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Abstract—In this work-in-progress report, we present experi-
mental results of lightweight learning-based leg-contact detection
methods for a small hexapod walking robot with position feed-
back only. The detection of the leg contact with the surface is
addressed as anomaly detection using predicted and measured
positions of the leg’s joints in the leg swing phase. A polynomial
regressor and three-layer neural network are evaluated regard-
ing the prediction error and computational requirements using
realistic datasets collected with the real hexapod walking robot.

I. INTRODUCTION

In rough terrain locomotion with multi-legged robots, the
crucial part of the locomotion control is a timely and reliable
sense of the leg contact with the terrain or obstacles. It is
specifically important for position-based leg control, where the
internal model of leg dynamics can be utilized to estimate the
foot-contact [1]. However, in adverse environments such as
cave systems, the robot leg dynamics can change for various
reasons, such as increased leg weight by mud deposits or
increased friction by sludge in the servomotors, and the leg
can be damaged. Therefore, the dynamics model needs to be
adjusted to such changes to support reliable contact sensing.

The model-based contact detection method uses an inverse
dynamics model to estimate contact force [2]–[6]. The model
accuracy relies on the identification of kinematic and dynamic
parameters of the robot; hence, their applicability might be
cumbersome [7] and become outdated as the robot properties
change over time. On the other hand, machine learning-based
approaches estimate input-output relation directly from the
training data, including phenomena omitted by the analytical
models. Moreover, the generalizing and online learnable sys-
tems can adapt to non-stationarities and changes in the system
caused by external factors such as the multi-legged walking
robot deployment in the underground environment as in Fig. 1.

We propose to develop a lightweight learning-based con-
tact detection method using only position feedback from the
servomotors. In [8], the general inverse leg dynamics black-
box models were benchmarked and deployed on a single
leg, which was initially shown as a promising approach.
However, the detector constructed upon the best-benchmarked
model did not yield reliable results supporting locomotion over
rough terrains [9]. Therefore, we hypothesize that limiting the

Fig. 1. Six-legged walking platform SCARAB deployed in an adverse
underground environment, where the robot struggles with mud changing the
weight of the legs.

regressor operation range to a specific context of the leg swing
phase increases the robustness and reliability of the detection.
The developed solution has been studied for the real hexapod
walking robot SCARAB (depicted in Fig. 1) actuated by 18
servomotors Dynamixel AX-12A with position feedback only.

The remainder of the report is organized as follows. The
addressed problem of foot contact prediction is formally stated
in Section II. The proposed context-based detection method is
described in Section III. Results of the experimental evaluation
and comparison with other existing approaches are reported in
Section IV. Concluding remarks are summarized in Section V.

II. PROBLEM

The multi-legged robot locomotion can be based on the
coordinated repetitive motion pattern called gait. Within each
gait cycle, legs follow the prescribed trajectory and alternate
between the stance phase supporting the body, and the swing
phase, where the legs move to new footholds. An inverse
dynamics model can be integrated into an adaptive force
threshold-based locomotion controller to detect the leg contact
with the surface using the position feedback only [1]. For
position feedback only, it is possible to detect deviations from
the collision-free dynamics model [10]. By comparing the
measured and predicted values, we can detect motion anoma-
lies. Then, the anomaly in the collision-free leg dynamics can
be interpreted as a foot contact detection that regulates the gait
phase of the leg.



In the case of the considered robotic platform SCARAB,
two data types are available to model the robot dynamics
at any given discrete time-step k and for each joint i. The
data are the measured joint positions θireal(k) and desired joint
positions θides(k) set by the locomotion controller, respectively.
The measured and desired joint positions are recorded for
N and N ′ past time steps, respectively. Furthermore, the M
future time steps of desired joint positions are available at each
time step. We formulate the foot-contact detection as a time-
series prediction of the i-th joint position θipred(k + 1) from
the current and historical data

θipred(k + 1) = f̃(k,θreal(k −N), . . . ,θreal(k),

θdes(k −N ′), . . . ,θdes(k), . . . ,θdes(k +M)),
(1)

where θreal(k) denotes the measured joint positions vector
of all joints coupled with the i-th joint; similarly we define
θdes(k). The function f̃ is then approximating θi dynamics
at the next time step k + 1 out of the N measured positions,
N ′+M past and future desired positions, and the current time
step k.

III. METHOD

In multi-legged locomotion, the robot legs are moved in
repetitive patterns defined by the utilized gait. Therefore, the
particular leg trajectory can be divided into gait segments
based on the trajectory shape. For the foot contact detection,
the most relevant segments are those in which we expect the
contact of the leg with the surface, which is further referred to
as contact (gait) segments. In this work, we consider a 3-DoF
leg and a triangular shape foot-tip trajectory shown in Fig. 2.

S
egm

en
t
1

sw
in
g,

con
tact con

tacts

Segment 2

stance

S
eg
m
en
t
3

sw
in
g

Fig. 2. The schematic depiction of a triangular-shaped leg trajectory with
three segments. The contact is expected to occur in trajectory Segment 1 when
the leg is descending. The leg supports the body in Segment 2, which length
can vary because the contact can occur anywhere along segment 1. The leg
ascends in Segment 3, closing the leg’s repetitive motion.

For the fixed prescribed shape of the contact segment
reference trajectories with the period p, the control signal
θides(k) = θides(k + n · p), n ∈ N0 is purely dependent on k.
Hence, the values of θdes bring no additional information
and can be omitted because of limited deployment context.
Besides, assuming stochastic system with a low variance and
the same initial conditions for each contact segment with the
period p, θreal(k+n·p), n ∈ N0 would be similar to each other
up to a random error ep caused by inaccuracies. The values of
θreal(k−N), . . . ,θreal(k) is assumed to contain low additional
information compared to the information contained in data of

the time step k. Therefore, the general form (1) is simplified
to

θipred(k + 1) = f i(k) +N (0, σ2), (2)

where f i is an unknown leg dynamics for the i-th servomotor
with a specific trajectory and specific initial conditions, k is the
current time step since the beginning of the contact segment
(Segment 1 in Fig. 2), and N (0, σ2) characterizes inherent
inaccuracies and noise that can be observed in Fig. 3. The
inaccuracies and noise are modeled as a normal distribution
with the variance σ2 that can be estimated empirically.
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Fig. 3. Example of a femur servomotor response, where the real measured
servomotor response θireal (yellow) to the reference signal θides (black) varies
because of inherent inaccuracies and noise that can be characterized by the
standard deviation σ. The data mean data value is depicted in blue.

Having the learned model (function f i), the foot contact
is based on the adaptive thresholding as in the approach [1],
where the interpolated trajectory consisting of θides(k) is ex-
ecuted step-wise, and at each step k, the real joint position
θireal(k) is measured. An example of collision-free trajectory
for the second joint (femur servomotor) is depicted in Fig. 3.
The leg is assumed to be in a collision with the surface if the
Root Mean Squared Error (RMSE) for the N i leg servomotors

RMSE(k) =

√√√√ 1

N i

Ni∑
i=1

(θireal(k)− θipred(k))
2 (3)

exceeds the leg-specific experimentally found safety margin ϵ,
compensating for the joint discretization, mechanical inaccu-
racies, and noise characterized by σ2 of the particular leg.

IV. RESULTS

The proposed method has been evaluated in realistic de-
ployments based on collected datasets with the real SCARAB
hexapod walking robot. The leg dynamics f i in (2) can be
learned by various models, and we consider two lightweight
learning approaches similarly to [8]. Both methods construct
a model for a single leg, take the time step k as a single input,
and produce three joint predictions θipred(k), one for each leg
joint. The first method is an ordinary least squares regression
with the n-th-order polynomial features denoted as Polynomial
regressor. The second method, denoted as ReLU regressor,
is a neural network with three fully-connected layers and h



neurons in the hidden layer. Among usual activation functions,
Leaky Rectified Linear Unit (ReLU) activation function

f(x) =

{
ax x < 0

x x ≥ 0
(4)

is used in all hidden layers to reduce overfitting and vanishing
gradients.

Both methods are compared with the baseline model based
on direct usage of the collected data, where for each time
step k, an average value of all the measured values is used
as the prediction for the particular k. Note that the average
value is the best estimate for minimizing the RMSE error. The
performance of the regressors has been studied for various
settings for which regressors’ hyperparameters have been
learned using the collected datasets.

A. Datasets

Each of the five collected datasets consists of 200 collision-
free gait cycles for the triangular-shaped leg trajectory with
the circumference d = 5 cm as depicted in Fig. 2. The
datasets have been collected for the robot sufficiently above
the terrain to ensure collision-free leg motion that would
otherwise cause contact with the terrain surface. Individual
trajectory segments have been executed with the interpolation
step size is = 0.5mm at the control rate fs = 100Hz and
111 samples are collected for each Segment 1, which is the
only contact segment, resulting in the total segment duration
ts = 1.11 s. After execution of each segment, the robot leg has
been stopped for an additional two seconds to ensure the same
initial conditions for each run and reflect the real leg movement
during the locomotion. If not stated otherwise, only the first
55 samples are used in the performance evaluation since the
servomotor internal steady-state error is reached and the joint
dynamics remain unchanged, see Fig. 3.

The datasets have been collected for the specific leg con-
ditions mimicking real-life modification and they are named
as no-modes, no-link (NL), no-link-weight (NLW), weight-
link (WL), and weight-servo (WS). The first no-modes dataset
represent a regular default configuration. The last link of the
leg has been removed for the no-link dataset, and additional
weight mm = 52 g has been added to the penultimate
servomotor for the dataset no-link-weight. The same additional
weight mm has been added to the last leg link for the weight-
link dataset. Finally, the same weight mm has been added to
the penultimate link for the weight-servo dataset. The collected
segments are split in 0.75 : 0.25 training-testing ratio if not
stated otherwise.

B. Influence of the Model Parameters

The polynomial regressor can be parameterized by the
degree p and the ReLU regressor by the size of the hidden
layer h. For both parameters, we consider grid search where
the training and evaluation using the cumulative RMSE have
been repeated ten times for each configuration of the regres-

2 4 6 8 1010 13 16 19
Polynom degree [-]

0.0

0.1

0.2

0.3

0.4

C
um

ul
at

iv
e 

R
M

SE
 [r

ad
]

Baseline Model
Polynomial Reg.

10 30 50 70 90
Neurons in h. layer [-]

0.02

0.04

0.06

Baseline Model
ReLU Regressors

Fig. 4. Influence of regressors’ parametrization: polynom degree p of the
Polynomial regressor and size of the hidden layer h of the ReLU regressor.

sors.1 The performance of the polynomial regressor is depicted
as a bar plot and ReLU as the five-number summary in Fig. 4.
Based on the presented results, we select p = 18 and h = 60
parametrization for the further evaluations.

C. Performance under Different Robot Setup

The generalizability of the learned predictors has been
examined for regressors trained using a non-modified leg that
has been utilized for the prediction in the datasets with the
modified robot setup. The mean cumulative RMSE is used
to measure accuracy over the results, where the RMSE is
computed for each servomotor individually. Finally, the mean
is computed, and the sum of mean values over all servomotor
is used to examine the performance. Similarly, the regressors
learned only for the particular dataset have been evaluated on
the other datasets using the same measure. The results in Fig. 5
suggest that regressors can cope with leg modifications.
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Fig. 5. Performance of regressors learned for the particular robot setup
evaluated on the prediction for all other robot setups (left) and generalization
of the learned regressor using the no-mods dataset (right).

1The evaluation using the R-squared measure provides identical qualitative
comparison results.



The results indicate regressors’ performance similar to the
baseline model for arbitrary leg dynamics, albeit the gener-
alization is limited and an error increase can be expected;
therefore, the effect of the training data size has been studied.

D. Influence of the Training Data Size

The prediction performance has been studied for the regres-
sors trained using the number of segments ranging from 1 to
100. For each size of the training set s, s unique segments
have been selected from the whole dataset and used to train
the regressors. The prediction error is computed as the mean
cumulative RMSE using 200 − s segments not used for the
training. The results are depicted in Fig. 6.
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Fig. 6. Influence of the training data size on the prediction error.

The results suggest that 15 samples are sufficient for the
ReLU regressor to learn the expected trajectory shape as the
other two methods. The mean cumulative RMSE is about four
times the error of those trained using 150 segments, and from
this point on, the performance increases slowly. The baseline
and polynomial regressors are not affected by the training size.

Based on the training times depicted in Fig. 7, the baseline
regressor is about ten times less demanding than the polyno-
mial regressor, which is still several orders of magnitude less
demanding than the ReLU regressor. The baseline regressor
has 330 parameters, the polynomial regressor 54 parameters,
and the ReLU regressor 303 parameters. Therefore, the poly-
nomial regressor with p = 18 seems to be a suitable choice
for practical deployments.

V. CONCLUSION

We evaluated lightweight learning methods to detect the
leg contact with a surface in locomotion control of a small
hexapod walking robot with only position feedback. The
polynomial and neural network regressors have been examined
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Fig. 7. Influence of the training data size to the training time.

using datasets collected by a real robot. The presented results
suggest that the proposed regressors are competitive. The
polynomial regressor is the most suitable predictor because
it performs similarly to the baseline but has fewer parameters.
It would thus scale better for different leg trajectories.
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