the Ant Colony System (Pin-
tea et al., 2007), genetic algorithms (Silberholz and Golden, 2007), or local search
methods (Karapetyan and Gutin, 2012). Besides, the available GLKH (Helsgaun,
2015) and GLNS (Smith and Imeson, 2017) solvers are reported to provide optimal
or near-optimal solutions of the GTSP instances.

Although existing combinatorial solvers can be used to solve the GTSP instances,
even the optimal solution of such discrete instances of the TSPN would only be
approximate solutions of the original TSPN with continuous neighborhoods (Faigl,
2018). Therefore, finding solutions for the TSPN with improved solution costs is an
open task. However, neighborhoods can generally be of complex shapes that might
be challenging to model and exploit. Therefore, modeling a neighborhood as a set of
possibly overlapping regions, each of relatively simple shapes, can describe arbitrarily
complex neighborhoods. Yet, it is sufficient to visit at least one such region. Hence,
we get the Generalized TSPN (GTSPN) as a combination of the TSPN and GTSP.

In the studied GTSPN, the neighborhood is a neighborhood set represented as
a set of convex, possibly overlapping regions; see Figure 1. The formulation of the
GTSPN is motivated to combine benefits and overcome limitations of the individual
TSPN and GTSP formulations. The GTSPN allows for exploiting clustered or non-
convex neighborhoods found in the Multi-goal Path Planning (Alatartsev et al., 2015)
to solve inspection tasks with robotic manipulators (Vicencio et al., 2014), which can
have 3D or even 7D regions exploiting the manipulator’s degrees of freedom.

So far, the GTSPN has been addressed (to the best of the authors’ knowledge)
only by three approaches. The Hybrid Random-Key Genetic Algorithm (HRKGA)
for the TSPN (Gentilini, 2012) has been employed in the solution of the GTSPN
by Vicencio et al. (2014) with novel chromosome coding procedure and crossover
operators. Each chromosome consists of a vector corresponding to the particular
locations within the respective neighborhood, where an index gives the respective
neighborhood within the set, and a random fractional number corresponding to the
order of visit to the neighborhood set. The populations of chromosomes are created
by uniform crossover operator, arithmetic average crossover operator, and mutations.
The HRKGA iteratively creates random populations that correspond to the solution
of the GTSPN instance. Besides, improvement heuristics are used to enhance the
method’s performance.

The second approach is based on adapting the GSOA (Faigl, 2018) to the GT-
SPN (Faigl et al., 2019). The GSOA is an array of nodes iteratively adapted toward
the neighborhood sets. The nodes encode the locations of visits to the respective
neighborhoods, and the order of nodes in the array defines the sequence of visits to

3

Figure 1: An instance of the GTSPN with 3D regions, the feasible solution depicted in red and an
infeasible solution in blue that does not cover all neighborhood sets and, thus, yields lower bound.
Besides, a detail of the neighborhood set S2 that consists of six regions Q2,k, 1 ≤ k ≤ m2 is shown.

the neighborhood sets. Similarly to the HRKGA, the GSOA is a randomized method
since the nodes are iteratively added into the array in a random order to avoid local
minima.

Finally, Faigl et al. (2019) propose a decoupled approach referred to as the
Centroid-GTSP+ that is based on the solution of the GTSP using centroids of the
neighborhoods to determine the sequence of visits to the neighborhoods and the
respective sets. The solution is then improved by the post-processing procedure
using local optimization, where locations of visits are locally adjusted within the
corresponding neighborhoods to decrease the solution cost.

4

Regarding the existing related approaches on the lower bounds, the TSPN with
disk-shaped neighborhoods is of particular interest. The problem is called the Close
Enough TSP (CETSP) in the literature, and it has been introduced by Gulczyn-
ski et al. (2006) as a suitable formulation to plan to collect utility measurements
remotely. The CETSP is extensively studied in (Mennell, 2009), where the author
proposes several heuristics based on the Steiner Zones and transformation to the
GTSP, together with a set of benchmark instances. Mennell (2009) further proposes
a fast approach to determine the lower bound values on the optimal solutions of
the CETSP by simplifying the problem; however, the obtained lower bounds are
relatively poor. By solving the CETSP exactly, Behdani and Smith (2014) deter-
mine tight lower and upper bounds with a gap up to 1% on many instances using
various Mixed-Integer Programming (MIP) models based on the partitioning of the
locations.

The bounds by Behdani and Smith (2014) are improved in (Carrabs et al., 2017b),
where the authors utilize a graph reduction algorithm to reduce the size of the prob-
lem and apply a new discretization schema to partition the continuous neighbor-
hoods. The approach has been developed by Carrabs et al. (2017a) using heuristic
discretization schema combined with the Second-Order Cone Programming (SOCP)
to improve the bounds of the solution cost of the CETSP instances. The approach is
further developed in (Carrabs et al., 2020) using novel discretization schema and the
SOCP in the adaptive approach to estimate the lower and upper bounds. The adap-
tive approach specifically improves the results on the instances by Mennell (2009)
with a high overlap ratio. Besides, Coutinho et al. (2016) propose the exact Branch-
and-Bound (BB) method with the SOCP to solve the CETSP. The method provides
optimal solutions for all instances in (Behdani and Smith, 2014) and several instances
by Mennell (2009). For the remaining instances, the method finds improved lower
bounds.

In the presented work, we study the GTSPN motivated by the advancements
in determining the lower bound values of the CETSP by Coutinho et al. (2016).
Hence, we propose a novel BB-based method as the first solver to determine the
lower bounds of the GTSPN instances. The lower bound values established by the
proposed BB method are utilized to empirically evaluate the solution quality of
the existing solvers for the GTSPN: HRKGA (Vicencio et al., 2014), GSOA, and
Centroid-GTSP+ by Faigl et al. (2019). Based on the reported empirical evaluation
results, the proposed method represents a viable approach for assessing the quality
of found solutions. The main contributions of the paper are considered as follows.

• Novel formulation of the GTSPN as the Mixed-Integer Second-Order Cone
Programming (MISOCP) suitable to represent the GTSPN for a given BB

5

subproblem.

• Novel BB-based method that provides the first lower bounds on the GTSPN in-
stances, including instances with high-dimensional regions motivated by robot
manipulator tasks.

• Tight lower bounds on the GTSPN instances with at most 20 neighborhood
sets, showing existing heuristics provide solutions with the relative gap up to
20%.

• Optimal solutions of the evaluated GTSPN instances with up to 12 neighbor-
hood sets.

The rest of the paper is organized as follows. The GTSPN is formally defined in
Section 2 with the description of the neighborhood sets. In Section 3, we present an
overview of the BB approach employed in determining the lower bound values. The
computational results are reported in Section 4. Finally, the conclusion and final
remarks are summarized in Section 5.

2. Problem Statement

The studied Generalized Traveling Salesman Problem with Neighborhoods (GT-
SPN) is a variant of the TSPN with the neighborhoods represented as neighborhood
sets consisting of convex regions that may overlap. The neighborhood sets are futher
referred to as the region sets. The GTSPN stands to determine the shortest path
visiting each of the region sets, where a region set is considered visited if at least
one of its regions is visited. The presented formulation of the GTSPN follows (Faigl
et al., 2019) that is slightly modified to fit the proposed BB-based solver.

Let the region sets be S = {S1, . . . , Sn}, where each d-dimensional region set Si

consists of mi convex regions Qi,j such that Si = {Qi,j ⊂ Rd | j ∈ {1. . . . ,mi}} ⊂ Rd.
The task is to determine the shortest path formed by the sequence of visits Σ =
(σ1, . . . , σn), σi ∈ N, 1 ≤ σi ≤ n and σi ̸= σj for i ̸= j, to the region sets together
with the closed-loop path represented as a sequence P = (p1, . . . ,pn) of locations
of visits to the sets, pi ∈ Rd and pi ∈ Qσi,j for some 1 ≤ j ≤ mσi

, connected by
straight line segments. Thus, each pi is from at least one region of the corresponding
region set Si that can be expressed as (4). Note that only one location of visit is
determined for overlapping regions within the set, but each set of regions has exactly
one location of visits that might be identical with the location of visit to the other
set of regions. The travel cost between two locations of visits pi and pj is denoted∥∥pi − pj

∥∥ that stands for the Euclidean distance. The GTSPN is formally defined

6

(a) Detail of the neighborhood set in the 3D. (b) Detail of the neighborhood set in the 2D.

Figure 2: Detail of the region set S3 with the used notation. The set consists of six regions, m3 = 6:
ellipsoids are shown in blue, a polyhedron is in red, and hybrid regions are in green.

as Problem 2.1. An example of the GTSPN instance, its solution, and lower bound
are depicted in Figure 1.

Problem 2.1 (Generalized Traveling Salesman Problem with Neighborhoods (GT-
SPN)).

minimize
Σ,P

L(Σ, P) = ∥pn − p1∥+
n−1∑
i=1

∥∥pi − pi+1

∥∥ (1)

subject to Σ = (σ1, . . . , σn), σi ∈ {1, . . . , n}, i ̸= j : σi ̸= σj ∀i, j ∈ {1, . . . , n}
(2)

P = (p1, . . . ,pn), pi ∈ Rd, ∀i ∈ {1, . . . , n} (3)

pi ∈
mσi⋃
j=1

Qσi,j , ∀i ∈ {1, . . . , n} (4)

2.1. Representation of the Region Sets

Each Si ∈ S from the region sets S is a finite set of convex, possibly overlapping
regions Qi,k, where 1 ≤ k ≤ mi. We follow sets representation proposed in (Vicencio
et al., 2014), where regions are motivated by real-world robotics applications and

7

approximated using linear and quadratic constraints. The regions are of three types:
polyhedron regions, ellipsoid regions, and hybrid regions that combine the polyhedron
and ellipsoid regions, see Figure 2. The particular constraints of the regions are as
follows.

A region Qi,j is a polyhedron if it is defined by l linear constraints, each defining
a half-space. Thus, all points x ∈ Qi,j for Qi,j ⊂ Rd must satisfy

Ai,j x− bi,j ≤ 0, i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}, (5)

where Ai,j is a matrix from the space Rl×d, and bi,j ∈ Rl is the corresponding vector
defining the particular half-spaces.

A region Qi,j can be represented as an ellipsoid defined by a symmetric positive
definite matrix Pi,j ∈ Rd×d, region’s center ci,j, and all points x ∈ Qi,j for Qi,j ⊂ Rd

satisfy

(x− ci,j)
T Pi,j (x− ci,j) ≤ 1, i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}. (6)

A hybrid region Qi,j is defined as an ellipsoid with the center ci,j clipped by
l = 6 half-spaces defined by the matrix Ai,j ∈ Rl×d, and the corresponding vector
bi,j ∈ Rl, thus both (5) and (6) hold for all points x ∈ Qi,j for Qi,j ⊂ Rd.

We assume that the center ci,j of each region is inside the particular region, which
is also assured for all instances of the GTSPN benchmark (Vicencio et al., 2014).

3. Proposed Lower Bound Determination based on Branch-and-Bound
Method

We propose to determine the lower bound values on the optimal solutions of
GTSPN instances by the Branch-and-Bound (BB) method. BB is a combinatorial
approach used to address several NP-hard problems (Land and Doig, 1960) that
efficiently and systematically searches a solution space of the problem. The approach
relies on the decomposition of the problem into smaller subproblems, corresponding
to a solution space subset, and computation of the subproblems’ solutions to estimate
lower and upper bounds on the problem solution.

The proposed approach consists of two parts: the modeling of subproblems and
searching the solution space. In general, the BB approach defines the subproblems
in the modeling part (Clausen, 1999), and in the search part, the subproblems are
organized in a tree structure (each node representing subproblem) according to a
branching rule. The tree is searched according to an ordering function and pruned
according to a bounding rule. The proposed method follows the idea of Coutinho

8

µroot

Σ = (2, 3, 5)
L = 780.64

µ1

Σ = (1, 2, 3, 5)
L = 782.91

µ2

Σ = (2,1, 3, 5)
L = 791.78

µ3

Σ = (2, 3,1, 5)
L = 1005.83

µ4

Σ = (4, 1, 2, 3, 5)
L = 993.218

µ5

Σ = (1,4, 2, 3, 5)
L = 1050.59

µ6

Σ = (1, 2,4, 3, 5)
L = 836.85

µ7

Σ = (1, 2, 3,4, 5)
L = 990.69

Figure 3: A solution space of the proposed BB-based lower bound determination visualized as
a tree of nodes. Each node represents a sequence Σ denoting an ordered set of labels of region sets
included in the partial solution encoded in the particular node. In the shown example, the root
node µroot is branched by inserting the set S1 into Σ. Hence three new nodes µ1, µ2, and µ3 (label
of the inserted S1 is in bold) are created. Then, the node µ1 is branched since its solution value L
is currently the lowest, and four new nodes µ4, µ5, µ6, and µ7 are created by inserting S4 at four
possible positions in the sequence. The solutions of the highlighted nodes in gray are visualized
in Figure 4.

et al. (2016) for the BB addressing the CETSP, where the SOCP is utilized to
formulate the CETSP subproblems as optimization models. In the proposed method,
we utilize the Mixed-Integer Second-Order Cone Programming (MISOCP) to solve
subproblems. Furthermore, we utilize an estimation technique to quickly establish
a solution and decrease the computational demands of the method. The proposed
method is overviewed in Algorithm 1, and an example of the solution space is depicted
in Figure 3. The modeling and search parts with branching and bounding rules
are described in the following paragraphs. The MISOCP and the estimation are
described in Section 3.1 and Section 3.2, respectively.

9

Algorithm 1: The BnB-based solver for the GTSPN

Input: S = {S1, . . . , Sn} – A set of region sets.
Parameters : tmax – Maximal dedicated computational time.
Output: LB – Lower bound value on the optimal solution. UB – Upper bound value on the

optimal solution.

� Initialization
1 µroot.Σ← select root(S) // Select three sets forming the longest path.

2 (µroot.Σ, µroot.P)← compute partial solution(µroot.Σ) // Using MISOCP.

3 (µroot.Σf , µroot.Pf)← compute feasible solution(S, µroot.Σ, µroot.P) // Using Algorithm 2.

4 LB ← L(µroot.Σ, µroot.P) // Set the partial solution value as the lower bound.

5 UB ← L(µroot.Σf , µroot.Pf) // Set the feasible solution value as the upper bound.

6 µroot.exact← true

7 O ← {µroot} // Insert the root node to the open list.

� Solution Loop
8 while tmax is not reached do
9 µ← dequeue(O)

10 if not µ.exact then
// µ is dequeued for the second time

11 (µ.Σ, µ.P)← compute partial solution(µ.Σ) // Using the MISOCP.

12 (µ.Σf , µ.Pf)← compute feasible solution(S, µ.Σ, µ.P)
13 UB ← min(UB,L(µ.Σf , µ.Pf)) // Update the upper bound of the original problem.

14 µ.exact← true

15 O ← push(O, µ)
16 Continue

17 LB ← max(LB,L(µ.Σ, µ.P)) // Update the lower bound of the original problem.

18 β ← compute not covered(µ) // Determine sets not covered by the partial solution.

19 if β ̸= ∅ then
20 S∗ ← argmaxSj∈β ∥Sj − µ.P∥ ▷Branching rule

21 for i in {1, . . . , k} do
22 µchild.Σ← (σ1, . . . , σi, S

∗
idx, σi+1, . . . , σk) ▷Branching

23 (µchild.Σ, µchild.P
′)← estimate partial solution(µchild.Σ) // Using SOCP-based estimation.

24 µchild.exact← false

25 O ← push(O, µchild)

26 O ← filter(O,∀µ : L(µ.Σ, µ.P) ≤ UB) ▷Bounding rule

27 return LB,UB

Modeling part: Each subproblem (partial problem) µ for the given Problem 2.1
is modeled by a subset of k ≤ n ordered region sets S ′ ⊂ S. The set S ′ corresponds to
region sets that must be visited and are ordered according to the particular sequence
µ.Σ. The partial solution is then determined as a path µ.P connecting the locations
of visits in the order given by µ.Σ. The path µ.P is obtained as a solution of the
MISOCP, which is detailed in Section 3.1. However, solving the MISOCP can be
computationally demanding. Moreover, obtained solutions can be quickly discarded
by the bounding rule. Therefore, we first estimate the partial solution µ.P ′ using
the SOCP model; see Section 3.2, and the exact solution µ.P is determined once the
partial problem is proved to be a suitable lower bound candidate. Furthermore, we

10

can compute the correspoding feasible solution (µ.Σf , µ.Pf) to the partial solution
(µ.Σ, µ.P) as described in Algorithm 2. Since k ≤ n, we can consider the partial
solution value as a lower bound value on the original problem; so, L(S ′) ≤ L(S).
The corresponding feasible solution can then be considered as an upper bound on
the original problem. Note that the used notation of particular solution types is

• (µ.Σ, µ.P) - An exact partial solution obtained using the MISOCP model;

• (µ.Σ, µ.P ′) - An estimated partial solution obtained using the SOCP model;

• (µ.Σf , µ.Pf) - A feasible solution obtained by Algorithm 2.

Besides, we use the notation of LB and UB to denote the lower and upper bounds
of the original problem (not the subproblem), respectively.

(a) Solution of µroot. (b) Solution of µ1. (c) Solution of µ6.

Figure 4: Solutions obtained by the proposed BB-based solver in particular nodes of the solution
tree depicted in Figure 3.

Search part: BB iteratively searches the solution space denoted M that con-
sists of nodes µ containing partial problems (subproblems) and their solutions. The
solution spaceM is searched using a priority queue called the open list O sorted by
the ordering rule. In the proposed method, the ordering rule is to sort the partial
solutions values in the ascending order, since the idea is to process the nodes with
the lowest partial solution values first. The root node µroot ofM is determined with
the partial problem containing three region sets S ′ ⊂ S such that L(µroot.Σ, µroot.P)
is maximal over all possible combinations to maximize the lower bound value. The
list O is initialized with µroot, and the method iteratively dequeues O and processes
the dequeued nodes as follows.

11

For each dequeued node µ, at first, the lower bound on the original problem might
be updated according to the values associated with µ (Line 17 of Algorithm 1). Then,
the set β is determined such that β consists of all region sets Si that are not covered by
the partial solution (µ.Σ, µ.P) associated with the node µ (Line 18 of Algorithm 1).
Then, we select a region set S∗ from β to be used for branching of µ according to
the branching rule. Since the objective is to find a solution covering all sets, S∗ is
determined to maximize the prolongation of the current path µ.P , and thus likely
cover more sets that are in µ.Σ. Therefore, S∗ is determined as the farthest region
set from the path µ.P satisfying

S∗ = argmax
Sj∈β

∥Sj − µ.P∥ , (7)

where ∥Sj − µ.P∥ denotes the distance of Sj to the partial solution (µ.Σ, µ.P), where
the path µ.P is a sequence of straight line segments. The distance is the length of
the shortest straight line segment from a point pj ∈ Sj to the point on the path µ.P
determined iteratively for each segment of µ.P and choosing the shortest one.

The region set S∗, selected by the branching rule (7), is used to create possible
child nodes of the node µ such that the index S∗

idx of the set S∗ is inserted into the
sequence at every possible position in µ.Σ. Thus, for the k indexes long sequence
µ.Σ, k new child nodes µchild of µ are constructed (Line 22 of Algorithm 1).1

Algorithm 2: The feasible solution of the GTSPN for given Σ

Input: S = {S1, . . . , Sn} – A set of region sets.
Input: µ.Σ = (σ1, . . . , σn) – A given sequence.
Input: µ.P = {p1, . . . ,pn} – A path covering n sets.
Output: (Σf , Pf) – A feasible solution.

1 Σ← µ.Σ and P ← µ.P // Initialize by the given µ.Σ and µ.P.

2 while solution is updated do
3 for S ∈ S[µ.Σ] do
4 β ← get not covered sets(S,Σ, P)
5 p, i← get closest point and segment(S,Σ, P)
6 Σ, P ← insert(p, i,Σ, P)

7 (Σf , Pf)← (Σ, P) // Denote the solution found as the feasible solution.

8 return (Σf , Pf)

For each partial problem of µchild, the partial solution µchild.P
′ is be estimated

(Line 23 of Algorithm 1), and the node is inserted into O. The exact partial solution
µchild.P is determined once the node is dequeued from O (Line 11 of Algorithm 1)
for the second time. Together with the exact solution µchild.P , the corresponding
feasible solution (µchild.Σf , µchild.Pf) is determined using Algorithm 2, and the global

1Note that branching is based on the sequences, not assigning the values to the variables.

12

upper bound UB can be updated (Line 13 of Algorithm 1). The open list O is filtered
using the bounding rule that is to remove the nodes with L(µ.Σ, µ.P ′) > UB.

The BB-based search is terminated if the optimal solution is found andO becomes
empty, or predefined maximal computational time tmax is reached.

3.1. Mixed-Integer Second-Order Cone Programming Model

The utilized optimization model consists of a linear objective function, linear con-
straints, convex quadratic constraints, a second-order cone constraint, and binary
variables; hence, we refer to it as the Mixed-Integer Second-Order Cone Program
(MISOCP). The MISOCP described in Model 3.1 follows the formulation of Prob-
lem 2.1 to determine P for the partial problem given by a fixed sequence Σ. Model 3.1
can be solved optimally using an optimization solver, such as CPLEX 12.9.

(a) The MISOCP model. (b) The SOCP model.

Figure 5: An instance of the GTSPN with Σ = (1, 2, 3) and the depiction of the continuous
variables x that correspond to the locations of visits P and constants utilized in the determination
of the exact solution with Model 3.1 (Figure 5a) and estimated solution with Model 3.2 (Figure 5b).

Model 3.1 (Mixed-Integer Second-Order Cone Program (MISOCP)).

minimize
x∈Rk×d

f1 + f2 + . . .+ fk (8)

subject to 0 ≥ (xi − xi+1)
T (xi − xi+1)− f 2

i ∀i ∈ {1, . . . , k} (9)

Ai,j xi − bi,j ≤Mi,j zi,j ∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . ,mi} (10)

(xi − ci,j)
T Pi,j (xi − ci,j) ≤ 1 +Mi,j zi,j ∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . ,mi} (11)

zi,1 + zi,2 + . . .+ zi,mi
= mi − 1 ∀i ∈ {1, . . . , k} (12)

zi,j ∈ {0, 1} ∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . ,mi} (13)

fi ≥ 0 ∀i ∈ {1, . . . , k} (14)

13

The optimization of Model 3.1 is to determine a set of k ≤ n locations of visits
pi, such that the path formed by the locations has the minimal length, and each
location is within the corresponding region set.

Model 3.1 consists of

• Decision variables x ∈ Rk×d, where each variable xi ∈ Rd corresponds to
locations of visit pi ∈ P (xi = pi);

• Auxiliary variables f ∈ Rk, such as fi ≥ 0; and

• Binary variables z ∈ Zk×mi
2 , where Z2 = {0, 1}, that are used for the disjunctive

constraints describing the selection of the particular region based on the big-M
approach (Griva et al., 2008) with M, which is a matrix M ∈ Rk×mi . If the
j-th region Qi,j of the set Si is to be included in the solution, then zi,j = 0 and
remaining variables zi,· are set to 1 to disable constraints (10) and (11).

The model further contains the linear objective function (8) that is minimized.
The objective expresses minimization of the Euclidean distances between each two
consecutive variables xi and xi+1, i.e., ∥xi − xi+1∥. The Euclidean norms are defined
by quadratic cones (Ben-Tal and Nemirovski, 2001) and can be cast as second-order
cones as fi ≥ ∥xi − xi+1∥. Furthermore, it can be alternatively expressed as 0 ≥
∥xi − xi+1∥2−f 2

i , with fi ≥ 0 (14), and the second order cone can be thus be deduced
to 0 ≥ (xi − xi+1)

T (xi − xi+1)− f 2
i (9). Indeed, we need to determine at least one

region Qi,j ∈ Si of mi regions of the set Si to be visited. We employ the mixed-
integer optimization with the big-M technique to model the disjunctive constraints
representing the particular regions, where the polyhedron is defined by Ai,j and bi,j
and the ellipsoid is defined by Pi,j and ci,j The binary variables z together with the
large enough variables M ∈ Rk×mi ensure only one of the constraints (10) or (11)
corresponding to the particular region is in effect. Note that a constraint is in effect
if corresponding zi is set to 0 and others to 1; hence, the constraint (12) is employed.

The variable M is a penalty constant and needs to be large enough so that all
infeasible solutions of Model 3.1 are discarded. Therefore, Mi,j is determined for
each region Qi,j of each set Si ∈ S as the maximal distance between the region and
its bounding box Bi,j. A quadratic model with (5) and (6) (as the particular con-
straints) is used to determine the bounding box Bi,j of the region Qi,j, see Figure 6b.
Depending on the coordinate, minimization (or maximization) of the bounding box
coordinate xl, l ∈ {1, . . . , d} is performed. In particular, the bounding box Bi,j is de-
termined from the point xlb ∈ Rd with the minimum coordinate values and xub ∈ Rd

with the maximal coordinate values as the lower left and upper right point of the
bounding box, respectively.

14

3.2. Estimation of the Partial Solution

The estimation of the partial solutions is utilized to decrease the computational
burden of the BB-based search by avoiding the costly determination of the exact
solution of the partial problem using the MISOCP. Having a partial problem con-
sisting of a subset of k region sets S ′ ⊂ S, given by a sequence Σ = (σ1, . . . , σk), the
cost of the partial solution defined as the partial path P ′ = (p1, . . . ,pk) is estimated
using a computationally efficient approach based on the bounding boxes of the region
sets, where each region set Si is replaced by a tight bounding box Bi around the set,
see Figure 6.

(a) Estimation of the partial solution. (b) Detail of bounding box Bi.

Figure 6: Principle of estimating the partial solution of Problem 2.1 using Model 3.2 with bounding
boxes. The bounding box Bi of the region set Si is determined as the point xlb

i with the minimal
values of the coordinates (the lower left point) from all the bounding boxes of the regions Qi,j ,
j ∈ {1, . . . ,mi}, and xub

i with the maximal values of the coordinates (the upper right point)
from all region bounding boxes (depicted as blue boxes), i.e., xlb

i = minj=1,...,mi
xlb
i,j and xub

i a =

maxj=1,...,mi
xub
i,j .

Model 3.2 (Second-Order Cone Programming (SOCP) for Solution Estimation).

minimize
x∈Rk×d

f1 + f2 + . . .+ fk (15)

subject to f 2
i ≥ (xi+1 − xi)

T (xi+1 − xi) ∀i ∈ {1, . . . , k} (16)

xlb
i ≤ xi ≤ xub

i ∀i ∈ {1, . . . , k} (17)

fi ≥ 0 ∀i ∈ {1, . . . , k} (18)

For the estimation of the partial solution, the partial problem is formulated as
a problem where we have a given sequence of visits together with a set of bound-
ing boxes corresponding to S ′. The task is to find the shortest path visiting each

15

bounding box. The utilized optimization model uses a linear objective function and
linear and second-order cone constraints. Therefore, the model is referred to as the
Second-Order Cone Program (SOCP) and is described in Model 3.2. The mathemat-
ical solver CPLEX 12.9 is employed to solve the model. Note that the found path
formed by P ′ of the partial solution (Σ, P ′) is not a feasible solution to the partial
problem, but its estimation because of relaxing the constraints (10) and (11), which
allows the variable xi be within the bounding box and not necessarily in the regions.

Model 3.2, similarly to Model 3.1, is to determine a set of k ≤ n points xi such
that the path formed by xi is of the minimal length and each point is within the cor-
responding bounding box. Thus, the objective is to minimize the Euclidean distance
between two consecutive points. The objective function (15) can be represented in
the same manner as in Model 3.1, as a summation over the variables f subject to
fi ≥ (xi+1−xi)

T (xi+1−xi) (16). Besides, we express that the point xi is within the
bounding box Bi using the linear constraint (17), where the points xlb

i and xub
i are

the minimal and maximal coordinate values, respectively, as depicted in Figure 6.

4. Computational Results

The proposed BB-based solver provides the lower and upper bounds on the op-
timal solution values of the GTSPN instances. Hence, the existing approaches to
the GTSPN can be computationally evaluated using the obtained bounds. The pre-
sented evaluation results are obtained for 35 benchmark instances proposed by Vi-
cencio et al. (2014) and 410 additional instances2 derived from (Vicencio, 2014) to
show the scalability of the proposed method. The evaluated instances includes 420
random instances in the 3D and 25 randomly generated instances in the 7D. Poly-
hedra regions are defined by l = 12 half-spaces for the 3D instances and l = 20
half-spaces for polyhedra regions in the 7D. The number of half-spaces for the hy-
brid regions is l = 6 for both 3D and 7D instances. The benchmark instances vary
in the number of region sets n ∈ {30, 35, 40, 45, 50}, where each region set con-
sists of mi = 6 regions of the shape types of the polyhedron, ellipsoid, and hybrid.
The number of region sets n and the number of the regions mi per each set, to-
gether with the dimension d, are encoded in the instance name as dD n mi v, where
v ∈ {a, b, c, d, e, f} denotes a particular instance variant. The derived instances
are created from the benchmark instances by randomly selecting k region sets from
the instances dD n 6 v for k ∈ {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25} for the 3D
instances, and k ∈ {5, 10, 15, 20} for the 7D instances. The name of the derived

2Derived instances area available at https://github.com/comrob/gtspn-bb.

16

https://github.com/comrob/gtspn-bb

instances encodes the parameters of the benchmark instance as dD n k mi v.
The performance of the proposed solver is compared with the existing hybrid

method denoted as the HRKGA (Vicencio et al., 2014), the unsupervised learning-
based method denoted as the GSOA and the decoupled approach denoted as the
Centroid-GTSP+ (Faigl et al., 2019). The HRKGA results (Vicencio et al., 2014)
are reported to be obtained using the Uniform Crossover Operator and 30 trials
executed on the Intel Xeon CPU @3.20 GHz. The results of the GSOA and the
decoupled Centroid-GTSP+ approaches are reported to be obtained using a single
core of the Intel i7-6700K and both executed for 50 trials (Faigl et al., 2019).
The real computational requirements are reported as the mean computational times
denoted TCPU.

3

The proposed BB-based solver is implemented in the Julia programming lan-
guage utilizing the JuMP modeling language (Dunning et al., 2017) with the CPLEX
12.9 optimization solver to solve the SOCP and MISOCP optimizations models. Be-
cause the BB-based solver is deterministic, it is executed for a single trial using
a computational environment consisting of 24 cores of two Intel Xeon Scalable

Gold 6146 processors. The initial upper bound value UB set as the best existing so-
lution selected from the results reported in (Vicencio et al., 2014; Faigl et al., 2019).
The maximal running time of the BB-based solver (as of Algorithm 1) tmax is set
to 10 h, which is considered computationally tractable. However, a single call of the
CPLEX is allowed to exceed the limit because an optimal solution of the particular
problem is requested to determine the lower bound. Therefore, the real required
computational time of the reported found solutions is denoted TBB

CPU.
The numerical evaluation is based on measuring two performance indicators: the

optimality of solutions using the proposed lower bounds method and the relative
length. The solution optimality %GAP is measured as the relative gap between the
length of the best-obtained solution L among the performed trials for the particular
solver and the lower bound value of the problem instance LB determined by the
proposed BB solver.

%GAP =
L − LB
L 100% (19)

The second indicator is the five-number summary of the relative solution length
Lrel = L/Lbest, where L is the best-found solution among trials performed by the
particular solver, and Lbest is the best-known solution of the instance.

3TCPU is not of primary interest for showing results on the computed lower bound values.
Besides, times significantly vary for each solver depending on the parallel computation capability.
Therefore, the reported times are not normalized and are listed as reported and measured.

17

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 20 n = 25 n = 30 n = 35 n = 40 n = 45 n = 50
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L r
el

BB-based Lower Bounds

Centroid-GTSP+

GSOA

HRGKA

(a) Relative length Lrel for 3D

n = 5 n = 10 n = 15 n = 20 n = 30 n = 35 n = 40 n = 45 n = 50
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L r
el

BB-based Lower Bounds

Centroid-GTSP+

GSOA

HRGKA

(b) Relative length Lrel for 7D

Figure 7: The five-number summary of the relative lengths Lrel for the 3D and 7D instances. For
the results denoted BB-based Lower Bounds, Lrel values are computed using the found lower bound
values LB as Lrel = LB/Lbest.

Besides, we present statistics indicators as a percentage ratio of the number of
opened nodes, pruned nodes, and unprocessed nodes to the number of created
nodes to provide insight to the studied BB-based method. The percentage of nodes
for which the exact solutions have been computed and have been reinserted into the
open list is also reported. Note that the number of unprocessed nodes is computed
as created− opened− pruned+ exact.

Due to the relatively high number of evaluated instances, we aggregated results
among particular variants v for the 3D and 7D instances so that the instances are
grouped according to the number of sets for mi = 6. Hence, the performance indi-
cators are reported as the mean values Lbest, LBBB, and %GAPBB for the instances
with the name in the form of dD n mi. The aggregated evaluation results are re-
ported in Tables 1 and 2, and the five-number summary indicators are plotted in
Figure 7. Besides, in Figure 8, we report on the comparison of the proposed BB-
based method with and without the employment of the estimation of the partial
solutions as described in Section 3.2 to show the benefits of the SOCP estimation.
The aggregated statistic is reported in Tables 3 and 4. Detail results with the deter-
mined lower bound values for all the instances can be found in Tables A.1 to A.8 in
Supplementary materials. Note that the best-found solutions are highlighted in bold
in the tables. In addition, detailed statistics can be further found in Tables B.9 to
B.15 in Supplementary materials.

The results for the 3D instances in Table 1 indicate that the proposed BB-based
GTSPN solver finds tight lower bounds for instances with a small number of sets. The
optimal solutions are found for all instances with n up to 10, for most of the instances

18

Table 1: Aggregated results of the 3D GTSPN instances.

Instance n Lbest LBBB %GAPBB TBB
CPU

HRGKA GSOA Centroid-GTSP+

%GAP TCPU %GAP TCPU %GAP TCPU

3D 05 6 05 1 309.28 1 674.82 0.00 ≈ 1 min - ∗ - ∗ 0.43 2.66 s 0.26 0.17 s

3D 06 6 06 1 458.04 2 021.16 0.00 ≈ 1 min - ∗ - ∗ 0.47 3.91 s 0.26 0.23 s

3D 07 6 07 1 640.90 2 047.28 0.00 ≈ 3 min - ∗ - ∗ 0.50 5.39 s 0.17 0.20 s

3D 08 6 08 1 745.46 2 277.66 0.00 ≈ 10 min - ∗ - ∗ 0.68 7.43 s 0.21 0.33 s

3D 09 6 09 1 813.43 2 387.71 0.00 ≈ 26 min - ∗ - ∗ 0.79 9.26 s 0.21 0.30 s

3D 10 6 10 1 997.32 2 425.86 0.00 ≈ 47 min - ∗ - ∗ 0.76 11.65 s 0.17 0.23 s

3D 11 6 11 2 080.06 2 441.85 0.17 ≈ 3 h - ∗ - ∗ 1.31 14.20 s 0.39 0.20 s

3D 12 6 12 2 129.42 2 608.91 1.08 ≈ 5 h - ∗ - ∗ 2.22 17.24 s 1.34 0.57 s

3D 13 6 13 2 306.85 2 765.65 4.11 ≈ 9 h - ∗ - ∗ 5.16 20.02 s 4.18 0.47 s

3D 14 6 14 2 385.79 2 676.82 4.90 ≈ 9 h - ∗ - ∗ 6.10 23.58 s 4.79 0.37 s

3D 15 6 15 2 543.80 2 650.26 10.72 ≈ 10 h - ∗ - ∗ 14.71 26.44 s 13.38 0.37 s

3D 20 6 20 2 950.02 2 787.98 19.72 ≈ 10 h - ∗ - ∗ 20.55 47.04 s 18.56 0.50 s

3D 25 6 25 3 416.19 2 836.54 31.21 ≈ 10 h - ∗ - ∗ 30.41 ≈ 1 min 28.50 0.67 s

3D 30 6 30 3 645.52 2 551.23 39.63 ≈ 10 h 36.37 50.98 s 38.24 0.13 s 36.08 < 10 ms

3D 35 6 35 4 064.69 2 609.81 43.46 ≈ 10 h 39.28 ≈ 1 min 41.71 0.17 s 39.02 < 10 ms

3D 40 6 40 4 264.24 2 739.98 46.27 ≈ 10 h 43.28 ≈ 1 min 45.16 0.23 s 42.90 < 10 ms

3D 45 6 45 4 750.11 2 900.72 48.50 ≈ 10 h 44.68 ≈ 1 min 46.74 0.28 s 44.09 < 10 ms

3D 50 6 50 4 924.53 2 693.10 53.09 ≈ 10 h 49.33 ≈ 1 min 50.94 0.34 s 48.70 < 10 ms

*Values are not reported in Vicencio et al. (2014)

with n up to 13, and for some of the instances with up to 30 region sets.4 The
BB-based solver outperforms all the other solvers (HRKGA, GSOA, and Centroid-
GTSP+) for instances with n to 12; see Figure 7a. However, for more than 14
region sets, the BB-based solver (in the given tmax) provides relatively poor solutions
compared to the examined heuristics.

Regarding the results for the 7D instances reported in Table 2, the GSOA and
Centroid-GTSP+ solvers are outperformed by the HRKGA for the available results.
The HRKGA provides the lowest %GAP, albeit significantly higher than for the
3D instances. However, for some of the instances with the number of region sets
n ∈ {5, 10, 20}, the proposed BB-based solver provides solutions with the tighter
%GAP than the GSOA and Centroid-GTSP+ .

Regarding the performance of the BB-based solver summarized in Tables 3 and 4,
it processed all created tree nodes of instances with n up to 10. For instances with
n = 15 and above, the solver prunes a low number of nodes and more than 50% of
nodes remains unprocessed.5

4See detailed results in Tables A.1 to A.6 in Supplementary materials.
5See the detailed results in Tables B.9 to B.15 in Supplementary materials.

19

Table 2: Aggregated results of the 7D GTSPN instances.

Instance n Lbest LBBB %GAPBB TBB
CPU

HRGKA GSOA Centroid-GTSP+

%GAP TCPU %GAP TCPU %GAP TCPU

7D 05 6 05 2 158.05 2 431.84 0.00 ≈ 2 min - ∗ - ∗ 2.20 51.70 s 3.38 0.47 s

7D 10 6 10 3 874.16 3 518.50 12.90 ≈ 10 h - ∗ - ∗ 16.36 ≈ 2 min 16.38 0.78 s

7D 15 6 15 5 541.13 3 918.00 36.17 ≈ 10 h - ∗ - ∗ 38.11 ≈ 4 min 36.66 1.18 s

7D 20 6 20 6 718.83 3 689.91 48.22 ≈ 10 h - ∗ - ∗ 49.59 ≈ 8 min 47.90 1.60 s

7D 30 6 30 9 263.10 3 852.95 61.02 ≈ 10 h 58.41 ≈ 1 min 62.44 1.45 s 59.74 < 10 ms

7D 35 6 35 10 704.00 3 545.05 68.57 ≈ 10 h 66.88 ≈ 1 min 69.78 2.08 s 68.14 < 10 ms

7D 40 6 40 10 871.40 3 642.63 68.35 ≈ 10 h 66.49 ≈ 1 min 70.13 2.62 s 67.72 < 10 ms

7D 45 6 45 12 142.20 3 507.62 73.00 ≈ 10 h 71.11 ≈ 2 min 73.97 3.21 s 71.74 < 10 ms

7D 50 6 50 13 868.40 3 838.44 73.63 ≈ 10 h 72.32 ≈ 2 min 75.31 4.09 s 72.92 < 10 ms

*Values are not reported in Vicencio et al. (2014)

Table 3: Aggregated statistic evaluation of the 3D GTSPN instances.

Instance n LBBB %GAPBB TBB
CPU

created opened pruned exact unprocessed

nodes nodes nodes nodes nodes

3D 05 6 05 1 309.28 0.00 ≈ 1 min 10.5 77.85% 65.51% 43.35% 0.00%

3D 06 6 06 1 458.04 0.00 ≈ 1 min 21.7 66.77% 72.77% 39.54% 0.00%

3D 07 6 07 1 640.90 0.00 ≈ 3 min 46.6 57.05% 77.67% 34.72% 0.00%

3D 08 6 08 1 745.46 0.00 ≈ 10 min 128.4 51.77% 81.57% 33.33% 0.00%

3D 09 6 09 1 813.50 0.00 ≈ 26 min 268.0 47.93% 83.93% 31.86% 0.00%

3D 10 6 10 1 997.32 0.00 ≈ 47 min 475.1 45.76% 85.17% 30.93% 0.00%

3D 11 6 11 2 076.16 0.17 ≈ 3 h 1 035.1 44.22% 83.82% 30.69% 2.65%

3D 12 6 12 2 104.73 1.08 ≈ 5 h 1 921.6 40.90% 78.42% 28.29% 8.97%

3D 13 6 13 2 211.29 4.11 ≈ 9 h 2 264.1 42.25% 58.26% 29.87% 29.35%

3D 14 6 14 2 272.57 4.90 ≈ 9 h 2 807.9 39.22% 55.15% 27.18% 32.81%

3D 15 6 15 2 281.18 10.72 ≈ 10 h 2 558.8 40.62% 28.50% 28.33% 59.21%

3D 20 6 20 2 399.77 19.72 ≈ 10 h 2 340.9 40.94% 6.32% 28.49% 81.23%

3D 25 6 25 2 440.15 31.21 ≈ 10 h 2 399.9 40.81% 0.08% 28.38% 87.48%

3D 30 6 30 2 330.62 39.63 ≈ 10 h 2 090.0 40.81% 0.00% 28.11% 87.30%

3D 35 6 35 2 476.95 43.46 ≈ 10 h 2 241.8 40.87% 0.00% 28.33% 87.45%

3D 40 6 40 2 430.57 46.27 ≈ 10 h 2 194.5 42.61% 0.00% 29.95% 87.34%

3D 45 6 45 2 657.69 48.50 ≈ 10 h 2 668.5 37.29% 0.00% 24.90% 87.61%

3D 50 6 50 2 521.85 53.09 ≈ 10 h 2 144.0 39.13% 0.00% 26.40% 87.27%

As for the comparison of the proposed BB-based solver with and without SOCP-
based estimation of the partial solution. The results depicted in Figure 8 supports
the employment of the estimation since the solutions of the problems are obtained
in shorter computational times.

Based on the tight lower bounds found for small instances and assuming heuristic

20

Table 4: Aggregated statistic evaluation of the 7D GTSPN instances.

Instance n LBBB %GAPBB TBB
CPU

created opened pruned exact unprocessed

nodes nodes nodes nodes nodes

7D 05 6 05 2 158.05 0.00 ≈ 2 min 14.4 76.39% 68.06% 44.44% 0.00%

7D 10 6 10 3 372.03 12.90 ≈ 10 h 1 049.8 58.54% 7.49% 43.32% 77.29%

7D 15 6 15 3 559.28 36.17 ≈ 10 h 782.6 55.87% 0.00% 40.12% 84.26%

7D 20 6 20 3 505.66 48.22 ≈ 10 h 752.6 53.55% 0.00% 38.03% 84.48%

7D 30 6 30 3 852.95 61.02 ≈ 10 h 710.0 47.46% 0.00% 31.55% 84.08%

7D 35 6 35 3 545.05 68.57 ≈ 10 h 1 120.0 55.36% 0.00% 40.45% 85.09%

7D 40 6 40 3 642.63 68.35 ≈ 10 h 947.0 51.53% 0.00% 36.11% 84.58%

7D 45 6 45 3 507.62 73.00 ≈ 10 h 989.0 54.70% 0.00% 39.23% 84.53%

7D 50 6 50 3 838.44 73.63 ≈ 10 h 314.0 72.93% 0.00% 55.73% 82.80%

solvers provide relatively satisfactory solutions, the performance of the proposed BB-
based solver decreases with the increasing number of region sets for the given tmax.
Nevertheless, the proposed solver is (to the authors’ best knowledge) the only solver
that provides the lower bounds to the GTSPN. Thus, the promising results for small
instances motivate further research on improvements to address larger instances of
the GTSPN.

5. Conclusion

We propose the first lower bounds on the optimal solution values of the GT-
SPN instances with supportive results for the 3D and 7D problem instances. The
bounds are obtained by the BB-based solver utilizing the MISOCP to obtain opti-
mal solutions to partial problems and utilizing the SOCP to estimate the solution
costs. Regarding the reported evaluation results, the proposed BB-solver provides
the lower bound values on the solutions of the GTSPN instances that allow bench-
marking existing heuristic solvers using the absolute quality measure to the found
solutions. Due to optimal solutions to the partial problems, the proposed solver is
too demanding to be competitive with the existing heuristics, specifically for large
instances. However, it is the only solver providing the lower bound values on the GT-
SPN solutions. Thus, the proposed method allows for assessing the existing heuristic
solvers. The reported results support that the provided lower bounds are tight for
the instances with a few region sets. Besides, the first optimal solutions are reported
for several evaluated benchmark instances. The results motivate further research on
computational improvements for solving larger instances.

Moreover, we are prompted to address robotic applications motivating the studied

21

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 20 n = 25

0

20000

40000

60000

80000

T
C

P
U

[s
]

BB with SOCP estimation

BB without SOCP estimation

Figure 8: Aggregated computational requirements of the proposed method. Computational require-
ments of the proposed method, including the estimation using the bounding boxes with SOCP, are
depicted in orange, and without the SOCP estimation are depicted in purple.

GTSPN (since the GTSPN formulation allows us to define complex shapes of neigh-
borhoods), where further computational challenges arise from the robotic systems’
motion constraints, such as the viewpoint planning problems with mobile robots.

Acknowledgements

The presented work has been initiated under research project No. 19-20238S and
finished under project No. 22-05762S, supported by the Czech Science Foundation
(GAČR). The access to the computational infrastructure of the OP VVV funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics” is also
gratefully acknowledged.

References

Alatartsev, S., Stellmacher, S., Ortmeier, F., 2015. Robotic Task Sequencing
Problem: A Survey. Journal of Intelligent & Robotic Systems 80, 279–298.
doi:10.1007/s10846-015-0190-6.

Arkin, E.M., Hassin, R., 1994. Approximation algorithms for the geometric covering

22

http://dx.doi.org/10.1007/s10846-015-0190-6

salesman problem. Discrete Applied Mathematics 55, 197–218. doi:10.1016/
0166-218X(94)90008-6.

Behdani, B., Smith, J.C., 2014. An integer-programming-based approach to the
close-enough traveling salesman problem. INFORMS: Journal on Computing 26,
415–432. doi:10.1287/ijoc.2013.0574.

Ben-Tal, A., Nemirovski, A., 2001. Lectures on Modern Convex Optimization. So-
ciety for Industrial and Applied Mathematics. doi:10.1137/1.9780898718829.

de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H.,
van der Stappen, A.F., 2005. TSP with neighborhoods of varying size. Journal of
Algorithms 57, 22–36. doi:10.1016/j.jalgor.2005.01.010.

Carrabs, F., Cerrone, C., Cerulli, R., D’Ambrosio, C., 2017a. Improved upper and
lower bounds for the close enough traveling salesman problem, in: Green, Perva-
sive, and Cloud Computing, pp. 165–177. doi:10.1007/978-3-319-57186-7_14.

Carrabs, F., Cerrone, C., Cerulli, R., Gaudioso, M., 2017b. A novel discretization
scheme for the close enough traveling salesman problem. Computers & Operations
Research 78, 163–171. doi:10.1016/j.cor.2016.09.003.

Carrabs, F., Cerrone, C., Cerulli, R., Golden, B., 2020. An adaptive heuristic ap-
proach to compute upper and lower bounds for the close-enough traveling salesman
problem. INFORMS: Journal on Computing doi:10.1287/ijoc.2020.0962.

Clausen, J., 1999. Branch and bound algorithms-principles and examples. Depart-
ment of Computer Science, University of Copenhagen , 1–30.

Coutinho, W.P., Nascimento, R.Q.d., Pessoa, A.A., Subramanian, A., 2016. A
branch-and-bound algorithm for the close-enough traveling salesman problem. IN-
FORMS: Journal on Computing 28, 752–765. doi:10.1287/ijoc.2016.0711.

CPLEX 12.9, . IBM ILOG CPLEX Optimization Studio. URL: https://www.ibm.
com/products/ilog-cplex-optimization-studio. accessed June 29, 2022.

Dumitrescu, A., Mitchell, J.S.B., 2003. Approximation algorithms for TSP with
neighborhoods in the plane. Journal of Algorithms 48, 135–159. doi:10.1016/
S0196-6774(03)00047-6.

Dunbabin, M., Marques, L., 2012. Robots for Environmental Monitoring: Significant
Advancements and Applications. IEEE Robotics & Automation Magazine 19, 24–
39. doi:10.1109/MRA.2011.2181683.

23

http://dx.doi.org/10.1016/0166-218X(94)90008-6
http://dx.doi.org/10.1016/0166-218X(94)90008-6
http://dx.doi.org/10.1287/ijoc.2013.0574
http://dx.doi.org/10.1137/1.9780898718829
http://dx.doi.org/10.1016/j.jalgor.2005.01.010
http://dx.doi.org/10.1007/978-3-319-57186-7_14
http://dx.doi.org/10.1016/j.cor.2016.09.003
http://dx.doi.org/10.1287/ijoc.2020.0962
http://dx.doi.org/10.1287/ijoc.2016.0711
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
http://dx.doi.org/10.1016/S0196-6774(03)00047-6
http://dx.doi.org/10.1016/S0196-6774(03)00047-6
http://dx.doi.org/10.1109/MRA.2011.2181683

Dunning, I., Huchette, J., Lubin, M., 2017. Jump: A modeling language for mathe-
matical optimization. SIAM Review 59, 295–320. doi:10.1137/15M1020575.

Elbassioni, K., Fishkin, A.V., Sitters, R., 2009. Approximation algorithms for the
Euclidean traveling salesman problem with discrete and continuous neighborhoods.
International Journal of Computational Geometry & Applications 19, 173–193.
doi:10.1142/S0218195909002897.

Faigl, J., 2018. GSOA: growing self-organizing array - unsupervised learning for the
close-enough traveling salesman problem and other routing problems. Neurocom-
puting 312, 120–134. doi:10.1016/j.neucom.2018.05.079.

Faigl, J., 2019. Data collection path planning with spatially correlated measurements
using growing self-organizing array. Applied Soft Computing 75, 130–147. doi:10.
1016/j.asoc.2018.11.005.

Faigl, J., Váňa, P., Deckerová, J., 2019. Fast heuristics for the 3-d multi-goal path
planning based on the generalized traveling salesman problem with neighborhoods.
IEEE Robotics and Automation Letters 4, 2439–2446. doi:10.1109/LRA.2019.
2900507.

Faigl, J., Vonásek, V., Přeučil, L., 2013. Visiting convex regions in a polygonal map.
Robotics and Autonomous Systems 61, 1070–1083. doi:10.1016/j.robot.2012.
08.013.

Gentilini, I., 2012. Multi-goal path optimization for robotic systems with redun-
dancy based on the traveling salesman problem with neighborhoods. Ph.D. thesis.
Carnegie Mellon University. doi:10.1184/R1/6720746.v1.

Gentilini, I., Margot, F., Shimada, K., 2013. The travelling salesman problem with
neighbourhoods: MINLP solution. Optimization Methods and Software 28, 364–
378. doi:10.1080/10556788.2011.648932.

Griva, I., Nash, S.G., Sofer, A., 2008. Linear and Nonlinear Optimization 2nd Edi-
tion. SIAM.

Gulczynski, D.J., Heath, J.W., Price, C.C., 2006. The Close Enough Traveling
Salesman Problem: A Discussion of Several Heuristics. pp. 271–283. doi:10.
1007/978-0-387-39934-8_16.

Gutin, G., Punnen, A.P. (Eds.), 2007. The Traveling Salesman Problem and Its
Variations. Springer US. doi:10.1007/b101971.

24

http://dx.doi.org/10.1137/15M1020575
http://dx.doi.org/10.1142/S0218195909002897
http://dx.doi.org/10.1016/j.neucom.2018.05.079
http://dx.doi.org/10.1016/j.asoc.2018.11.005
http://dx.doi.org/10.1016/j.asoc.2018.11.005
http://dx.doi.org/10.1109/LRA.2019.2900507
http://dx.doi.org/10.1109/LRA.2019.2900507
http://dx.doi.org/10.1016/j.robot.2012.08.013
http://dx.doi.org/10.1016/j.robot.2012.08.013
http://dx.doi.org/10.1184/R1/6720746.v1
http://dx.doi.org/10.1080/10556788.2011.648932
http://dx.doi.org/10.1007/978-0-387-39934-8_16
http://dx.doi.org/10.1007/978-0-387-39934-8_16
http://dx.doi.org/10.1007/b101971

Helsgaun, K., 2015. Solving the equality generalized traveling salesman problem
using the lin-kernighan-helsgaun algorithm. Mathematical Programming Compu-
tation 7, 269–287. doi:10.1007/s12532-015-0080-8.

Karapetyan, D., Gutin, G., 2012. Efficient local search algorithms for known and new
neighborhoods for the generalized traveling salesman problem. European Journal
of Operational Research 219, 234–251. doi:10.1016/j.ejor.2012.01.011.

Land, A.H., Doig, A.G., 1960. An automatic method of solving discrete programming
problems. Econometrica 28, 497–520.

Mennell, W.K., 2009. Heuristics for Solving Three Routing Problems: Close-Enough
Traveling Salesman Problem, Close-Enough Vehicle Routing Problem, Sequence-
Dependent Team Orienteering Problem. Ph.D. thesis. University of Maryland.

Noon, C.E., Bean, J.C., 1993. An efficient transformation of the generalized traveling
salesman problem. INFORMS: Information Systems and Operational Research 31,
39–44. doi:10.1080/03155986.1993.11732212.

Oberlin, P., Rathinam, S., Darbha, S., 2010. Today’s traveling salesman prob-
lem. IEEE Robotics & Automation Magazine 17, 70–77. doi:10.1109/MRA.2010.
938844.

Pintea, C.M., Pop, P.C., Chira, C., 2007. The generalized traveling salesman problem
solved with ant algorithms. Journal of Universal Computer Science 13, 1065–1075.
doi:10.1186/s40294-017-0048-9.

Silberholz, J., Golden, B., 2007. The generalized traveling salesman problem: A
new genetic algorithm approach, in: Extending the horizons: advances in comput-
ing, optimization, and decision technologies. Springer, pp. 165–181. doi:10.1007/
978-0-387-48793-9_11.

Smith, S.L., Imeson, F., 2017. GLNS: An effective large neighborhood search heuris-
tic for the generalized traveling salesman problem. Computers & Operations Re-
search 87, 1–19. doi:10.1016/j.cor.2017.05.010.

Suárez-Ruiz, F., Lembono, T.S., Pham, Q.C., 2018. Robotsp – a fast solution to the
robotic task sequencing problem, in: IEEE International Conference on Robotics
and Automation (ICRA), pp. 1611–1616. doi:10.1109/ICRA.2018.8460581.

Vicencio, K., 2014. Randomly generated GTSPN instances. URL: http://

robotics.pr.erau.edu/data/gtspn.zip.

25

http://dx.doi.org/10.1007/s12532-015-0080-8
http://dx.doi.org/10.1016/j.ejor.2012.01.011
http://dx.doi.org/10.1080/03155986.1993.11732212
http://dx.doi.org/10.1109/MRA.2010.938844
http://dx.doi.org/10.1109/MRA.2010.938844
http://dx.doi.org/10.1186/s40294-017-0048-9
http://dx.doi.org/10.1007/978-0-387-48793-9_11
http://dx.doi.org/10.1007/978-0-387-48793-9_11
http://dx.doi.org/10.1016/j.cor.2017.05.010
http://dx.doi.org/10.1109/ICRA.2018.8460581
http://robotics.pr.erau.edu/data/gtspn.zip
http://robotics.pr.erau.edu/data/gtspn.zip

Vicencio, K., Davis, B., Gentilini, I., 2014. Multi-goal path planning based on the
generalized traveling salesman problem with neighborhoods, in: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 2985–2990.
doi:10.1109/IROS.2014.6942974.

Yang, Z., Xiao, M.Q., Ge, Y.W., Feng, D.L., Zhang, L., Song, H.F., Tang, X.L.,
2018. A double-loop hybrid algorithm for the traveling salesman problem with
arbitrary neighbourhoods. European Journal of Operational Research 265, 65–80.
doi:10.1016/j.ejor.2017.07.024.

Yuan, B., Orlowska, M., Sadiq, S., 2007. On the Optimal Robot Routing Problem in
Wireless Sensor Networks. IEEE Transactions on Knowledge and Data Engineering
19, 1252–1261. doi:10.1109/TKDE.2007.1062.

26

http://dx.doi.org/10.1109/IROS.2014.6942974
http://dx.doi.org/10.1016/j.ejor.2017.07.024
http://dx.doi.org/10.1109/TKDE.2007.1062

Appendix A. Used Notation

Table A.5: Used symbols

Si The i-th region set. S Set of n region sets Si.

d Dimension of the input space. ci Center of region Si.

Qi,k The k-th region of region set Si A, b. Matrix and vector defining polyhe-
dron.

P Symmetric positive definite matrix
defining ellipsoid.

pi Location of visit to the region set Si.

P Set of points of visits to S. Σ Sequence of visits to target regions.

σi The i-th visit to region set Si.

M Solution space of the BB. tmax Maximal computational time of BB.

µ Node of solution spaceM. O Open list.

β Set of not covered regions. f Objective variables.

x Continuous variables represent-
ing P .

z Binary variables for big M.

M Big M variables. Bi Bounding box of the region set Si.

xlb
i Coordinate values of the lower left

point of Bi.
xub
i Coordinate values of the upper right

point of Bi.

27

	Introduction
	Problem Statement
	Representation of the Region Sets

	Proposed Lower Bound Determination based on Branch-and-Bound Method
	Mixed-Integer Second-Order Cone Programming Model
	Estimation of the Partial Solution

	Computational Results
	Conclusion
	Used Notation

