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Abstract. In this paper, we address the problem of efficient allocation
of the navigational goals in the multi-robot exploration of unknown envi-
ronment. Goal candidate locations are repeatedly determined during the
exploration. Then, the assignment of the candidates to the robots is solved
as the task-allocation problem. A more frequent decision-making may
improve performance of the exploration, but in a practical deployment of
the exploration strategies, the frequency depends on the computational
complexity of the task-allocation algorithm and available computational
resources. Therefore, we propose an evaluation framework to study explo-
ration strategies independently on the available computational resources
and we report a comparison of the selected task-allocation algorithms dep-
loyed in multi-robot exploration.
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1 Introduction

The robotic exploration of unknown environment can be formulated as a prob-
lem to create a map of the environment as quickly as possible, e.g., to find even-
tual victims during search and rescue missions, and the main objective function
considered in this paper is the time to create such a map. The fundamental app-
roach to address the exploration problem is based on an iterative determination
of possible goal candidates from which new information about the unknown part
of the environment can be acquired. These candidates are assigned to the partic-
ular exploring units to maximize their utilization regarding the mission objective.
This assignment problem can be formulated as the task-allocation problem [3].
After the assignment, each robot is navigated towards the assigned goal while its
sensor system is used to perceive its surroundings and update the map being built.
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This process is repeated until the whole map is created, which is indicated by an
empty set of the determined goal candidates.

During the exploration, new information about the environment being explo-
red can be exploited by a more frequent determination of the goal candidates and
their assignment to the robots that can improve the mission performance [4]. How-
ever, it may not necessarily be the case if robots oscillate between the assigned
goals and do not explore new areas, because the location of the newly assigned
goals are significantly different from the previous one. In such a case, a stable
behaviour can be achieved with a less frequent assignment, e.g., after a robot
reaches the previously assigned goal. Moreover, in robotics, the performance of
the exploration is usually considered in a practical deployment, which even more
emphasizes a less frequent decision-making because of limited on-board compu-
tational resources that are shared with other tasks like localization. Therefore, a
poor behaviour of the exploration strategy might not be observed, while it can be
an issue for more computationally powerful systems.

In this paper, we consider five task-allocation algorithms [1,2,6,8] dealing with
the multi-robot exploration and we compare their performance under different
mission execution constraints. The results indicate the frequency of the decision-
making can change conclusions about the performance of the algorithms. Thus a
consideration of the limiting cases of the frequency of the decision-making loop
allows to provide a more general results and to identify particular constraints for
a good expected performance of the algorithms in practical deployments.

Based on these findings, we propose to consider simulation to tackle robotic
problems and thus we aim to encourage researchers in the field of multi-agent
system and artificial intelligence to consider their task-allocation algorithms also
in the multi-robot exploration missions, which can be currently considered as a
problem that is more studied by the robotic community.

2 Multi-robot Exploration Framework

Three main decision-making parts can be identified in the exploration approaches
based on frontier cells determination [7]. The first is the method to determine
new goal candidates from the frontier cells in the actual map of the environment.
The second important decision-making process is the assignment of the goal
candidates to the robots together with the selection of the next navigational goal
for each robot. The third part is the condition when to perform new assignment
and how often the first two parts are repeated.

For simplicity, the multi-robot exploration is considered for a homogeneous
group of m mobile robots R = {r1, . . . , rm}, each equipped with an omnidirec-
tional sensor with the sensing range ρ. The control architecture for the explo-
ration is an iterative procedure where new sensor measurements are integrated
into the common map represented as the occupancy grid Occ. The procedure
can be implemented in a centralized or distributed way as follows:

1. Initialize the occupancy grid Occ and set the initial plans to P = (P1, . . . , Pm),
where Pi = {∅} for each robot 1 ≤ i ≤ m.
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2. Repeat
(a) Navigate robots towards their goals using the plans P, i.e., move each

robot to the next cell from the plan;
(b) Collect new measurements with the range ρ to the occupancy grid Occ;
Until replanning condition is meet.

3. Update a navigation map M from the current occupancy grid Occ.
4. Detect all frontiers F in the current map M.
5. Determine goal candidates G from the frontiers F .
6. If |G| > 0 assign goals to the robot

– (〈r1, gr1〉, . . . , 〈rm, grm〉) = assign(R,G,M), ri ∈ R, gri ∈ G;
– Plan paths to the assigned goals (as sequences of grid cells) P = plan

(〈r1, gr1〉, . . . , 〈rm, grm〉,M);
– Go to Step 2.

7. Stop all robots (all reachable parts of the environment are explored).

The navigation part (Step 2(a) and Step 2(b)) is repeated according to the
specified condition. Two basic variants of the condition can be distinguished:
(1) a robot reaches its goal; (2) a new assignment is performed whenever an
assigned goal will no longer be a frontier cell, e.g., a surrounding unknown area
becomes explored. In this paper, we call the first variant as the goal replanning
(GR) condition and the second variant the immediate replanning (IR) con-
dition. The second variant is more computationally demanding as surrounding
cells of the frontier can be explored once the robot moves towards the goal about
a distance equal to the size of the grid cell, e.g., 0.05 m; hence, new goals and
their assignment have to be determined as quickly as possible.

A frequency of the assignment influences the performance of the exploration,
but it depends on the computational complexity of the assignment procedure.
Therefore, we consider a discrete time simulator to provide an evaluation setup
that is independent on available computational power. An average velocity of
the robot is assumed and the robot motion is restricted to traverse a single
grid cell per one simulation step. Furthermore, we consider the robots have
omnidirectional wheels and can move in arbitrary direction in the grid.

3 Exploration Strategies

Five task-allocation algorithms have been used in this evaluation study of the
exploration strategies. All assignment procedures assign one or several goal can-
didates to each robot from which a single goal candidate is then assigned as the
navigational goal. Thus, each goal candidate can be assigned only to one robot.

Greedy Assignment (GA) – A modified greedy assignment is utilized rather
than the original approach proposed by Yamauchi in [8]. The closest not yet
assigned goal is assigned to each robot sequentially; however, the assignment is
performed for a random order of the robots to avoid preference of the first robots
like in the original Yamauchi’s approach.
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Iterative Assignment (IA) – is based on the Broadcast of Local Eligibility [6],
which is implemented in a centralized environment. The assignment is an iter-
ative procedure, where all robot–goal pairs 〈r, g〉 are ordered by the associated
distance cost. Then, the first not assigned goal from the sequence is assigned to
the particular robot without an assigned goal.

Hungarian Assignment (HA) – is an optimal task-allocation algorithm for
the given m×n cost matrix in which each cell value is a distance cost of particular
robot–goal assignment for m robots and n goal candidates. If m > n the IA
algorithm is used, while for m < n the cost matrix is enlarged and virtual robots
are added with a very high distance cost for the goals.

Multiple Traveling Salesman Assignment (MA) – is an extension of the
TSP distance cost approach [5] in which the next robot goal is selected as the
first goal on the route found as a solution of the Traveling Salesman Problem
(TSP). In MA, this distance cost is utilized in the multiple traveling salesman
problem (MTSP) that is addressed by the 〈cluster first, route second〉 heuris-
tic [2]. First, the goal candidates are clustered by the K-means algorithm to m
clusters. Then, each cluster is assigned to a particular robot and the next robot
goal is determined according to the TSP distance cost [5].

MinPos – is based on a computation of the rank ri,j for each goal i and robot
j [1]. The rank ri,j is the number of robots that are closer to the goal candidate i
than the robot j. Then, each robot selects the goal for which its rank is minimal.
If several goal candidates have the same minimal rank for the robot i, the closest
goal candidate to the robot is selected as the goal.

3.1 Proposed Goal Candidates Determination

The proposed goal candidates determination method is an extension of the
method [5] developed for a single robot exploration. The method is based on
selection of representatives of the frontiers cells from which all frontier cells can
be covered. However, we found out that for a group of robots, the original pro-
cedure [5] can provide less representatives than the number of robots, which
may decreases the mission performance. Therefore, we modified the procedure
to adaptively adjust the number of the determined goal candidates and call the
new procedure as the Adaptive Number of Representatives (ANR) method.

It is assumed the freespace cells in the map M of the environment always form
a single connected component and all frontier cells F are organized into a set of
o sets (called free edges) of the single connected components F = {F 1, . . . ,F o}
such that F =

⋃o
i=1 F i and F i ∩ F j = ∅ for i �= j, 1 ≤ i, j ≤ o. Then,

representatives are determined by the K-means clustering algorithm. nr clusters
are determined for each free edge F i and the mean of each cluster is one goal
candidate. In [5], authors determined nr as nr = 1 + 	|F i|/1.8ρg + 0.5
, where
ρg is the sensor range (in the number of grid cells). However, for many robots
in the team and small nr a goal candidate can be assigned to several robots or
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there will be a robot without the assigned goal. Therefore, we propose to adjust
particular nr of the largest free edges to have at least m goal candidates in total.

We experimentally verified improvement of this method over the original
method of the goal candidates determination [5] for all scenarios considered in
this paper. Due to limited space we consider ANR as the only goal candidates
determination method and do not present the supporting results here.

4 Results

The task-allocation algorithms have been studied in four environments: em, auto-
lab, jh, and potholes; with dimensions 21 m× 24 m, 30 m × 30 m, and 21 m × 24 m,
and 40 m × 40 m, respectively, that represent office-like and open space environ-
ments, see Fig. 1. The studied performance indicator is the required time to
explore the whole environment that is measured using the proposed discrete-
time simulator as the number of the simulation steps denoted as T . Notice that
for this criterion, it does not make sense if one robot stop its activity sooner
while other robots still need to visit remaining frontiers.

Fig. 1. Final exploration paths in the evaluated environments and for the number of
robots m = 3 and sensor range ρ = 3 m

The comparison of algorithms performance is made for a set of scenarios,
where each scenario consists of the environment with the defined starting posi-
tions of the robots, the number of robots m selected from the set m ∈ {3, 5, 7},
and the sensor range ρ from the set ρ ∈ {3m, 5m, 7m}. A small random pertur-
bation (in tenths of meters) is introduced to the initial positions of the robots
to consider sensitivity of the algorithms to the initial conditions. Therefore, 20
variants of each environment are considered, which gives 4 × 3 × 3 × 20 = 720
variants, and T is evaluated as the average value.

Two limiting replanning conditions GR and IR of the exploration procedure
are considered. For the GR condition new goal candidates are determined once
a robot reaches its goal, while IR is the fastest replanning possible as new
goal candidates are determined and assigned to the robots immediately once
an assigned goal is no longer frontier. Besides, based on the results in [2], we
consider replanning after 7 discrete steps, or sooner when a robot reaches its
goal, which is denoted as S7R.
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Table 1. Reference exploration times Tref

Map ρ = 3 m ρ = 5 m ρ = 7 m

m = 3 m = 5 m = 7 m = 3 m = 5 m = 7 m = 3 m = 5 m = 7

autolab 1204 854 827 837 719 654 686 624 601

em 726 527 475 456 405 410 366 343 356

jh 864 660 613 857 654 588 782 624 588

potholes 2578 1679 1205 1678 1058 916 1301 928 829

The evaluation framework is deterministic and also IA, HA, and MinPos algo-
rithms are deterministic procedures and thus only a single trial of each algorithm
for a particular scenario is performed. On the other hand, GA and MA strate-
gies are stochastic, and therefore, 20 trials are performed for these strategies and
each scenario. Thus, the total number of performed trials is 92 880.

Evaluation Methodology – The performance of each exploration strategy may
differs in a particular scenario, which requires an individual comparison for the
particular combination of the map, m, ρ, and replanning condition. This leads
to an excessive number of comparisons without a straightforward generaliza-
tion of the results. A summary of the overall performance indicator cannot be
simply computed as an average value of the required exploration time, because
its absolute value depends on the size of the environment and sensor range ρ.
Therefore, a reference value for each particular scenario is required to compute a
global competitive ratio of the strategy. A reference can be an optimal solution of
the exploration; however, it cannot be easily found because it is a computation-
ally intractable problem due to a huge search space. That is why we propose to
determine the reference value as the best found solution from the large set of
the results we computed. The found references are depicted in Table 1.

Influence of the Replanning Condition – Two scenarios are selected to show
the influence of the replanning conditions and particular five-point summaries
are depicted in Fig. 2. The MA strategy is considered with GR and IR conditions
(see Sect. 2) denoted as MA–GR and MA–IR, respectively. These results clearly
show that with the IR condition, the performance of all exploration strategies
(including the greedy assignment) is better than the MA strategy with a lower
replanning frequency under the GR condition. Therefore, a deployment of the
exploration strategy on different computational platforms may results to differ-
ent conclusions about the algorithms’ performance.

Overall Comparison of the Exploration Strategies – is computed as the
average value of the competitive ratio between the required exploration time T
and the reference time, see Table 1. Selected aggregated results over all environ-
ments are presented in Figs. 3, 4, and 5 for particular sensor range ρ.
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Fig. 2. Required exploration time to explore the autolab and potholes environments
with m robots, sensor range ρ = 3 m and IR or GR replanning condition

Fig. 3. Overall summary of the exploration strategies performance for GR condition

Fig. 4. Overall summary of the exploration strategies performance for ρ = 5 m
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Fig. 5. Overall summary of the exploration strategies performance for ρ = 7 m

4.1 Discussion

The results indicate the GR condition provides longer exploration times than
the IR condition. The difference between IR and S7R is not significant and
thus one can expect similar performance while computational requirements are
significantly lower for S7R. The main benefit of the immediate replanning is
in a lower standard deviation, which is a premise of a more reliable estimation
of the average performance. This is especially noticeable for the MA strategy,
which seems to provide the fastest exploration for the IR condition.

The overall results also indicate that considering a longer planning hori-
zon in the MA strategy based on a solution of the multiple traveling salesman
problem provides the lowest expected exploration time regardless the replanning
frequency, i.e., in comparison to other strategies with the same replanning fre-
quency. The MinPos strategy is sensitive to the replanning frequency; however
for the S7R condition, it provides better or competitive performance to the IA
and HA strategies. The main advantage of the MinPos strategy is the ability
to be implemented in a distributed environment, which is not straightforward
for implementation of the goal candidates clustering in MA. MinPos is also less
computationally demanding, which can be an additional benefit.

A relative comparison of the IA and HA strategies can be concluded that both
approaches provide competitive overall performance. Here, we can also highlight
an ability to implement decision-making procedure in a distributed environment
that is straightforward for IA using only local information, while HA may need
complete information about the robots positions and all goal candidates.

5 Conclusion

A comparison of five task-allocation algorithms employed in multi-robot explo-
ration of unknown environment is presented in this paper. The algorithms are
accompanied with a new improved goal candidates determination called adaptive
number of representatives (ANR). The used evaluation methodology is based on
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a reference solution of the particular exploration scenario that allows to aggre-
gate results among different scenarios and evaluate the performance indicators
statistically. Moreover, we propose to evaluate the exploration strategies using
precisely defined computational environment that does not depend on the avail-
able computational resources, and which allows to obtain statistically significant
results using thousands of trials.

The presented results indicate the performance of the exploration strategy
depends on the frequency of replanning, and therefore, an evaluation methodol-
ogy that is not dependent on a particular setup of the evaluation environment
may provide a more general results and conclusions. In particular, we consider
a limit case with the immediate replanning condition to validate scalability of
the decision-making procedure with a more powerful computational resources.
Although this may not be achieved in a practical deployment, such an evaluation
allows to identify if the exploration strategy is “stable” in the taken decisions
with increasing replanning frequency or if it needs a specific limit to exhibit the
taken decision before another decision will be made.

Our future work can be divided into two research streams. The first stream
aims to deliver a methodology for benchmarking exploration algorithms that will
allow to compare different approaches in a unified and easily replicable setup,
which will not only compare algorithm performance using particular hardware
setup but will also provide a more general conclusion about the expected per-
formance. The proposed evaluation framework, task-allocation algorithms, and
the limiting replanning conditions are the initial building blocks for such bench-
marking. The second research stream aims to consider the exploration problem
in a distributed setup with a limited communication. Here, we aim to employ the
proposed evaluation methodology and extend it for distributed task-allocation
algorithms and their evaluation using the proposed simulator and practical ver-
ification using real mobile robots.
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