
Iterative Prototype Optimisation with Evolved
Improvement Steps

Jiri Kubalik and Jan Faigl

Department of Cybernetics, CTU Prague,
Technicka 2, 166 27 Prague 6, Czech Republic

{kubalik, xfaigl}@labe.felk.cvut.cz

Abstract. Evolutionary algorithms have already been more or less suc-
cessfully applied to a wide range of optimisation problems. Typically,
they are used to evolve a population of complete candidate solutions to
a given problem, which can be further refined by some problem-specific
heuristic algorithm. In this paper, we introduce a new framework called
Iterative Prototype Optimisation with Evolved Improvement Steps. This
is a general optimisation framework, where an initial prototype solution
is being improved iteration by iteration. In each iteration, a sequence of
actions/operations, which improves the current prototype the most, is
found by an evolutionary algorithm. The proposed algorithm has been
tested on problems from two different optimisation problem domains -
binary string optimisation and the traveling salesman problem. Results
show that the concept can be used to solve hard problems of big size
reliably achieving comparably good or better results than classical evo-
lutionary algorithms and other selected methods.

1 Introduction

In the evolutionary optimisation framework, the evolutionary algorithms (EAs)
are typically used to evolve a population of candidate solutions to a given prob-
lem. Each of the candidate solutions encodes a complete solution - a complete
set of problem control parameters, a complete schedule in the case of scheduling
problems, a complete tour for the traveling salesman problem, etc. This implies,
that especially for large instances of the solved problem the EA searches enor-
mous space of potential solutions. In this paper, a new approach is presented,
where the EA does not handle the solved problem as a whole. Instead, the EA
is employed within the iterative optimisation framework to evolve the best mod-
ification of the current solution prototype in each iteration. Thus, the load of
searching for the best complete solution at once is cut into pieces, each of them
representing a process of seeking the best transformation of the current solution
prototype to the new possibly better one.

The structure of the paper is as follows. In section 2, the general outline of
the algorithm of Iterative Prototype Optimisation with Evolved IMprovement
Steps (POEMS) is described. Section 3 describes the problems and the experi-
mental set-up used for the proof-of-concept validation of POEMS. In section 4,
POEMS is compared with other evolutionary approaches and other selected

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 154–165, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Iterative Prototype Optimisation with Evolved Improvement Steps 155

methods. The paper ends with conclusions on effectiveness of POEMS, its ad-
vantages and disadvantages, and its further extensions.

2 POEMS

The main idea behind POEMS (Figure 1) is that some initial prototype solution
is further improved in an iterative process, where the most suitable modification
of the current prototype is sought for using an evolutionary algorithm (EA) in
each iteration. The modifications are represented as a sequence of primitive ac-
tions/operations, defined specifically for the solved problem. Such a sequence can
be considered a program and the employed EA a special case of a linear genetic
programming. The evaluation of action sequences is based on how good/bad
they modify the current prototype, which is an input parameter of EA. Se-
quences that do not change the prototype at all are penalized in order to avoid
generating trivial solutions. After the EA finishes, it is checked whether the best
evolved sequence improves the current prototype or not. If an improvement is
found, then the sequence is applied to current prototype and the result becomes
a new prototype. Otherwise the current prototype remains unchanged for the
next iteration.

Representation. The EA evolves linear chromosomes of length MaxGenes,
where each gene represents an instance of certain action chosen from a set of
elementary actions defined for given problem. Each action is represented by a
record, with an attribute action type followed by parameters of the action. Be-
sides actions that truly modify the prototype there is also a special type of action
called nop (no operation). Any action with action type = nop is interpreted as a
void action with no effect on the prototype, regardless of the values of its param-
eters. A chromosome can contain one or more instances of the nop operation.
This way a variable effective length of chromosomes is implemented.

Operators. The crossover operator generates a child chromosome so that each
gene of the new chromosome is a copy of randomly chosen gene either from the
first or the second parent. Both parents have the same probability of contribut-
ing its genes to the generated child, and each gene can be used only once. This
can be considered a generalized uniform crossover, where any combination of
parental genes can form a valid offspring. After the new chromosome has been

1 generate(Prototype)
2 repeat

3 BestSequence ← run EA(Prototype)
4 if(apply to(BestSequence, Prototype) is better than Prototype)
5 then Prototype ← apply to(BestSequence, Prototype)
6 until(POEMS termination condition)

7 return Prototype

Fig. 1. An outline of POEMS algorithm

156 J. Kubalik and J. Faigl

1 initialize(OldPop)
2 BestSequence ← best of(OldPop)
3 repeat

4 NewPop ← BestSequence
5 repeat

6 Parents ← select(OldPop)
7 Children ← cross over(Parents)
8 mutate(Children)
9 evaluate(Children)
10 NewPop ← Children
11 until(NewPop is completed)

12 BestSequence = best of(NewPop)
13 switch(OldPop, NewPop)
14 until(EA termination condition)

15 return BestSequence

Fig. 2. An outline of a simple generational evolutionary algorithm

finished, it is checked for gene duplicates and left with just one copy of each non
nop action. Each duplicate of some non nop action is converted into nop action,
simply by setting action type = nop. This means that the population genotype
can contain many ”inactive” action specifications. These can be activated again
by changing their action type from nop to some effective action. Action can be
activated/inactivated by mutation operator, which can also change the param-
eters of the action.

Evolutionary model. The design and configuration of the EA can differ for
each particular optimisation problem. Figure 2 shows a simple generational evo-
lutionary algorithm (gEA) with tournament selection, and elitism preserving the
best individual in the population. Figure 3 shows a mutation-based iterational
EA (iEA) that iteratively modifies a population of individuals. In each itera-
tion a chromosome is selected by tournament selection. Then the chromosome is
mutated so that one action out of its active actions (i.e. genes with action type
other than nop) is selected and inactivated (action type set to nop). If the fitness
of the chromosome did not worsen after this change the modified chromosome
is accepted and replaces other bad performing chromosome in the population.

In general, the EA is expected to be executed many times during the whole
run of the POEMS. Thus, it must be configured to converge fast in order to
get the output in short time. As the EA is evolving sequences of actions to
improve the solution prototype, not the complete solution, the maximal length
of chromosomes MaxGenes can be short compared with the size of the problem.
For example MaxGenes would be much smaller than the size of the chromosome
in case of binary string optimisation or much smaller than the number of cities in
case of the TSP problem. The relaxed requirement on the expected EA output
and the small size of evolved chromosomes enables to setup the EA so that
it converges within a few generations. It is important to note, that POEMS
does not perform prototype optimisation via improvement steps that are purely

Iterative Prototype Optimisation with Evolved Improvement Steps 157

1 initialize(Population)
2 repeat

3 Parents ← select(Population)
4 Children ← cross over(Parents)
5 mutate(Children)
6 evaluate(Children)
7 Replacement = find replacement(Population)

8 Population[Replacement] ← Child1
9 Replacement = find replacement(Population)

10 Population[Replacement] ← Child2
11 until(EA termination condition)

12 BestSequence ← best of(Population)
13 return BestSequence

Fig. 3. An outline of a mutation-based iterational evolutionary algorithm

local with respect to the current prototype. In fact, long phenotypical as well as
genotypical distances between the prototype and its modification can be observed
if the system possesses a sufficient explorative ability. The space of possible
modifications of the current prototype is determined by the set of elementary
actions and the maximum allowed length of evolved action sequences MaxGenes
(as demonstrated in section 6). The less explorative actions are and the shorter
sequences are allowed the more the system searches in a prototype neighborhood
only and the more it is prone to get stuck in a local optimum, and vice versa.

3 Test Problems

The first set of test problems belongs to a binary string optimisation problem do-
main. It includes simple onemax, royal road, deceptive, hierarchical, multimodal
and non-linear function optimisation problems.

OneMax. This is a simple problem, where the chromosome is assigned a value
equal to the number of ones it contains. Thus the optimal sought string is of
fitness equal to the size of the chromosome (that is 100, here). Note that this
function is considered to be easy for GAs.

DF3. This is a representative of deceptive problems, i.e. problems that are in-
tentionally designed to make a GA converge towards local deceptive optimum.
The problem is composed of 25 copies of a 4-bit fully deceptive function DF3
taken from [8]. DF3 has a global optimum in the string 1111 with fitness 30 and
a deceptive attractor 0000 with low fitness 10, which is surrounded, in the search
space, by four strings of just one 1 with fitness values 28, 27, 26, and 25. The
whole 100-bit long chromosome has the global optimum of value 750.

Rosenbrock. This problem uses as the basic building block the well-known Rosen-
brock function of two parameters x and y, each of them coded on 12 bits. The
function has high degree of dependency between variables, which makes it hard

158 J. Kubalik and J. Faigl

to optimize using standard genetic algorithms. The sought minimum value of
the function is 0.0 at the point [1.0, 1.0]. The problem consists of 4 copies of
the function whose contributions are summed up in the final fitness value. Any
solution of fitness less than or equal to 0.001 is considered to be an optimum.

F103. This test problem is based on function F103(x, y) taken from [9]. It is a
non-linear non-separable and highly multimodal function of two variables, where
the parameters x and y are each coded on 10 bits. The global minimum is of value
0.0. Our problem consists of 5 copies of the function, where the fitness of the
whole chromosome is given as the sum of the five function contributions. Again,
any solution of fitness less than or equal to 0.001 is considered an optimum.

RR. This is a 16-bit version of the RR1 single-level royal road problem described
in [2]. The problem is defined by enumerating the schemata, where each schema
si has assigned its contribution coefficient ci. The evaluation of an arbitrary chro-
mosome is given as a sum of all contributions of those schemata that are covered
by the chromosome. Only the combination of all ones on the bits pertinent to a
given schema contributes to the fitness with the nonzero value, any other combi-
nation has value 0. Here, the problem is defined as a concatenation of six 16-bit
long schemata, so the optimum solution is the string of all ones of the fitness 96.

H-IFF. A hierarchical-if-and-only-if function proposed in [6] is the representative
of hierarchically decomposable problems. The hierarchical block structure of the
function is a balanced binary tree. Leaf nodes, corresponding to single genes,
contribute to the fitness by 1. Each inner node is interpreted as 1 if and only if
its children are both 1’s, and as 0 iff they are both 0’s - in such cases the inner
node contributes to the fitness by a positive value 2height(x), where height(x)
is the distance from the node x to its antecedent leaves. Otherwise the node is
interpreted as null and its contribution is 0. The function has two global optima
- one consists of all 1’s and the other one has all 0’s. We have used the 128-bit
version with global optima of value 1024.

TSP. The second set of test problems are instances of the well-known Traveling
Salesman Problem. We have used datasets for 100, 200, 500, 1000, and 2000
cities, where the cities were generated randomly in the area of size 100 by 100.

4 Optimisation Techniques Used for Comparisons

On the binary string optimisation problems, we have compared the proposed
POEMS algorithm with the following approaches :

– Simple Genetic Algorithm (SGA). This is a generational genetic algorithm,
with tournament selection, 2-point crossover, a simple bit-swapping mutation
operator, and an elitism, which preserves the best individual in the popu-
lation. Population size 500 was used. The probability of crossover was 0.9.
The mutation rate was set so that one bit of each chromosome is inverted.

– Genetic Algorithm with Gene Based Adaptive Mutation Strategy (GBAM).
Uyar et al. [5] proposed this adaptive approach for adjusting mutation rates

Iterative Prototype Optimisation with Evolved Improvement Steps 159

for the gene locations based on the feedback obtained by observing the rel-
ative success or failure of the individuals in the population. There are two
mutation rates for each locus - one for allele 1 and the other for allele 0. For
each generation the mutation rates are updated for each locus so that the
mutation rate for the better-performing allele decreases, and vice versa. This
certainly speeds up the convergence so the strategy is implemented with a
convergence control mechanism for escaping local optima.

– A Genetic Algorithm with Limited Convergence (GALCO). Kubalik et al. [4]
proposed this approach for preserving population diversity. It is based on an
idea that the population is explicitly prevented from becoming homogenous
by simply imposing limits on its convergence. This is done by specifying the
maximum difference between frequency of ones and zeros at any position
of the chromosome calculated over the whole population. A steady-state
evolutionary model and a special replacement operator are used to keep the
desired distribution of ones and zeros during the whole run.

Note that all of these techniques are more or less modifications of the stan-
dard genetic algorithm. As such they rely on the proper spacial structure of the
chromosome. In other words, they work well if the groups of dependent genes
are spatially clustered within the chromosome. This is called a tight linkage. In
the opposite case, when the linkage is loose (i.e. the dependent genes are far
from each other), the genetic algorithm can not combine building blocks of two
parental chromosomes properly, see [3]. In order to show the effect of the linkage
on the performance of the algorithms, two series of experiments were carried
out - one for the tight linkage, and the other for the loose linkage (this was
implemented so that the sequence of genes within the chromosome was chosen
by random for each experiment). Obviously, the evolutionary algorithm used in
POEMS is linkage independent, so it was tested on the loose linkage only.

The following approaches have been compared with POEMS on the TSP:

– Genetic Algorithm with E-R crossover (ER). This is a steady-state genetic
algorithm, with the edge-recombination crossover proposed by Whitley et al.
[7]. Mutation operator exchanges positions of two randomly selected cities
within a given path. First, two parental chromosomes are selected by tourna-
ment selection, and crossed over to generate its offspring. The new chromo-
some undergoes the mutation and is evaluated. Finally, the newly generated
chromosome replaces a chosen poorly performing chromosome in the popu-
lation if the new chromosome outperforms the replacement one.

– Self Organising Maps (SOM). The salesman’s city tour is represented by a
ring of neurons, where the neighboring neurons are connected. The general
schema of SOM algorithm consists of two procedures: (1) a selection of win-
ner neuron, where the closest neuron for each city is selected and (2) an
adaptation of the winner neuron, where the neuron along with its several
neighbors are moved towards the closest city. These two procedures are re-
peated until a stopping condition is satisfied. The algorithm implemented in
this work is based on [1].

160 J. Kubalik and J. Faigl

– 2-opt heuristic (2-opt). This algorithm is based on simple local search heuris-
tic called 2-opt, that was proposed by Flood and Croes in fifties. The algo-
rithm starts with some feasible (random) solution. Than it searches for two
edges e1 = (v1, v3), e2 = (v2, v4) such that a recombination of the edges
to e1 = (v1, v2), e2 = (v3, v4) improves the current solution. The algorithm
stops if no two edges for improvement recombination are found.

5 Experimental Setup

For the binary string optimisation problems the action sequences evolved in
POEMS were composed of just one type of action called invert(gene). The
action simply inverts specified gene within the prototype.

For the TSP problem a direct path representation of the tour was used. The
prototype tour in POEMS was modified by action sequences composed of actions
of the following types

– move(city1, city2) moves city1 right after city2 in the tour,
– invert(city1, city2) inverts a subtour between city1 and city2,
– swap(city1, city2) swaps city1 and city2.

Both versions, POEMS with gEA and POEMS with iEA were tested on the
binary string optimisation problems. Both of them used the same parameter
setup as follows: chromosome length 10 (the maximal number of active actions
in the action sequence, see Section 2), population size 200, number of fitness func-
tion evaluations 3000, tournament selection with N = 3, crossover and mutation
operators as described in Section 2 with Pc = 0.8 and Pm = 0.1, respectively.

The other algorithms were used with the following common setting: popula-
tion size 500, 2-point crossover with Pc = 0.8, tournament selection with N = 3.
SGA used a mutation operator with the probability Pm = 0.01, GALCO does
not use any explicit mutation operator, and GBAM was used with the mutation
rate interval (0.0001 − 0.2), the initial mutation rate 0.025, and the mutation
adaptation step 0.001. All algorithms were running for 106 fitness evaluations.

The following configurations of POEMs and ER algorithms were used in ex-
periments on TSP problem. The population size was set to the number of cities
(Cities) and 2·Cities for POEMS and ER, respectively. EA used in POEMS (line
3 in Figure 1) worked with chromosomes of length 10 and lasted for 1000·PopSize
fitness evaluations.

Two strategies for generating of the starting prototype were used - the ran-
dom initialisation and the heuristic one. When generating a tour, a decision of
what city should be visited from the current city is made by random in the
random strategy whilst the heuristic strategy prefers the next city to be from
the neighborhood of the current city. Similarly, the concept of the neighborhood
was used with the ER crossover so that the operator prefers links to cities from
the current city’s neighborhood.

Both POEMs and ER were running for Cities · 1000 fitness function evalua-
tions. The tournament selection parameter and the neighborhood size were set

Iterative Prototype Optimisation with Evolved Improvement Steps 161

Table 1. Configurations of POEMs and ER used for TSP problem

PopSize Tournament Cities Neighborhood

100 3 100 20
200 4 200 15
500 5 500 10

1000 6 1000 7
2000 7 2000 5
4000 8

depending on the population size and the number of cities as shown in Table 1.
The crossover operator was applied on the parents with the probability 0.9. If
the parents did not undergo crossover they were mutated so that positions of two
randomly chosen cities were swapped. The following statistics were calculated
based on 50 runs of each experiment

– Mean. Mean best-of-run value calculated over the 50 independent runs.
– StDev. Standard deviation of the best-of-run values.
– #Succ. A number of runs, in which the optimum solution was found.
– When. The average number of fitness evaluations needed to get the optimum.
– BestPath. The shortest path out of 50 runs for each TSP experiment.

6 Results

Table 2 shows results obtained with POEMS-gEA and POEMS-iEA on binary
string optimisation problems. It shows that POEMS-iEA is better than POEMS-
gEA on OneMax, DF3, Rosenbrock, and F103 problem. POEMS-iEA achieves
either better mean quality of the best-of-run solutions or finds the optimal so-
lutions more often or is faster in converging to the optimal solution on those
problems. This may be attributed to the fact that the iEA is designed to con-
verge very fast so it might be able to come up with better action sequence than
gEA in each iteration. On the other hand, the performance of both variants of
POEMS is very poor for the RR and H-IFF problems. For the royal road prob-
lem this might be surprising as those problems are considered easy for genetic
algorithms. The explanation of why POEMS does not work for these problems

Table 2. Performance of POEMS on binary string optimisation problems

POEMS-gEA POEMS-iEA
problem Mean StDev #Succ When Mean StDev #Succ When

OneMax 100.0 0.0 50 20732 100.0 0.0 50 12168
DF3 749.1 3.7 47 617034 750 0.0 50 307820
Rosenbrock 0.36 0.52 7 656342 0.029 0.14 17 516988
F103 0.0127 0.0093 0 - 0.0063 0.0061 1 769400
RR 5.1 7.5 0 - 6.7 9.7 0 -
H-IFF 568.8 58.8 0 - 580.8 15.2 0 -

162 J. Kubalik and J. Faigl

is that it lacks the ability to combine several solution into a new one as the stan-
dard genetic algorithms do. POEMS seeks the optimal solution via a process of
iteratively modifying (mutating) the prototype solution. Thus, the algorithm can
get stuck with such a prototype, for which it is very hard (or even impossible)
to evolve any improving action sequence. In case of RR problem, for POEMS is
very hard to find a sequence of single bit inversions such that it would discover
a new 16-bit long building block of all ones without simultaneously damaging
any of already existing blocks in the prototype. Similarly this applies for H-IFF
problem, where POEMS optimizes the prototype up to some level, where any
further improvement would require to invert a large block of genes.

When comparing POEMS with the other algorithms (see Table 3) on the
binary string optimisation problems we can observe that if the chromosome

Table 3. Performance of SGA, GBAM and GALCO on binary string optimisation
problems

tight linkage loose linkage
problem Mean StDev #Succ When Mean StDev #Succ When

SG
A

OneMax 100.0 0.0 50 13448 100.0 0.0 50 13564
DF3 750 0.0 50 595359 707.1 6.8 0 -
Rosenbrock 0.063 0.084 4 724888 0.502 0.591 0 -
F103 0.005 0.0035 2 680329 0.0197 0.0156 0 -
RR 91.5 7.3 36 654756 88.8 9.7 35 706064
H-IFF 710.4 87.8 1 295261 617.6 34.7 0 -

G
B

A
M

OneMax 100.0 0.0 50 10935 100.0 0.0 50 10847
DF3 750.0 0.0 50 558097 728.3 6.9 0 -
Rosenbrock 1.22 0.46 0 - 2.11 0.8 0 -
F103 0.32 0.11 0 - 0.47 0.17 0 -
RR 96.0 0.0 50 43984 96.0 0.0 50 68378
H-IFF 790.8 57.4 0 - 625.6 38.1 0 -

G
A

L
C

O

OneMax 100.0 0.0 50 141190 100.0 0.0 50 142170
DF3 750.0 0.0 50 108685 714.6 5.2 0 -
Rosenbrock 0.0103 0.0137 1 936201 0.36 0.26 0 -
F103 0.0008 0.0004 38 642325 0.025 0.013 0 -
RR 94.7 4.4 23 453373 43.5 8.6 0 -
H-IFF 1024.0 0.0 50 22620 574.4 46.9 0 -

Table 4. Performance of POEMS-gEA on TSP problem

random heuristic
cities Mean StDev BestPath Mean StDev BestPath

100 831.9 15.7 803.8 818.6 14.5 786.1
200 1190.1 25.6 1156.3 1132.9 16.2 1098.1
500 2025.9 40.3 1975.6 1746.3 13.5 1718.0

1000 9970.0 290.0 9475.9 2523.0 15.0 2491.6
2000 34829.0 503.9 34281.5 3692.2 20.4 3655.1

Iterative Prototype Optimisation with Evolved Improvement Steps 163

representation with tight linkage is used the GALCO algorithm slightly out-
performs POEMS on DF3 and F103 problems. However, the situation changes
when solving problems with loose linkage. Then the POEMS performs con-
siderably better than the other algorithms on DF3, Rosenbrock and F103
problems.

Tables 4 and 5 provide a comparison of the POEMS with ER, ER-heuristic,
SOM, and 2-opt. We can observe that POEMS with random initialisation of the
prototype works poorly on large TSP datasets. This is because starting from a
very bad tour it would require many more iterations to find a good solution than
allowed here. On the other hand, when the heuristic is used for generation of the
initial prototype the POEMS outperform all the other approaches even on the
large datasets of 2000 cities.

Table 5. Performance of ER, ER-heuristic, SOM, and 2-opt on TSP problem

ER ER-heuristic
cities Mean StDev BestPath Mean StDev BestPath

100 1192.9 54.7 1115.6 935.1 27.1 884.1
200 2096.3 74.6 1973.6 1406.1 54.6 1289.1
500 4562.4 155.5 4424.0 2753.3 66.4 2666.6

1000 8256.5 223.9 7964.1 3799.6 91.4 3678.8
2000 16956.1 480.7 16402.4 5983.5 95.1 5875.8

SOM 2-opt
cities Mean StDev BestPath Mean StDev BestPath

100 830.4 13.0 811.7 853.5 18.2 797.3
200 1155.4 12.4 1124.7 1196.1 24.1 1149.2
500 1776.0 14.0 1751.2 1866.8 123.1 1772.9

1000 2533.0 12.0 2508.4 2650.1 160.0 2572.1
2000 3725.3 14.9 3695.6 3908.1 122.8 3789.2

Table 6. Performance of POEMS-gEA using just one type of the elementary function

action type Mean StDev BestPath

invert 2554.7 13.3 2526.2
move 2689.1 20.1 2653.6
swap 2824.8 31.5 2775.1

Results in Table 6 demonstrate how the selection of elementary functions af-
fects the performance of the POEMS approach. The results were obtained for
TSP problem with 1000 cities. It shows that if just one function out of the
three functions invert, move, and swap is enabled the POEMS performs worse
than if all the functions are allowed to be combined in the action sequences.
A fragment of an execution of POEMS on TSP with 100 cities is shown in
Figure 4.

164 J. Kubalik and J. Faigl

0 25 50 75 100
0

25

50

75

100

58

64

24

40

0 25 50 75 100
0

25

50

75

100

79

73

24

18

35

80

40

0 25 50 75 100
0

25

50

75

100

97

82

83

58
64

a) initial tour b) after iteration 1 c) after iteration 2

0 25 50 75 100
0

25

50

75

100
48

47

69

72

35

7
3

0 25 50 75 100
0

25

50

75

100

0 25 50 75 100
0

25

50

75

100

d) after iteration 3 e) after iteration 4 f) final tour

iteration prototype fitness evolved action sequence final fitness
1 965.134 (move 58 64), (invert 24 40) 952.550
2 952.550 (move 79 73), (invert 24 18),

(invert 24 35), (move 79 80),
(invert 24 40) 927.025

3 927.025 (invert 97 82), (invert 83 82),
(move 58 64) 919.573

4 919.573 (invert 48 47), (invert 69 72),
(invert 35 47), (swap 7 3) 904.033

Fig. 4. A fragment of an execution of POEMS on TSP with 100 cities. a) an initial tour
prototype of length 965.134. b) the tour obtained after applying the action sequence
evolved in iteration 1 on the current prototype. c) the tour obtained after iteration 2.
d) the tour obtained after iteration 3. e) the tour obtained after iteration 4. f) the final
tour of length 824.874.

7 Conclusions

In this paper, an algorithm called Iterative Prototype Optimisation with Evolved
Improvement Steps (POEMS) is proposed. POEMS iteratively improves the pro-
totype solution via evolving the best sequence of actions to be applied to the
current prototype in each iteration.

The POEMS concept has been tested on the binary string optimisation prob-
lems and the traveling salesman problem and compared with other optimisa-
tion algorithms. The presented experiments show that the proposed approach

Iterative Prototype Optimisation with Evolved Improvement Steps 165

achieves competitive or better results than the compared algorithms. However, as
a mutation-based optimisation approach it possesses a limited ability to identify
and process building blocks of higher order.

On the other hand, this approach might be well suited for solving problems
where the representation does not allow to design crossover operators that would
effectively mix important building blocks of the parental solutions. In other
words, these are the problems where the crossover performs just as a hyper-
mutation.

Future research will focus on the analysis of the proposed algorithm behavior
as well as on the identification of problems the algorithm is well suited for.

Acknowledgments. The research has been supported by the research program
No. MSM6840770012 ”Transdisciplinary Research in the Area of Biomedical
Engineering II” of the CTU in Prague, sponsored by the Ministry of Education,
Youth and Sports of the Czech Republic. Authors would like to thank Petr Poš́ık
(CTU Prague) for many valuable comments improving the paper.

References

1. Faigl, J., Kulich, M., Přeučil, L.: Multiple traveling salesmen problem with hierarchy
of cities in inspection task with limited visibility. In proceedings of the 5th Workshop
on Self-Organizing Maps. Universit Paris-Sud, (2005) 91–98

2. Forrest, S. and Mitchell, M.: Relative building-block fitness and the Building Block
Hypothesis. In Whitley, L. D. (Ed.), Foundations of Genetic Algorithms 2. San
Mateo, CA: Morgan Kaufmann, (1993) 109–126

3. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Genetic Algorithms and Evolutionary Computation, Volume 7. Kluwer
Academic Pub; ISBN: 1402070985, (2002)

4. Kubaĺık, J., Rothkrantz, L.J.M., Lažanský, J.: Genetic Algorithms with Limited
Convergence. In Grana, M.; Duro, R.J.; Anjou, A.d.; Wang, P.P. (Eds.), Information
Processing with Evolutionary Algorithms: From Industrial Applications to Academic
Speculations, ISBN: 1-85233-866-0, (2005) 233–254

5. Uyar, A.S., Sariel, S., Eryigit, G.: ”A Gene Based Adaptive Mutation Strategy
for Genetic Algorithms”, GECCO 2004: Genetic and Evolutionary Computation
Conference, (2004) 271–281

6. Watson, R.A., Hornby, G.S. and Pollack, J.B.: Modeling Building-Block Interdepen-
dency. In Fifth International Conference PPSN V. Springer, (1998) 97–106

7. Whitley, D., Starkweather, T., D’Ann Fuquay: Scheduling Problems and Traveling
Salesmen: The Genetic Edge Recombination Operator. ICGA 1989. (1989) 133–140

8. Whitley, D.: Fundamental Principles of Deception in Genetic Search. In: Founda-
tions of Genetic Algorithms. G. Rawlins (ed.), Morgan Kaufmann, (1991) 221–241

9. Whitley, D., Mathias, K., Rana, S., Dzubera, J.: Evaluating Evolutionary Algo-
rithms. Artificial Intelligence, Volume 85, (1996) 245–2761

