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ABSTRACT4

In this paper, we address generalized autonomous mobile robot exploration of unknown5
environments where a robotic agent learns a traversability model and builds a spatial model of the6
environment. The agent can benefit from the model learned online in distinguishing what terrains7
are easy to traverse and which should be avoided. The proposed solution enables the learning8
of multiple traversability models, each associated with a particular locomotion gait, a walking9
pattern of a multi-legged walking robot. We propose to address the simultaneous learning of the10
environment and traversability models by a decoupled approach. Thus, navigation waypoints are11
generated using the current spatial and traversability models to gain the information necessary12
to improve the particular model during the robot’s motion in the environment. From the set of13
possible waypoints, the decision on where to navigate next is made based on the solution of14
the generalized traveling salesman problem that allows taking into account a planning horizon15
longer than a single myopic decision. The proposed approach has been verified in simulated16
scenarios and experimental deployments with a real hexapod walking robot with two locomotion17
gaits, suitable for different terrains. Based on the achieved results, the proposed method exploits18
the online learned traversability models and further supports the selection of the most appropriate19
locomotion gait for the particular terrain types.20

Keywords: mobile robot exploration, active learning, traversability, multi-legged robot, locomotion gait21

1 INTRODUCTION

The presented online terrain learning approach is motivated by long-term missions where autonomous22
robots would improve their operational performance in navigating a priori unknown environments. Some23
difficult to traverse terrains, such as large rocks, can be identified as obstacles using an observed geometric24
model of the environment. However, areas that appear flat and thus easy to traverse may, in practice, be25
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(A) (B)

Figure 1. (A) The hexapod walking robot (courtesy of Forouhar et al. (2021)) (B) and its deployment
using the proposed approach. The visualized planned path is to visit determined exploration goals for the
spatial (in blue) and traversal cost models (in red). The spatial exploration goals are located close to the
boundary of the already explored part of the environment. The traversal cost exploration goals correspond
to sites where the terrain traversal cost model can be improved. Since the cost model is already partially
learned, the red-tinted turf is known to be hard to traverse, and thus the robot prefers the green-tinted
pavement, which is relatively easy to traverse. The yellow-tinted terrain is yet to be experienced by the
robot and thus carries the terrain learning goal indicated by the red waypoint. The not-yet-observed area is
gray.

hard to traverse due to their terra-mechanical properties, as experienced by NASA’s Mars Rover Spirit26
stuck in soft sand (Brown and Webster, 2010).27

In the presented approach, individual terra-mechanical properties are assumed to be partially unknown,28
and we learn a black-box model to assess the traversability in a particular environment from the terrain29
appearance (Prágr et al., 2018). Since the scope of the functional relation between the terrain appearance30
and traversability might be limited to a particular environment, we advocate that on long-term deployments31
and exploration missions, the terrain models are learned online incrementally (Prágr et al., 2019b) as a32
part of the mission (Prágr et al., 2019a). Hence, we focus on the exploration of the environment and its33
terra-mechanical properties represented as the traversal costs that characterize the difficulty of traversing34
the individual terrains as visualized in Fig. 1. In particular, we consider multi-legged walking robots that35
can traverse various terrains with different traversal costs (also depending on the particular locomotion36
gait used), which provide a representative case for demonstrating the benefits of traversability assessment37
learned online. Compared to the previous work, the presented approach addresses the different locomotion38
gaits of the robot and distinguishes individual terrain-gait traversal cost models. Besides, the proposed39
exploration strategy provides a non-myopic (Zlot and Stentz, 2006) solution that takes into account both40
the spatial exploration and learning of the traversal cost models.41

In the proposed approach, the impassable parts of the explored environment are determined by the42
geometric models using a grid-based elevation map (Bayer and Faigl, 2019). The individual terrain-gait43
traversal cost models are near-to-far predictors that infer the time to traverse over the traversable areas44
from their appearance and are learned using the robot’s previous experience accrued when traversing45
similar-appearing terrains using a particular gait. The traversal cost models comprise Gaussian Process46
(GP) regressors (Rasmussen and Williams, 2006), which predict the traversal costs from the terrain47
appearance, and Growing Neural Gas (GNG) (Fritzke, 1994) terrain type clustering schemes used to48
identify similar-appearing terrains. The geometric and traversal cost models are incrementally constructed49
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while exploring the mission environment. The geometric model is continually built from the robot’s50
exteroception, while each traversal cost model accumulates the costs experienced by the robot when51
moving using the respective locomotion gait. During the deployment, each model continually provides a52
set of exploration goals to be visited to learn (improve) the model. For several possible goal locations, the53
exploration strategy is to determine a sequence of the navigational goals to be visited that is addressed as a54
solution of the Generalized Traveling Salesman Problem (GTSP) (Noon, 1988) to provide a non-myopic55
solution considering the so-called TSP distance cost (Faigl and Kulich, 2013).56

The remainder of the paper is organized as follows. In Section 2, we present an overview of the related57
approaches in mobile robot exploration and traversability assessment. Section 3 formally defines the studied58
problem of mobile robot exploration with a priori unknown terrain traversal cost assessment. The proposed59
exploration with online traversal cost learning is presented in Section 4. Section 5 reports on the performed60
experimental results in simulations and real-world experimental deployments with a multi-legged robot61
controlled by two motion gaits. In Section 6, we discuss the strong points and limitations of the proposed62
approach. Section 7 concludes the paper.63

2 STATE OF THE ART

This section presents an overview of works related to the proposed approach. First, we focus on the64
traversability assessment approaches. Then, we survey mobile robot exploration and environment modeling.65

2.1 Mobile Robot Traversability66

Two questions emerge when reasoning about robot traversability over terrains. First, can the terrain67
be safely traversed, or should it be avoided? Second, if the terrain is passable, how does it compare to68
other terrains, i.e., is it easier and safer to traverse? Note that for the sake of clarity, we further denote69
the binary true/false traversability, which determines whether an area is an impassable obstacle or70
passable terrain, as terrain passability. In contrast, the relative comparison of the traversal difficulty over71
passable terrains is denoted as assessing the traversal cost. The term traversability is used to describe the72
notion in general, including both the passability and traversal cost. A review of mobile robot traversability73
assessment methods can be found in Papadakis (2013) and an overview of learning-based methods for74
ground robot navigation is in Guastella and Muscato (2021). Hence, we focus on works relevant to how75
traversability is approached in this paper.76

The passability discrimination can be directly incorporated in mapping in the form of occupancy cell77
grids (Moravec and Elfes, 1985), Gaussian Mixtures (O’Meadhra et al., 2019), GP models (O’Callaghan78
et al., 2009), or Hilbert maps (Ramos and Ott, 2016). The distinction of terrain passability can be understood79
as an instance of terrain classification, where terrains are assigned individual classes, and each class carries80
presumed terra-mechanical properties. For example, some classes can be considered hard-to-traverse81
vegetation or obstacles (Bradley et al., 2015). Besides terrain classification, terrains can be assigned82
continuous values describing some observed terrain property such as roughness (Krüsi et al., 2016; Belter83
et al., 2019) slope (Stelzer et al., 2012), or step height (Homberger et al., 2016; Wermelinger et al., 2016).84
For continuous measures, passability can be based on thresholding the value as in Stelzer et al. (2012),85
where the passability is determined by individually thresholding terrain slope, roughness, and step height.86
Moreover, classes may correspond to a particular robot configuration, such as in Haddeler et al. (2020),87
where the authors classify terrains into modes of wheeled-legged locomotion.88
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In instances where the terra-mechanical properties are unknown, and thus terrains’ appearance and89
geometry features are not sufficient to determine their traversability, the traversability can be based on90
the robot’s prior experience with similar terrains. The experience-based measures can be derived from91
the robot proprioception and described using stability (McGhee and Frank, 1968; Lin and Song, 1993),92
slippage (Gonzalez and Iagnemma, 2018), vibrations (Bekhti and Kobayashi, 2016), velocity or energy93
consumption (Kottege et al., 2015). The experience-based approaches describe the traversal cost only94
over passable terrains since the traversal is needed to acquire the robot experience. An exception worth95
mentioning is haptic sensing to determine obstacle passability (Baleia et al., 2015), which, however, still96
relies on the direct interaction of the robot with the terrain.97

Since the experience-based approaches use on-location robot experience, they are difficult to employ98
directly in path planning where it is necessary the evaluate terrain traversability from a distance using only99
exteroceptive measurements. Near-to-far approaches pair traversability indicators that can be observed100
only near the robot (such as proprioception or dense short-range measurements) with terrain appearance101
and geometry that can be observed from farther distances and thus learn to predict traversability from102
the long-range measurements. Sofman et al. (2006) incrementally learn the relation between dense laser-103
based features characterizing ground unit traversability and overhead features that can be used to assess104
traversability from aerial images, while Bekhti and Kobayashi (2016) learn to predict vibration-based105
traversability from terrain texture. Quann et al. (2020) propose an energy traversal cost regressor considering106
both terrain position and appearance. Besides, in Mayuku et al. (2021), a self-supervised labeling approach107
is proposed for a near-to-far scenario, where vibration-based traversal cost is inferred from image data, and108
the self-supervised data gathering is based on identified terrain classes.109

Following the approaches in the literature, we assume that terrain is rigid, and it is possible to distinguish110
passable terrain and non-traversable obstacles from the terrain geometry using step height similar to Stelzer111
et al. (2012), or Wermelinger et al. (2016). Hence, this paper focuses on modeling the traversal cost over112
the determined passable terrains. Moreover, we are motivated by the online cost assessment in mobile113
robot exploration, where the computational requirements are crucial. Therefore, we avoid high fidelity114
models, which besides being costly to compute, also rely on plan execution with high precision (such115
as deterministic foothold placement), which might not be available in practice. The traversal cost is116
thus learned as a black-box near-to-far model that uses terrain appearance to predict the time to traverse117
over terrains. Since the scope of the relation between the terrain appearance and traversability might be118
limited to a particular environment, we incrementally learn the cost predictor by sampling the robot’s119
experience with traversing individual terrains. Similar to the classification in Belter et al. (2019), a color120
histogram is selected as the terrain appearance descriptor since it is simple to compute and the histograms121
are sufficiently descriptive to capture multi-colored terrains. Furthermore, we consider locomotion gaits of122
the employed hexapod walking robot that are suitable for different terrains. Thus, the passable terrain is a123
terrain traversable by at least one gait, and obstacles are terrain parts that none of the gaits can traverse. We124
propose a decoupled approach that predicts the traversal cost for each gait independently, and the robot125
then selects the most cost-efficient gait for each terrain.126

Regarding the existing methods, the proposed approach is closest to Haddeler et al. (2020), where127
modes of the wheeled-legged robot are switched. Besides, the proposed approach is also close to the128
self-supervised, near-to-far traversability-learning approach proposed by Mayuku et al. (2021). In that129
regard, the primary contribution of the proposed approach is the integration of active traversability learning130
in mobile robot exploration, where the robot plans a non-myopic path to improve both the spatial and131
traversal cost models learned online during the deployment.132
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2.2 Mobile Robot Exploration and Environment Modeling133

Mobile robot exploration is an active perception problem that concerns behaviors where the robot seeks to134
build a model of a priori unknown environment. The exploration entails the robot seeking areas that are in135
some capacity unknown to construct a map of the environment. The exploration thus inherently combines136
localization, navigation, and planning (Schultz et al., 1999) to decide where the robot should go next.137
Steering the robot navigation to not yet observed areas yields frontier-based exploration (Yamauchi, 1997),138
where the frontiers represent boundaries between the observed traversable area and the unknown space139
represented on an occupancy grid (Moravec and Elfes, 1985). Recently, in the octree-based environment140
model, frontiers are represented as mesh faces with few neighbors (Azpúrna et al., 2021).141

Bourgault et al. (2002) and Makarenko et al. (2002) exploit the probabilistic representation on such an142
occupancy evidence grid, and navigate to maximize the approximated occupancy information gain. Charrow143
et al. (2015) propose to use Cauchy-Schwarz quadratic mutual information to speed up the information144
gain computation. Besides, approaches that rely on non-grid-based representation for navigation, such as145
meshes and topological maps, may retain cell or voxel grids to quantify the information gain (Dang et al.,146
2020).147

In addition to mapping, robots also build models of environment-underlying phenomena that can be148
temperature models (Luo and Sycara, 2018) or spread of gas (Rhodes et al., 2020). The environment149
phenomenon can be considered spatial, and the goal is thus to learn the mapping from the position in the150
environment to the value of the phenomenon. Furthermore, a spatio-temporal model can be considered (Ma151
et al., 2018) that would require repeatedly visiting particular areas to build the temporal model, which152
might be needed for changing environments (Krajnı́k et al., 2017).153

Spatial-based modeling can be considered as information path planning (Singh et al., 2007), where the154
goal is to find the most information path through the environment (Hollinger and Sukhatme, 2014) subject155
to a particular constraint such as the robot energy budget (Binney and Sukhatme, 2012). Informative path156
planning approaches can be broadly divided into myopic and non-myopic methods. The myopic methods157
are greedy and plan only with regard to the next goal, while non-myopic methods plan with a longer158
horizon. For example, in the context of frontier-based mobile robot exploration, seeking the closest frontier159
is myopic, contrary to path planning to visit all the representatives of the frontiers that is non-myopic (Faigl160
et al., 2012).161

Like seeking frontiers in spatial exploration, the explorer learning an underlying model must actively162
locate sites to sample novel information. Hence, GP regressors (Rasmussen and Williams, 2006) are163
particularly suited for active learning since it is relatively straightforward to identify uncertain regions164
where the model should be improved. GP prediction uncertainty is characterized by the differential entropy165
of the predicted normal distribution, leading to the characterization of information gained by observing166
individual areas. However, in practice, directly computing the information gained by possible observations167
is not feasible due to the number of possible actions, especially for a long planning horizon. Hence, various168
approximations and sampling strategies have been proposed.169

Pasolli and Melgani (2011) propose to either directly seek the most uncertain samples signified by the170
highest prediction variance or to select areas that are the most remote in the feature space given the GP171
hyper-parameters. In Viseras et al. (2019), the robot selects paths with high average entropy per sampling172
to tradeoff informativeness and the number of samplings. Martin and Corke (2014) propose to set the173
mean function of a GP traversal cost regressors to zero, thus motivating a robot to traverse unknown areas174
where the predictions are close to the zero mean. The GP Upper Confidence Bound (GP-UCB) (Srinivas175
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et al., 2010) is an exploration-exploitation method that combines seeking the most uncertain areas with176
improving the model around the highest value. It can be used when the learner is interested in finding177
extreme values of the modeled phenomenon, such as temperature (Luo and Sycara, 2018; Shi et al., 2020).178
Besides, a depth-first variant of the Monte Carlo Tree Search (MCTS) to select anytime informative paths179
can be employed to consider both differential entropy and upper confidence bound to model sampling180
informativeness (Guerrero et al., 2021).181

Karolj et al. (2020) compute a path to the closest spatial frontier that visits all local sampling locations for182
a magnetism model by solving the Traveling Salesman Problem (TSP) over the respective goal locations.183
In localization in mapping, Ossenkopf et al. (2019) note that occupancy information gained at an unknown184
location holds little value and thus weight the occupancy gains by a pose uncertainty (Vallvé and Andrade-185
Cetto, 2015). Hence, the explorer must address how to combine the occupancy and pose uncertainties.186
In Bourgault et al. (2002) and Stachniss et al. (2005), the total exploration utility is a linear combination of187
the occupancy uncertainty and the robot localization uncertainty represented using the differential entropy188
based on its position distribution. In Carrillo et al. (2018), it is argued that combining Shannon’s discrete189
and differential entropies is neither practical nor sound since the differential entropy is neither invariant190
under a change of variable nor dimensionally correct. Therefore, both quantities may differ significantly in191
value. Consequently, Carrillo et al. (2018) propose to use the localization uncertainty to weigh the Rényi192
entropy (Rényi, 1961) of the occupancy grid.193

Based on the literature review on exploration approaches, we propose to generalize the previous194
work (Prágr et al., 2019a) towards a non-myopic approach. The therein proposed method combines active195
learning of traversal cost over terrains with spatial exploration using a greedy approach. The approximated196
spatial information gains and cost models are derived from Shannon’s discrete and differential entropies,197
respectively. Considering the reasoning of Carrillo et al. (2018), we avoid a direct combination of these198
two values in this paper. Besides, we aim to build a modular system that supports the learning of models199
that range from the spatial map and cost predictors used in this paper to temperature and pollution models.200
Hence, instead of creating a combined information gain utility function using the Rényi entropy, which is201
suitable for the combination of a map and robot’s localization model used by Carrillo et al. (2018), we202
elect to use a policy that combines the spatial exploration and cost learning goals (and goals reported by203
any additional model), similarly to the approach proposed by Karolj et al. (2020).204

However, unlike the therein-built magnetism model, a spatial GP, we assume that the terrain traversal205
cost correlates with the terrain appearance. Therefore, the GP regressor infers the cost from the terrain206
feature descriptors instead of the terrain location. Consequently, rather than terrains nearby, sampling the207
cost to traverse an unknown terrain primarily affects the predictions over similarly appearing terrains close208
in the feature space. The affected terrains are determined using a terrain clustering scheme. Incremental209
Growing Neural Gas (IGNG) (Prudent and Ennaji, 2005) is used to continually construct the terrain class210
structure, in which each class is assigned traversal cost and sampling reward (information gain) based on211
the GP’s predictions. As a result, we model the computation of the goal visit sequence as an instance of212
the Generalized TSP (GTSP) (Noon, 1988) (also called the Set TSP), which is a variant of the TSP where213
nodes are grouped into mutually exclusive and exhaustive sets. The problem is then to visit each set instead214
of visiting each node. In the context of the proposed exploration approach, the individual nodes correspond215
to possible sampling locations, and the sets are either terrain classes extracted from the cost prediction216
model or places where the robot can observe areas unknown to the spatial model.217

The problem of mobile robot exploration with traversal cost learning is defined in the next section, while218
the strengths and weak points of the proposed approach are further discussed in Section 6.219
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Figure 2. The footprint around the robot position covers the cells with potential multi-legged walking
robot footholds.

3 PROBLEM SPECIFICATION

The addressed exploration using an autonomous hexapod walking robot combines spatial exploration with220
active learning of terrain traversal cost models. The environment is modeled as a 2D grid W ⊂ R2 with221
cells ν ∈W with size dν corresponding to the size of the robot foothold. The position of the robot probot222
is discretized as νrobot within the grid that is at the center of the robot’s circular footprint with radius223
rrobot covering all the potential robot’s footholds as shown in Fig. 2. Any path ψ can be decomposed to a224
sequence of neighboring cells as225

ψ = (ν1, ν2, · · · , νn),
s.t.

∀i ∈ 1, · · · , n : π(νi) = 1,

∀i ∈ 1, · · · , n− 1 : νi+1 ∈ 8nb(νi),

(1)

where n is the number of cells in the respective sequence, the function 8nb(ν) lists the cells in the 8-226
neighborhood of ν, and π(ν) = 1 indicates that the cell ν is passable. Besides, the robot can use a discrete227
set of walking gaits G, and it is assumed that the gait changes occur instantaneously at the particular grid228
cells ν ∈W.229

The robot desires to move through the environment as efficiently as possible with respect to (w.r.t.) the230
cost C. Therefore, it moves along the cheapest path between ν and ν ′.231

ψ∗(ν, ν ′) = argminψ∈Ψ(ν,ν′)C(ψ), (2)

where Ψ(ν, ν ′) is the space of all paths from ν to ν ′. The cost C(ψ) of traversing ψ represents a generic232
path cost such as time to traverse or expected consumed energy, and without the loss of generality, the233
time to traverse is the cost of choice in this paper. It is assumed that the cost is additive, thus permitting to234
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combine the costs of two consecutive path segments ψa and ψb into the cost of the combined path ψa ⊕ ψb235
as236

C(ψa ⊕ ψb) = C(ψa) + C(ψb), (3)

where ⊕ denotes the concatenation of the paths. The cost of a path is decomposed to the sequence of costs237
to traverse from passable cell νa to its neighbor νb238

C(ψ) =
n−1∑
i=1

∥(νi, νi+1)∥c(νi, νi+1), (4)

where ∥(νa, νb)∥ is the Euclidean distance between the cells (i.e., either dν or
√
2dν), and c(νa, νb) is the239

per-meter cost of traversing from νa to νb.240

In the spatial exploration, the robot builds the geometry model P , which provides the cell passability241
assessment π(ν). It is assumed that the geometry is sufficient to distinguish the passable areas; hence, the242
passability model P is constructed directly from the continually streamed exteroceptive measurements243
(observed point clouds zpcd).244

3.1 Traversal Cost Modeling245

The traversal cost is assumed to be too complex to be assessed only from the terrain geometry. In this246
paper, the task is to learn a traversal cost predictor C that models the cost as a function of terrain appearance.247
The cost assessments are used in path planning w.r.t. (4). Besides, the cost model is also responsible for248
selecting the gaits suitable for the particular terrains traversed by the robot. Since the robot position is249
abstracted as the center of its circular footprint, the predictor’s per-meter-cost predictions are conservative250
estimates that take into account all the cells on the footprint. The cost predictor is learned online during the251
exploration from the robot experience that comprises the cost zc experienced by the robot when traversing252
terrain described by the terrain appearance descriptor ta using gait g.253

The learned model is compared to the uninformed baseline that represents a robot that only explores the254
spatial map and does not learn the cost models, and thus uses the optimistic flat cost model255

ĉ(νa, νb) =
1

vmax
, (5)

where vmax is the maximum robot velocity over all g ∈ G. Notice that in planning, the particular value of256
vmax is not relevant as long as it is positive since it only scales the total cost, thus not affecting the planning257
decisions. The baseline selects the gaits reactively, using the fast gait capable of reaching vmax by default258
and switching to slower yet rough-terrain-capable gaits when the robot gets stuck on the traversed terrain.259

The proposed approach is evaluated in model scenarios as follows. First, the robot is set to explore the260
environment W and thus incrementally learn the model C. Then, the learned and baseline models are used261
in navigating the robot between a set of benchmark coordinates in W and the total cost C experienced by262
the robot (i.e., the time needed to move between the coordinates) using the particular model is considered263
to be the benchmark value.264
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Figure 3. An overview of the proposed exploration system. The robot uses the RGB-D data to build the
color elevation model of the environment, in which it identifies the passable areas (Alg. 2). The terrain
appearance stored in the model is paired with the costs experienced by the robot to learn the traversal cost
models for the individual locomotion gaits (Algs. 5 and 6). The cost predictions for the individual gaits and
the terrain passability are used to plan the exploration path in a TSP sequence (Alg. 1) over every goal
reported by the geometric and cost models. The robot navigates to the first goal in the sequence (Alg. 4).

4 PROPOSED SYSTEM FOR ACTIVE TERRAIN LEARNING IN EXPLORATION

In this section, we describe the proposed system for active terrain learning and exploration, which is265
overviewed in Fig. 3. During the exploration, which yields the spatial geometric passability model P , the266
goal of the robot is also to learn the traversal cost model C. The geometric passability model P describes the267
shape of the environment and thus areas passable by the robot. The traversal cost model is decomposed into268
the set of models C = CG = {Cg}g∈G, where each traversal cost model Cg predicts the costs associated with269
traversing the passable terrain using the gait g ∈ G. The respective cost predictors are Gaussian Process270
(GP) regressors (Rasmussen and Williams, 2006) that use terrain appearance to infer the robot-experienced271
traversal cost accrued during the deployment. Each GP is coupled with the Incremental Growing Neural272
Gas (IGNG) (Prudent and Ennaji, 2005) that clusters similarly appearing terrains and hence identifies273
terrain types not yet visited by the robot. The exploration problem is modeled as an open-ended instance274
of the Generalized Traveling Salesman Problem (GTSP) (Noon, 1988), a variant of the TSP where the275
vertices are organized in disjoint sets, and each set is visited once. In this paper, each set corresponds to an276
exploration or learning goal (a set of sampling sites) yielded by the spatial or cost model.277
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Table 1. Used Symbols

Description Symbol Description Symbol

World gridmap model W Gridmap cell ν

Gridmap cellsize dν Current robot position νrobot

Robot footprint radius rrobot Cell ν passability π(ν)
Path ψ Optimal path ψ∗

Walking robot gait g Robot gait set G
Cost (time to traverse) C Per-meter cost c
Geometric passability model P Cost model C
Measured cost zc Maximum robot velocity vmax

Colored elevation gridmap M2.5D Robot sensor range rsensor
Terrain appearance desciptor ta Descriptor radius rhist
Spatial clustering radius cradius Cluster min cells cmin cells

Cost model, all gaits CG Cost model, particular gait Cg
Cost prediction, all gaits ĉ Cost prediction, particular gait ĉCg

Distance transform per-meter loss closs Cost measurement variance σ2sense
Cost measurement filter initial variance σ20
GP regressor R GP learning set L
GP prediction mean µ̂c GP prediction variance σ̂2c
Prediction uncertainty / GP entropy H High cost in cost transform chigh
Min learning set size nmin

L GP model noise variance σ2ϵ
Exponential kernel lenghtscale l Exponential kernel output variance σs
Maximum allowed cost cmax

Terrain class model T Terrain class T
Approximated cost information gain IC Terrain class uncertainty threshold HGT

C
Min GT terrain type size mT Sampling lattice S
Sampling lattice point pS Sampling lattice size dS

Goal set Γ Goal γ

Passability goal set ΓP Cost goal set, all gaits ΓG
C

Cost goal set, particular gait ΓgC TSP distance matrix D

Current exploration goal ν∗E Current exploration path ψE
Enforced sampling gait genforced Gait sampling duration ∆tsample

IGNG structure Ω IGNG measurement x

IGNG neuron set Ωneurons IGNG connection set Ωconnections
IGNG neuron ω IGNG adaptation threshold σIGNG

IGNG winner warp rate ϵIGNG
1 IGNG neighbor warp rate ϵIGNG

nb
IGNG neuron mature age aIGNG

mature IGNG connection maximum age aIGNG
max

Terrain type erosion steps n
steps
erode Terrain type dilation steps n

steps
dilate

Terrain type dilation size nsize
dilate

In the rest of the section, we describe the exploration process. The symbols used in the description are278
listed in Tbl. 1. First, we show how the GTSP is used to find the exploration path. Then, we show the279
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geometric environment model in detail and the related passability model P , the traversal cost models Cg,280
and their use to find the exploration goals.281

4.1 Exploration282

The robot explores the passability model P and learns the traversal cost models CG by visiting the283
exploration ΓP and cost learning ΓG

C goals, which are continually yielded by the respective models. Each284

goal γ ∈ ΓP ∪ ΓG
C is associated with a set of sites (cells) γ = {νi}|γ|i=0 where the robot can improve285

its models by sampling the respective goal. The robot needs to visit one of the corresponding locations286
to sample the goal. Geometric model goals γ ∈ ΓP are located at singular sites γ = {ν}, where the287
robot can improve the spatial model by observing new areas. Each traversal cost model goal γ ∈ ΓG

C ,288

where ΓG
C = ∪g∈GΓgC , is associated with a set of sites γ = {νi}|γ|i=0 at which the robot can improve the289

model by experiencing novel gait-terrain costs. The areas covered by the individual goals in a given cost290
model are designed to be disjoint. Thus, sampling the traversal cost model at a site corresponding to the291
goal 1γgC ∈ ΓgC provides no, or severely limited, information regarding the traversal cost model at a site292
corresponding to a different goal 2γgC ̸=

1γgC . On the other hand, the passability and traversal cost models293
are considered independent. Sampling at one particular site might improve both models since the robot can294
observe previously unseen areas while experiencing untraversed terrain. However, two cost models cannot295
be improved at once since the robot can only experience the cost for the currently used gait.296

Given the current robot position νrobot
t and models Pt and CGt at any time t during the exploration, the297

robot selects a shortest exploration path ψE(probot
t ,Pt, CGt ) that visits at least one site corresponding to298

each goal. The path planning is modeled as an instance of the GTSP, where vertices (sites) are organized in299
disjoint sets (goals), and each set is visited exactly once. The distance matrix D describes the costs of paths300
between the individual sites, including the distances between the current robot position and the goal sites301

D(ν, ν ′) = Ĉ(ψ∗(ν, ν ′)). (6)

Two transforms are applied to the distance matrix D to create an open instance of the GTSP. First,302
the robot does not need to return to its current position after exploring the environment. Hence, the303
problem is transformed by setting the cost to reach the current robot position from any goal as zero304
∀γ ∈ ΓP ∪ ΓG

C , ∀ν ∈ γ : D(νγ , ν
robot) = 0. Second, we apply the Noon-Bean transformation (Noon and305

Bean, 1993) to transform an instance of the GTSP into an instance of the TSP.306

(A) (B)

Figure 4. An example of a planned exploration path; (A) the global path over the sequence of goals
determined by the TSP solver; (B) the local path to the first goal.
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The open instances of the transformed TSP are solved by the LKH solver (Helsgaun, 2000), a heuristic307
solver with asymptotic time complexity bounded by O(m2.2), where m is the number of vertices, which308
has been found sufficient for updates with tens of goal sites. The solver returns the sequence of sites309
(νrobot, ν0, ν1, · · · , νn) to be visited through the environment, see Fig. 4A, where n is the number of goals310
and each site νi corresponds to a different goal. The robot navigates towards the first site of the sequence311
and its current exploration goal ν∗E becomes ν∗E = ν0, see an example of the path in Fig. 4B.312

The plan is recomputed on-demand either when there is a change in the goal set or as a result of reaching313
the current goal. Moreover, upon reaching a cost model goal, the robot switches to the model’s respective314
gait genforced and is forced to move forward for ∆tsample (or until an obstacle is reached) to sample the315
traversal cost over the terrain. The exploration ends when every model reports zero goals. The exploration316
process is summarized in Alg. 1.317
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Algorithm 1: Exploration

Input: νrobot
1,...,n – Robot positions; zpcd

1,...,n – RGB-D measurements; zc1,...,n – Cost measurements.
Output: P – Passability model; C – Cost model.

1 M2.5D,ΓP ← start process: spatialExploration(zpcd
1,...,n) // Init. spatial modeling (Alg. 2).

2 for g ∈ G do // For each gait.

3 Rg,Lg ← start process: learning(M2.5D, z
c
1,...,n) // Init. cost model learning (Alg. 5).

4 ΓgC , T
g ← start process: terrainTypeClustering(M2.5D,Rg,Lg) // Start terrain clustering and

goal identification (Alg. 6).

5 ν∗E ← ∅ // Set the current exploration goal.

6 genforced ← ∅ // Set the sampling-enforced gait.

7 ψE ← ∅ // Set the exploration path.

8 start process: navigate(M2.5D, ψE , ν
robot
1,...,n, g

enforced) // Init. navigation (Alg. 4).

9 finished← false

10 while not finished do
11 getLatest(M2.5D,ΓP ,∀g ∈ G : Rg,ΓgC , T

g) // Get the current models and goals.

12 if ν∗E has been reached and ∃g ∈ G : ν∗E ∈ γ
g
C then // If the robot reached a cost model goal.

13 ν∗E ← forwardMotionGoal() // Sample the reached goal.

14 ψE ← planToStraight(ν∗E) // Plan straight sampling path.

15 genforced ← g // Force the robot to use the particular gait.

16 else if ΓP ∪ ΓG
C has changed or ν∗E has been reached then // Else if the goal has changed or current goal is reached.

17 (νrobot
i , ν0, ν1, · · · , ν|ΓP∪ΓG

C |
)← solveGTSP(ΓP ∪ ΓG

C ,M2.5D,νrobot
i ) // Solve the GTPS.

18 ν∗E ← ν0 // Update the current exploration goal.

19 ψE ← planToOptimal(ν∗E ,rrobot) // Plan cheapest path to the goal.

20 genforced ← ∅ // Allow the robot to use any gait.

21 else // Otherwise, check whether the exploration is finished.

22 finished←M2.5D ̸= ∅ ∧ ΓP = {} // Continue exploring if spatial model is not intialized or reports goals.

23 for g ∈ G do // For each gait.

24 finished← finished ∧ Rg ̸= ∅ ∧ ΓgC = {}
25 // Continue exploring if the gait-terrain cost model is not initialized or reports goals.

26 P ←M2.5D // Report the grid map as the passability model.

27 C ← {Rg, T g}g∈G // Report the regressors and class sets as the cost model.

28 return P , C

318

4.2 Environment Geometry & Passability Model319

The grid environment W is represented by the colored elevation grid map M2.5D with the cell320
size dν . The grid map is built online during the exploration according to Alg. 2 using the robot’s321
range measurements and RGB camera images. The elevation at each cell ν ∈M2.5D is obtained322

by fusing the localized range measurements zpcdi into the grid map using one dimensional Kalman323
filter as in Fankhauser et al. (2014) or Bayer and Faigl (2020). The localization of the robot,324
and thus also the localization of the range measurements, is considered to be solved by the Intel325
RealSense T265 tracking camera, which estimates the robot’s full 6 DOF pose based on visual326
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Simultaneous Localization and Mapping supported by an inbuilt Inertial Measurement Unit1. The327
grid map is used as a model of the terrain geometry to identify passable places. It also captures328
the color of the terrain texture that is processed to compute the terrain appearance descriptors.329

Algorithm 2: Spatial Exploration

Input: zpcd
1,...,n – RGB-D measurements.

Output:M2.5D – Elevation grid map; ΓP – Passability goals.
1 while exploration is running do
2 M2.5D ← updateMapByRangeMeasurements(M2.5D, z

pcd
i ) // Fuse range and color measurements.

3 M2.5D ← recomputePassability(M2.5D) // Update cell passability.

4 M2.5D ← recomputeEntropy(M2.5D) // Update cell entropy.

5 ΓP ← clusterEntropyRepresentatives(M2.5D) // Cluster entropy representatives (Alg. 3).

6 reportLatest(M2.5D,ΓP)

330

We define the passability of the cell ν ∈M2.5D as the probability π(ν) that the cell ν can be traversed by331
the robot. The probability itself is based on the observed roughness of the terrain computed based on Bayer332
and Faigl (2021) as333

ρ(ν) = max
ν′∈8nb(ν)

∆(ν, ν ′), (7)

where 8nb(ν) is the 8-neighborhood of the cell ν, and the step height ∆(νa, νb) is334

∆(νa, νb) = | elevation(νa)− elevation(νb)| (8)

with elevation(ν) denoting the estimated height of the terrain at ν. The probability that the robot can pass335
a cell ν is336

π(ν)

{
0 if ρ(ν) > ρobstacle

1 otherwise
, (9)

where the threshold ρobstacle represents the lowest obstacle to be detected. An example of the grid map is337
shown in Fig. 5A.338

In active perception scenarios, the information about the terrain modelM2.5D gained by observing the339
cell ν ′ is evaluated by entropy based on the known passability. Since the distribution of the passability is340
binary and depends on the 8-neighborhood of the cell, information gained by observing ν ′ with unknown341
height is approximated as342

Icell
P (ν ′) ≈ k(ν ′) + 1

9
, (10)

where k(ν) is the number of the unknown cells in the neighborhood of ν. Thus, the expected information343
gained by perceiving the terrain from the position of the cell ν can be expressed as344

Imodel
P (ν) =

∑
ν′∈δ(rsensor,ν)

{
Icell
P (ν ′) if observable(ν, ν ′)

0 otherwise
, (11)

where δ(rsensor, ν) is the sensor range rsensor-large neighborhood of ν, the function observable(ν, ν ′)345
returns true if and only if the cell ν ′ is observable from ν, which is determined by casting346

1 In the simulated experiments, the localization is provided by the simulator.
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Figure 5. Illustration of the color-geometric and cost models. (A) A visualization of the online built
geometrical model with marked passability and clusters based on the cells with non-zero information
according to the shown color legend; (B) terrain appearance descriptor calculated as a histogram of cell
colors. The costs used in path planning; (C) the minimal cost over gaits after the distance transform; (D) the
respective cheapest gait (gaits in red and purple). (E) The colors used to build the color histogram terrain
appearance descriptor; (F) the measured costs used for learning the GP (adjusted by hyperbolic tangent),
visualized over the terrain appearance; (G) the raw GP cost prediction; (H) the GP prediction uncertainty.
(I) The terrain clusters (arbitrary colors used to distinguish clusters); (J) the information gained with terrain
learning goals (goal colors corresponding to clusters); (K) the cluster costs used in planning.

a ray from ν to ν ′ in the current elevation map M2.5D. Using all the cells with non-zero347
entropy in the TSP formulation is computationally intensive. Thus, we propose to spatially348
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cluster the entropy to generate a limited number of spatial entropy representants by Alg. 3.349

Algorithm 3: Cluster Entropy Representatives
Input:M2.5D – Elevation grid map.
Output: ΓP – Passability goal set.

1 Procedure cluster(M2.5D)
2 A← ∅ // Init. set of clusters.

3 for ν ∈M2.5D : Imodel
P (ν) > 0 do // For each map cell with non-zero entropy.

4 if A = ∅ then // If no clusters in set.

5 A← A ∪ {{ν}} // Create a new cluster.

6 else
7 d← distanceToClosestCluster(ν,A)
8 if d < cradius then
9 addToClosestCluster(ν,A) // Add point to existing cluster.

10 else
11 A← A ∪ {{ν}} // Create new cluster.

12 ΓP ← ∅ // Init. cluster representants.

13 for Ai ∈ A do // For each clusters.

14 if |Ai| > cmin cells then
15 ΓP = ΓP ∪ {averageCoordinateCell(Ai)} // Create new representatives.

16 return ΓP

350

Besides the terrain geometry, the grid map M2.5D also carries the terrain texture calculated by the351
following approach. Each cell is provided a 10-bit color by projecting the camera image to the mapM2.5D.352
Then, the color space is shrunk to 9 different colors, defined by color prototypes listed in Fig. 5B. The353
relative amount of the cell colors within the radius rhist matched to the selected color prototypes are used to354
build a 9-dimensional terrain appearance descriptor ta(ν) for each cell ν ∈M2.5D, which is visualized as355
a color histogram in Fig. 5B.356

4.3 Traversal Cost Model357

The cost model C predicts the per-meter traversal cost c over observed areas deemed passable by the358
geometric passability model P . The traversal cost model predicts the traversal cost from terrain appearance.359
Since the robot position is abstracted as the center of its circular footprint, the C’s per-meter-cost predictions360
are conservative estimates that take into account all the cells on the footprint361

ĉ(νa, νb) = maxν′∈δ(rrobot,νa) ĉ(ν
′), (12)

where δ(r, ν) lists all cells within the r-radius of cell ν, and ĉ(ν) is the C cost estimate over cell ν. An362
example of the traversal cost assessment is depicted in Fig. 5C.363

The cost ĉ is reported for the whole model set C = CG = {Cg}g∈G, since it is the best gait-terrain cost364

ĉ(ν) = ming∈G ĉCg(ν), (13)
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where each gait-terrain cost ĉCg is the prediction of the particular model Cg. Besides, when navigating365
through the environment, the robot selects its gait w.r.t. the minimization in (13) as depicted in Alg. 4. An366
example of gait selection is visualized in Fig. 5D. A distance transform with closs per-meter-loss is used367
over the cell grid with the best-gait costs ĉ(ν) to dissuade the robot from navigating areas near terrain368
boundaries where frequent gait changes are likely.369

Algorithm 4: Navigate
Input: M2.5D – Elevation grid map; ψE – Exploration path; νrobot

1,...,n – Robot positions; genforced –
Enforced sampling gait.

1 while exploration is running do
2 getLatest(M2.5D, ψE , g

enforced)

3 if genforced ̸= ∅ then // If the robot is forced to sample a gait-terrain model.

4 setGait(genforced) // Use the particular gait.

5 else
6 gbest ← argming∈Gmaxν′∈δ(rrobot,ν

robot
i ) ĉCg(ν

′) // Find the best gait for the robot position.

7 setGait(gbest) // Use the particular gait.

8 walkAlong(ψE) // Continue along the exploration path.

370

Each gait-terrain model Cg comprises the cost regressorR and the terrain type clustering T . InR, we371
use GP regression to predict the traversal costs because it provides the predicted values and models the372
prediction uncertainty. Each traversal cost regressor R is learned from the learning set L of the paired373
terrain descriptors and the respective traversal costs observed when using the particular gait g that are374
depicted in Fig. 5E and Fig.5F, respectively. The particular learned cost regressorR is used to predict the375
normal distribution of the traversal cost at queried terrain descriptor ta as376

N (µ̂c, σ̂
2
c )(ta,R) = predict(ta,R). (14)

The cost prediction (visualized in Fig. 5G) is the expected value377

ĉ(ta,R) = E(N (µ̂c, σ̂
2
c )(ta,R)) = µ̂c(ta,R), (15)

and the uncertainty of the prediction (shown in Fig. 5H) is characterized by the differential entropy378

H(N (µ̂c, σ̂
2
c )(ta,R)) =

1

2
log(2πeσ̂2c (ta,R)). (16)

The prediction uncertainty is used to approximate the information gain IC associated with sampling the379
individual observed terrains, thus identifying areas the robot needs to visit to improve the traversal cost380
model.381

The terrain type clustering T identifies the distinct terrain types (terrain descriptor clusters) in the382
environment. The terrain class set T is designed to be disjoint regarding the prediction model. Thus,383
sampling the traversal cost model at a cell corresponding to one terrain class provides no, or severely384
limited, information regarding the traversal cost model at a location corresponding to a different class.385
In particular, following Pasolli and Melgani (2011), the classes are selected to be mutually distant in the386
terrain descriptor space. Each observed cell is assigned the closest terrain class as the closest class in the387
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Prágr et al. Exploration with Traversability Models Learning

descriptor space388
T ∗(ν) = argminT∈T ∥ ta(ν), ta(T )∥, (17)

where ta(T ) is the appearance assigned to the terrain class T ∈ T . Since, on small terrain classes, it might389
not be possible to acquire enough samples to learn the traversal cost with sufficient certainty, we apply390
class erosion as described in Appendix 1. The erosion output is the learning class assignment T and the391
planning class assignment T̂ . We avoid computing the cost prediction for every cell independently2 , and392
report the Cg prediction over a particular area as the cost to traverse over its respective terrain type393

ĉCg(ν) =

{
ĉ(ta(T̂ (ν)),R) if T̂ (ν) ̸= ∅,
cmax otherwise,

(18)

where the maximum cost cmax is reported for cells with no class (i.e., eroded) ∅.394

The rest of this section describes how the traversal cost experience used to learn the models is measured,395
how the GP regressor is learned, and how the terrain type clustering is used to identify the locations where396
to improve the cost model.397

4.3.1 Traversal Cost Measurement398

The measured traversal cost describes the time needed to traverse between cells as zc(ν, ν ′). Since the399
distance between two cells is significantly lower than the robot stride length, the cost is smoothed over path400
segments (cell sequences) with a fixed duration. In particular, the per-meter cost c is continually measured401
as the inverted robot velocity v−1 over the path segment traversed by the robot in the last ∆t s402

v−1(ψs) =
T (ψs)

∥ψs∥
, (19)

where ∥ψs∥ is the length of the segment in meters and T (ψ) is the measurement duration that is fixed to403
∆t. If the robot had not changed its gait on the segment, the cost is reported to the particular model Cg as404
the cost to traverse the midpoint of the segment as zc(ν⌊|ψs|/2⌋, ν⌊|ψs|/2⌋+1). Besides, to remove potential405
cost spikes, the cost is further smoothed using a moving average window of the same (∆t) duration. Since406
the inverse velocity is unbounded and has both high values and high variance for a stuck robot, the cost to407
be used by the predictor is transformed as408

c = chigh tanh

(
1

chigh

v−1

v−1
max

)
, (20)

where the maximum robot velocity vmax (maximum from all g ∈ G) scales the cost of the robot moving409
over an ideal terrain to 1, and the high cost chigh, which should only be experienced by a stuck robot, is410
used in the transform to bound the cost values.411

4.3.2 Gaussian Process Traversal Cost Regressor412

The employed GP regressor predicts both the prediction mean and variance making it suitable to model413
the prediction distribution as in (14). Its description is dedicated to Appendix 2 to make the paper self-414
contained. GP regressor is learned only if there are at least nmin

L learning pairs in L to avoid learning415
overconfident predictors at the beginning of the exploration. The learning is summarized in Alg. 5.416

2 In practice, for small environments, it is feasible to compute the prediction for every cell, and we do so for visualization as depicted in Fig. 5G and Fig. 5H.
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Algorithm 5: Traversal Cost Model Learning
Input: M2.5D – Elevation grid map; zc1,...,n – Cost measurements.
Output: L – Learning set;R – Regressor;M2.5D – Elevation grid map with measured cost

assignments.
1 while exploration is running do
2 getLatest(M2.5D)
3 M2.5D ← insertIfNovel(M2.5D, z

c
i) // Save novel cost measurements to grid map.

4 L ← ∅ // Initialize learning set.

5 for ν ∈M2.5D : ∃c(ν),∃ ta(ν) do // For each described grid map cell with measured cost.

6 L ← L ∪ (ta(ν), c(ν)) // Add the cell to the learning set.

7 if |L| ≥ nmin
L then // If the learning set is large enough.

8 R ← learn(L) // Learn the GP regressor.

9 reportLatest(L,R,M2.5D)

417

The covariance function used in this work is the squared exponential kernel418

K(x, x′) = σ2s exp

(
−1

2

(x− x′)2

l2

)
, (21)

where σ2s is the output variance, and l is the lengthscale. We consider that the robot’s cost and feature419
models have known ranges based on (20) and the histogram descriptor, respectively. Therefore, similarly420
to Karolj et al. (2020), the kernel hyperparameters l and σ2s , and GP’s σ2ϵ have fixed values that we consider421
to be dependent on the system parameters.422

The GP is continually relearned when new observations using the particular gait g are experienced. The423
learning complexity can be bounded by O(n4), where n is the number of training points. The size of the424
learning set L is limited by using at most one training point corresponding to each cell inM2.5D, and by425
storing measurements only when they are novel and thus likely to improve the model. Hence, the relative426
traversal cost c(ν) experienced at cell ν is paired with the appearance descriptor ta(ν) of the respective427
traversed terrain, and when building the learning set L, the model reports the pair (ta(ν), c(ν)) for each428
cell where both values are available.429

Since the robot keeps only one measurement for each cell, each novel cost measurement zc(ν, ν ′)430
experienced when using the gait g is allocated to the grid map cell ν and its neighbors in 8nb(ν), and the431
traversal cost c(ν) at the cell ν is modeled using Kalman filter with the estimated value and covariance as432

ck =
σ2senseck−1 + σ2k−1z

c
k

σ2sense + σ2k−1

, σ2k =
σ2senseσ

2
k−1

σ2sense + σ2k−1

, (22)

where zck is the k-th cost measurement at ν and σ2sense is its variance. The filter is initialized by the first cost433
observation zc0 at the respective cell, and the initial filter variance is σ20 .434

Two cases are considered as situations when the cost is novel, and thus the model should be improved by435
storing the cost w.r.t. (22): (i) when the prediction is erroneous; and (ii) when the prediction is uncertain.436
For the former, the cost experienced at the cell ν is accumulated if the measured cost zc is out of the437
approximate 95% confidence interval |µ̂c(ta(ν))− zc| > 2σ̂c(ta(ν)) of the prediction at ν. For the latter,438
the approximated information gain of the prediction is considered, and the robot accrues measurements439
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when there is a potential of information gain IC(T (ν)) > 0, which computation is described in the following440
paragraphs.441

4.3.3 Terrain Type Clustering and Goal Identification442

The traversal cost exploration goals ΓgC are selected by the robot as areas where the model can be improved443
and thus are the areas where the traversal cost model is uncertain. Each goal represents a terrain class where444
the robot can sample novel information about the cost model. The overall approach to goal identification is445
summarized in Alg. 6.446

Algorithm 6: Terrain Type Clustering, Goal Identification, and Cost Identification
Input: M2.5D – Elevation grid map;R – Regressor; L – Learning set.
Output: M2.5D – Elevation grid map with cost assignments ΓC – Cost goals; T – Terrain classes.

1 T ← ∅ // Init. terrain class set.

2 ΓC ← ∅ // Init. goal set.

3 while exploration is running do
4 getLatest(M2.5D,R,L)
5 ifR ≠ ∅ then
6 M2.5D, T ← cluster(M2.5D, T ) // Update terrain clusters (Alg. 7).

7 T ← computeInformationGain(R, L,M2.5D, T ) // Compute information gain (Alg. 8).

8 ΓC ← identifyGoals(M2.5D, T ) // Identify goals (Alg. 9).

9 M2.5D ← setPlanningCost(M2.5D, T ) // Identify costs (Alg. 10).

10 reportLatest(M2.5D,ΓC , T ) // Report costs assigned to M2.5D , goals, and class set.

447

Algorithm 7: Cluster
Input: M2.5D – Elevation grid map; T – Terrain classes.
Output: M2.5D – Elevation grid map with class assignments; T – Terrain classes.

1 Procedure cluster(M2.5D, T )
2 A← ∅ // Init. the adaptation dataset.

3 for ν ∈M2.5D : ∃ ta(ν) do // For each described cell on the grid map.

4 A← A ∪ ta(ν) // Add the descriptor to the adaptation set.

5 for ta ∈ draw(A, nIGNG) do // For a randomly drawn subset of the adaptation set.

6 T ← adaptIGNG(T ,ta) // Adapt the IGNG (Alg. 11).

7 for ν ∈M2.5D : ∃ ta(ν) do // For each described cell on the grid map.

8 T ∗(ν)← argminT∈T ∥ ta(ν), ta(T )∥ // Assign its terrain type.

9 M2.5D ← erode(M2.5D) // Erode the classes over the grid map.

10 returnM2.5D, T

448

The clustering scheme presented in Alg. 7 is based on the IGNG, described in Appendix 3 to make the449
paper self-contained. In the neural gas, each neuron is a terrain prototype ta(T ) in the descriptor space450
that represents a terrain class T . When separating the classes, the intuition is that for exponential kernels,451
the length scale describes the range from the data where the model can reliably extrapolate, as used, e.g.,452
in (Karolj et al., 2020). Hence, new classes are inserted into the neural gas when the distance from all453
prototypes exceeds σIGNG = 2l. The neural gas is constructed incrementally by repeated adaptation using454
the appearance descriptors in the environment, where the size of each adaptation batch is limited to nIGNG455
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descriptors that are randomly sampled from all the descriptors, and the yielded terrain classes can be seen456
in Fig. 5I.457

Algorithm 8: Compute Information Gain
Input: R – Regressor; L – Learning set;M2.5D – Elevation grid map; T – Terrain classes.
Output: T – Terrain classes with information gain assignments.

1 Procedure computeInformationGain(R, L,M2.5D, T )
2 HGT

C ← −∞ // Initialize the experienced-terrain uncertainty threshold.

3 for T ′ ∈ T : ∃ν ∈M2.5D, T (ν) = T ′ do // For each terrain class represented on the eroded grid.

4 if |T ′ ∩ L| > mT then // If the class has enough ground truth measurements.

5 HGT
C ← max(HGT

C , H(σ̂2c (ta(T
′)))) // Adjust the experienced-terrain uncertainty threshold.

6 for T ′ ∈ T : ∃ν ∈M2.5D, T (ν) = T ′ do // For each terrain class represented on the eroded grid.

7 IC(T
′)← max(H(σ̂2c (ta(T

′)))−HGT
C ,0) // Compute the information gain.

8 return T // Return the terrain classes with assigned information gains.

458

The terrain classes for which the cost model can be improved are identified using the cost regressor459
R-predicted traversal cost distribution N (µ̂c, σ̂

2
c )(ta(T )) at the class prototypes ta(T ). The traversal cost460

exploration goals are selected according to Alg. 8 as the classes where there is potential for information461
gain; see the visualization in Fig. 5J. The gain is approximated from the prediction entropy462

IC(T ) ≈ max(H(σ̂2c (ta(T )))−HGT
C (L), 0), (23)

where HGT
C is a threshold value associated with the uncertainty of the experienced traversal costs. The463

robot learns when there is potential of information gain IC > 0, and no information can be gained at eroded464
cells IC(∅) = 0. We set the threshold value based on the highest prediction uncertainty for terrains that are465
considered certain since they cover cells that are already in the learning set as466

HGT
C (L) = max

T∈T :|{ν∈M2.5D:T (ν)=T}∩L|>mT

H(σ̂2c (ta(T ))), (24)

where we avoid overconfident GP-predictions for barely sampled terrains by allowing only terrain classes467
with at least mT observed ground truth cost values. The threshold equals the maximum value over such468
ground truth terrain classes.469
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Algorithm 9: Identify Goals
Input: M2.5D – Elevation grid map; T – Terrain classes.
Output: ΓC – Cost model goals.

1 Procedure identifyGoals(M2.5D, T )
2 for T ∈ T : IC(T ) > 0 do // For each terrain class where information can be gained.

3 γC(T )← ∅ // Initialize the sampling site set.

4 for ν ∈ S do // For each cell on the sampling lattice.

5 if ∃ν ′ ∈M2.5D : ∥ν, ν ′∥ <
√
2
2 dS , IC(T (ν

′)) > 0, c(ν ′) = ∅ then // If there is a close enough cell that

has non-zero inforation gain and no measured cost.

6 ν ′′ ← argmin
ν′∈M2.5D:∥ν,ν′∥<

√
2
2 dS ,IC(T (ν′))>0,c(ν′)=∅

∥ν, ν ′∥ // Find the closest such cell.

7 γC(T (ν
′′))← γC(T (ν

′′)) ∪ ν ′′ // And add it to the respective goal as a sampling site.

8 for T ∈ T : IC(T ) > 0, |γC(T )| = 0 do // For each terrain class with information gain but no sampling cell.

9 T ← T /T // Prune the terrain class.

10 return ∪T∈T :IC(T )>0γC(T ) // Return the goal set.

470

The sampling locations (visualized, for example, in Fig. 5J) corresponding to the terrain class are sampled471
along a lattice S with the cellsize dS >> dν as depicted in Alg. 9. For each lattice point pS , the closest cell472

ν in δ(
√
2dS
2 , pS) radius that is not associated with a traverability measurement and that is informative with473

IC(T (ν)) > 0 is reported as a sampling site; if no such cell exists, no site is reported for the lattice point.474
Since only cells without measurements are considered, it is possible for small terrain classes to run out of475
cells before reaching mT measurements. In such a case, the class is considered too small to learn and is no476
longer reported as a goal, and it is pruned from the class set. Beside the goals, the traversal cost ĉCg(ν)477
(visualized in Fig. 5K) is also reported for the ν’s prototype ta(T̂ (ν)) w.r.t. (13) according to Alg. 10.478

Algorithm 10: Set Planning Cost
Input: M2.5D – Elevation grid map; T – Terrain classes.
Output: M2.5D – Elevation grid map with cost assignments.

1 Procedure setPlanningCost(M2.5D, T )
2 M2.5D ← dilate(M2.5D) // Dilate the classes over the grid map.

3 for ν ∈M2.5D do // For each cell.

4 if T̂ (ν) ̸= ∅ then // If the cell has a dilated class.

5 ĉCg(ν)← ĉ(T̂ (ν)) // Report the class cost.

6 else // Otherwise.

7 ĉCg(ν)← cmax // Report the maximum cost.

8 returnM2.5D // Return the map with planning cost assignment.

479

5 EXPERIMENTAL EVALUATION

The proposed exploration with active terrain learning has been examined in simulated trials and real480
experimental deployments using a hexapod walking robot. The simulated and real scenarios have been set481
up so that the robot first explores the environment and learns the cost models using the proposed method482
and, in some tests, a selected baseline method. Then, the performance has been evaluated and compared483
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with the baseline approach by navigating the robot over a sequence of benchmark waypoints using the484
respective traversal cost models of the environment learned during the exploration.485

Table 2. Gait Parametrization
Gait Parameter / Gait Fast Gait Tall Gait

Gait Cycle Duration [s] 1.10 2.90
Step Height [m] 0.04 0.07
Max Forward Speed [ms−1] 0.05 1.25× 10−2

The hexapod walking robot, which can be seen in Fig. 1, is used in the real deployment, and the486
simulation is parameterized to mimic the robot’s motion and sensory capabilities. The robot has six487
legs, each comprising three Dynamixel XM430-W350 servomotors. The robot is equipped with the Intel488
RealSense D435 camera used to construct the colored environment model and the Intel RealSense T265489
localization camera. The onboard computation is provided by the Intel NUC 10i7FNK with Intel Core490
i7 10710U accompanied with 64GB memory, running Ubuntu 18.04 with ROS Melodic (Quigley et al.,491
2009). The robot locomotion is facilitated by a blind adaptive motion gait (Faigl and Čı́žek, 2019). The492
robot uses two particular gait configurations, see Tbl. 2: the fast gait suitable for flat, even surfaces, and493
the tall gait that performs better than the fast gait over rough terrain but otherwise is slower. The robot494
is equipped with a reflex that detects that the robot is stuck with costs exceeding cmax and switches over495
to the tall for ∆tfallback seconds to avoid the robot getting stuck when using the baseline model or at the496
beginning of the learning process. The parameterization of the proposed method can be found in Tbl. 3,497
and the operating frequencies of the proposed method’s processes are depicted in Tbl. 4.498

5.1 Simulated Scenarios499

The simulated scenarios are based on a courtyard environment captured by four 3D scans obtained using500
Leica BLK 360 3D scanner and visualized in Fig. 6A. The scanner has standard deviation of 4mm at 10m,501
and 7mm at 20m. The scans total approx. 1.4× 108 points.502

Two virtual environments are created using the scan: small and large. The small environment represents503
a small section of the courtyard, where the simulated robot mimics the real robot’s speed and sensory504
equipment. It is used to test the benefit of the individual components of the proposed approach by comparing505
them to baseline methods where the particular component is removed or simplified. The large environment506
comprises terrain segments observed in the scan that are rearranged to create a larger, artificial environment507
with obstacles where different exploration algorithms are compared using a faster robot with an extended508
sensor range.509

5.1.1 Small Environment510

The small environment is concerned with a section of the environment that is detailed in Fig. 6B. We511
have created a simulation model of the environment containing several types of pavement (gray, red) and512
turf (green, brown) that are shown in Fig. 6C. The turf is modeled as hard to traverse and can get the robot513
stuck for the fast gait, while the pavement does not impede the robot, see Fig. 6D.514

First, to demonstrate the benefits of using a cost model learned from prior experience, the robot is tasked515
to execute two tours in the environment using the learned cost model and a flat-cost baseline model.516
Second, the utility of exploring along the proposed GTSP-derived path is demonstrated by comparing its517
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Table 3. System Parametrization
Symbol Parameter Unit Value, Split by Environment

Real/Small Sim. Large Sim.

dν Gridmap cellsize m 0.05 0.10
rsensor Sensor range m 2.5 10.00
cradius Spatial clustering radius m 0.50 2.00
cmin cells Spatial clustering, min cells per cluster - 10 10
rrobot Robot footprint radius m 0.25 0.40
ρobstacle Roughness passability threshold m 0.25 0.25
rhist Histogram descriptor radius m 0.25 0.30
∆t Cost measurement window duration s 5.00 1.00
vmax Maximum robot velocity ms−1 0.05 0.25
closs Cost distance-transform per-meter loss − 10.00 / 15.00∗ 7.5
chigh High cost for cost transform − 20.00 20.00
cmax Maximum cost for path planning − 20.00 20.00
σsense Kalman filter cost measurement variance − 0.10 0.10
σ20 Kalman filter initial variance − 1.00 1.00
σs GP output variance − 1.00 1.00
σϵ GP observation noise − 0.50 0.50
l GP lengthscale − 0.40 0.40
nmin
L Minimum learning set size − 25.00 25.00

n
steps
erode Cluster erosion steps − 2.00 2.00
mT Minimum size of a ground truth cluster − 10.00 10.00
dS Cost-model sampling lattice cell size m 0.44 0.44

n
steps
dilate Cluster dilation steps − 3.00 3.00
nsize

dilate Cluster dilation size − 2.00 2.00
ϵIGNG
1 GNG warp scale winner − 1.00× 10−3 1.00× 10−3

ϵIGNG
nb GNG warp scale neighbor − 1.00× 10−5 1.00× 10−5

aIGNG
mature GNG age mature − 1.00× 102 1.00× 102

aIGNG
max GNG max edge age − 50.00 50.00
nIGNG GNG learning batch size − 5.00× 103 5.00× 103

∆tsample Cost sampling duration s 30.00 12.00
∆tfallback Stuck fallback duration s 30.00 3.00
∗ Different value used in small simulation/real deployment.

time to explore the environment with a greedy, myopic baseline, which drives the robot to the cheapest518
goal to reach w.r.t. to the so far learned costs.519

The first tour comprises four waypoints. The robot starts at the bottom-left point and executes the tour520
counter-clockwise until reaching the start location again. Two particular areas are designed to demonstrate521
the utility of the learned model: (i) the segment between the bottom-right and top-right waypoints where522
the robot can choose either a direct route over the turf or a longer path over the pavement; (ii) and the523
area around the top-left waypoint where the turf cannot be avoided and thus the robot needs to switch to524
the tall gait. The second tour comprises 20 points randomly sampled in the environment, and it serves to525
demonstrate the performance of the learned model over a tour that was not handcrafted.526
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Table 4. System Operation Frequencies
Module Frequency Condition

Elevation mapping 5.00Hz
Spatial goal identification 0.33Hz
Cost measurement 20.00Hz Only if using the respective gait.
Cost learning 0.10Hz Only if not already running.
Goal identification 0.10Hz
Goal Sequence Planning 1.00Hz Only after goal set change or reaching a goal.
Path Planning 1.00Hz Only after goal set change or reaching a goal.

(A) (B)

(C) (D)

Figure 6. (A) The 3D scan of the university campus at Charles Square in Prague, (B) and the section of
the courtyard and the respective simulated environment (C) color and (D) relative traversability (light areas
easier to traverse). The red bounding box represents the area where the robot should explore. The blue
points are the points to be visited by the robot in the first test tour.

Besides the proposed approach and the baseline, in the simulated tests, we also deploy a hybrid gait527
selection approach that chooses its gait using the proposed model but does not plan its path w.r.t. the528
predicted costs and walks directly to the next waypoint. Unlike the baseline approach, which switches529
to the tall gait when stuck and repeatedly tries to switch back to the fast gait, the hybrid gait selection530
approach switches gaits only when approaching or leaving the terrain identified as hard to traverse by531
the model. Hence, it should outperform the baseline over longer sections on difficult terrains, where the532
baseline is slowed down by trying to switch back to the fast gait.533
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The simulation environment consists of the Intel i7-9700 3.00GHz with 32GB memory running Ubuntu534
18.04 with ROS Melodic. Since the captured environment comprises terrains that might slow down the535
robot because they are somewhat non-rigid, instead of using a geometry-based simulator such as Gazebo,536
which cannot model such terrains, we elect to build a virtual environment over a simple simulator using537
real-world data. The simulation is performed using the Simple Two Dimensional Robot Simulator (STDR) 3538
within the ROS ecosystem. On top of the simulator, we have implemented an interface that simulates the539
robot’s RGB-D camera, which assigns each point in the robot’s simulated exteroceptive measurements color540
based on the point’s position in the environment color map shown in Fig. 6C, and filters the measurements541
to contain only points within the 87 deg wide field of view of the simulated RGB-D camera. The terra-542
mechanical properties are simulated by slowing down the robot over the individual traversed terrains w.r.t.543
the performance observed over such terrain in a real-world deployment, as shown in Fig. 6D.544

In the evaluation, the robot first explores and learns the models shown in Fig. 7A to Fig. 7I. An example545
exploration path can be seen in Fig. 7J. The robot learns that the turf, which appears either green or brown,546
cannot be traversed by the fast gait and thus selects the tall gait over that terrain type. On the other hand,547
the pavement does not hinder the fast gait, which is considerably faster and thus preferred.548

Although the two gait models create the terrain clusters independently, the clusters in Fig. 7E and Fig. 7H549
differ only in cluster indices used in the internal representation (each index is associated with a different550
color in the visualization). It can be observed that the robot does not use any clusters associated with the red551
line on the pavement, either removing the thin cluster outright in the erosion or pruning the small erosion552
remains after the robot finds out that it cannot get enough samples to learn such a small terrain.553

In the particular exploration run shown in Fig. 7J, the robot first walks along the left side of the exploration554
bounds, learning the fast gait costs for both the pavement and turf and the tall gait cost over the turf. Then,555
the robot learns the tall gait cost over the pavement while clearing the spatial exploration goals. During the556
exploration, it can be seen that the robot avoids walking over the remaining turf, only approaching it at the557
very end of the exploration. Thus, the robot needs only to enter and not leave the turf (minimizing the time558
on the costly terrain) to reach the goal that lies on the turf.559

The test runs using the baseline, and the learned model over the first tour are shown in Fig. 7K and560
Fig. 7L, respectively. Besides, the development of the tours that would be used at different points during561
the exploration can be seen in Fig. 7M through 7O. In the baseline test, the robot walks directly between562
the waypoints and only switches to the tall gait after getting stuck. On the other hand, when using the563
learned model, the robot avoids the turf if possible and switches to the tall gait before entering the turf564
while pursuing the top-left goal.565

The performance over 25 simulated trials (5 exploration runs, each with 5 tour tests for the tour tests; 25566
runs for the simulated exploration tests) can be observed in Tbl. 5. On the first tour, the hybrid gait selection567
approach is slower than the reactive baseline. In the authors’ opinion, it is caused by the conservative568
(large) value of rrobot, which compels the robot to use the slow tall gait on the border between the rough569
terrain and pavement, while the reactive approach only tries to switch back to the fast gait (which is its570
main disadvantage when compared to the hybrid approach) a few times on the short rough terrain segment.571
Nonetheless, the proposed learned model knows to avoid such areas and performs better or the same as572
the other approaches over every tour segment. Hence, the results suggest that robot benefits from using573
the learned costs in path planning. Over the second tour, the robot performs similarly. The learned model574
outperforms the baseline when moving around or over the turf. Both approaches exhibit similar travel times575

3 http://stdr-simulator-ros-pkg.github.io
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Figure 7. The environment assessment after the simulated scenario run with regards to both gaits; (A)
dominant color in the histogram feature; (B) merged cost used for planning; (C) selected gait (fast in red,
tall in purple); (D) costs used for learning the fast gait model (adjusted by hyperbolic tangent in (20)),
visualized over the terrain appearance; (E) clusters used in the fast gait model (arbitrary colors used
to distinguish clusters); (F) fast gait cost predictions assigned by the dilated clusters. (G) costs used
for learning the tall gait model (adjusted by hyperbolic tangent using (20)), visualized over the terrain
appearance; (H) clusters used in the tall gait model (arbitrary colors used to distinguish clusters); (I)
tall gait cost predictions assigned by the dilated clusters. (J) exploration run; (K) test-tour run using the
baseline model without the learned traversal costs; (L) test-tour run using the learned traversal costs. The
development of the path through the fully discovered simulated environment during the exploration; (M) at
the beginning of the exploration, the robot uses flat costs and thus does not avoid difficult terrains; (N) after
learning the costs for the fast gait, the robot is too cautious and avoids going near the costly turf; (O) after
learning the tall gait costs, the robot is less cautious and is willing to walk near difficult terrain.

when the direct path between the waypoint leads only over the pavement. Unlike over the first tour, the576
hybrid gait selection performs better than the baseline approach, presumably due to longer sections over577
hard-to-traverse terrains on the second tour. The proposed approach consistently outperforms the baseline578
and hybrid gait selection approaches; we conclude that the robot benefits from using the learned model.579

Besides the tour tests, the results suggest that the robot benefits from using the non-myopic GTSP580
planner compared to the myopic greedy approach. Even though the performance of the two approaches581
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Table 5. Performance as the time (total cost) in seconds to traverse

Small Virtual Environment, Tour 1 (mean ± std of 25 runs)
Method/Time [s] Segment 1 Segment 2 Segment 3 Segment 4 Full Tour
Baseline 79.99± 0.00 239.59± 6.62 133.20± 6.76 177.59± 13.04 630.39± 21.06
Gait selection 80.00± 0.00 275.00± 8.06 125.49± 7.39 164.00± 7.39 644.50± 7.34
Proposed 80.00± 0.00 119.99± 0.00 112.40± 4.27 142.40± 4.27 454.80± 4.27

Small Virtual Environment, Tour 2 (25 runs) Small Virtual Env., Exploration (5 runs)
Method/Time [s] Full Tour Environment Time [s]
Baseline 2748.00± 30.59 GTSP 1382.68± 241.47
Gait selection 2523.12± 39.48 Greedy 1547.16± 203.71
Proposed 2271.99± 33.38

Large Virtual Environment (mean ± std of 5 runs) Real Deployment
Method Full Tour Time [s] Exploration Time [s] Test Time [s]
Proposed 554.00± 13.56 1167.15± 163.69 Test Segment, Baseline 454.00
Spatial-only 859.99± 156.02 545.40± 137.43 Test Segment, Proposed 143.00

Exploration, Proposed∗ 1364.00
∗ The similarity between the real and simulated times to explore is coincidental.

appears relatively close, the Mann-Whitney U Test (Mann and Whitney, 1947) rejects the null hypothesis of582
the same exploration time distribution at 99.5% confidence against both the two-sided and the relevant583
one-sided alternative. In the authors’ opinion, the high variance in the observed exploration times can be584
attributed to the effect of random chance in exploration since neither myopic nor non-myopic approaches585
are informed about the terrains in unexplored areas. However, the myopic explorer is more likely to make586
a bad decision, such as not clearing some of the goals in a particular area that needs to be visited later.587
Therefore, the proposed non-myopic approach performs better overall.588

5.1.2 Large Environment589

The large environment is an artificial 20× 25m outdoor/indoor scenario. The map comprises patches590
from the courtyard scan rearranged as shown in Fig. 8. Given the size of the environment, the robot is591
sped up 5 times. The cell size is increased to 0.1m, and other parameters are adjusted accordingly, see592
Tbl. 3. Besides, the robot uses an omnidirectional sensor with the increased range of 10m, which expands593
the range of terrains that can be observed without the respective terrain’s traversal. To accommodate the594
simulation of the increased sensor range, the virtual environment is run on AMD Ryzen Threadripper595
3960X 3.8GHz with 48GB memory running Ubuntu 18.04 and ROS Melodic, using STDR in the same596
manner as for the small environment.597

Similar to the small environment, the robot is first set to explore the environment and then is tasked598
to visit the set of waypoints shown in Fig. 8C. The proposed algorithm is compared to a spatial-only599
baseline approach, which learns the cost models only as a result of experiencing cost while pursuing spatial600
exploration goals. The spatial-only changes the gaits in a reactive fashion when stuck and hence only learns601
the model for the tall gait if it enters the difficult green or brown turf during the exploration.602

The quantitative results for the large environment are shown in Tbl. 5. Since the proposed approach603
actively tries to sample every terrain type, it is slower to explore the whole environment. However, the604
proposed approach performs better in the tour evaluation. Closer examination suggests that while the605
tour times of the proposed approach remain similar in all trials, the spatial-only times vary wildly since606
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Figure 8. The large simulated environment (A) color and (B) relative traversability, (C) and the test
tour through the environment, which starts at the starred node and is counter-clockwise. The built maps
of the large simulated environment: (D) geometric map and (E) merged costs used for planning after
exploration using the proposed approach; merged costs ofter exploration using the spatial-only model
while (F) avoiding and (G) traversing rough terrain, respectively.

Frontiers 29
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the learned models differ based on which terrains the robot has traversed during the exploration. This607
randomness can be attributed to differences in simulation and plan execution. Besides, Fig. 8D-G shows608
the learned maps for the proposed model, and for the spatial-only model in both the cases when the rough609
terrain was and was not traversed. For the case when a rough terrain was traversed by the spatial-only610
model, the costs differ between the individual rough areas. However, the ground truth costs shown in611
Fig. 8B suggest that they should be the same, as is the case for the proposed model. Likely, this is caused612
by the robot traversing only the brown-green rough terrain located on the left of the environment. The green613
terrain, located in the center and right of the environment, appears somewhat similar to the brown-green614
terrain. Hence, the robot considers it to be difficult to traverse to a certain degree. However, since the615
spatial-only model does not deliberately sample the terrains, the model’s guess differs somewhat from the616
exact cost to traverse the particular terrain, decreasing the fidelity of the predictions.617

Overall, the presented results suggest that the proposed approach presents a tradeoff in terms of exploration618
and execution time: the longer time spent exploring the environment and learning the cost models provides619
the robot with better cost maps, which shorten the time to navigate the environment after it is explored. It620
should be noted that since the behavior of the spatial-only model is affected by random chance (differences621
in simulation and plan execution), it can provide models as good as the proposed approach. However, there622
is no guarantee that this would happen regularly, while the proposed approach has returned high fidelity623
maps in every test case.624

5.2 Real Robot Experimental Deployment625

The viability of the proposed approach is demonstrated in the real experimental deployment, where the626
robot explores an indoor 2 × 6m area visualized in Fig. 9. The office-like environment comprises flat627
synthetic terrain that is easy to traverse but appears to the robot differently colored at different locations628
since it is glossy and carries the color of nearby objects located next to the arena. When building the629
colored elevation mapM2.5D, we use the first color observed at each location to account for the issue.630
Besides the flat terrain, green artificial turf is placed in a part of the test area to provide a relatively hard631
terrain to traverse. The robot interacts with the real terrains similarly to the simulation: the fast gait may632
get stuck on the turf but is faster than the tall gait over the flat parts of the arena. During the experiment,633
the robot is set to explore the area; even though it can leave the bounds of the 2m× 6m large area, it does634
not pursue goals located outside of the bounds.635

Fig. 10 shows the maps learned in the experimental run, which is also presented in the accompanying636
video. A colored map of the environment is depicted in Fig. 10A. The overall costs and selected gaits637
through the environment are shown in Fig. 10B and Fig. 10C, respectively.638

During the experimental deployment, the robot first learns the largest gray appearing flat terrain using639
the fast gait. Then, it learns on the turf for both gaits and returns to the gray area to learn for the tall gait.640
Afterward, the robot pursues the yet unvisited spatial goals and smaller off-color terrain clusters that appear641
near the environment boundary and are caused by the glossy floor that carries the color of the nearby642
objects.643

Compared to the simulation, the robot needs a larger amount of the measurements to learn the terrains644
(see Fig. 10D and Fig.10G) and there are more terrain clusters (see Fig. 10E and Fig. 10H). It suggests645
that the real environment is noisier and contains multiple differently colored areas, which is in line with646
our observations regarding the glossy floor material. Nevertheless, the traversal costs learned by the robot647
for the individual gaits (see Fig. 10F and Fig. 10I) are within expectations, as is the overall planning cost648
depicted in Fig. 10B and gait selection visualized in Fig. 10C.649
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Figure 9. Deployment 2m× 6m large area with a green artificial turf. The area boundary is in red, and
the waypoints of the test tour are depicted in blue. The shown robot is at the starting position.

The test run scenarios are set up similarly to the tours used in the simulated test; the robot is placed in650
front of the hard-to-traverse turf and tasked to reach a goal location behind the hard-to-traverse terrain,651
slightly out of the exploration bounds, see Fig. 9. The paths shown in Fig. 10K and Fig. 10L show that652
when using the baseline without the learned model, the robot tries to reach the goal directly over the turf,653
gets stuck, and needs to switch to the slow tall gait. On the other hand, when using the learned model, the654
robot avoids the hard-to-traverse areas and reaches its goal quickly using the fast gait. The performance in655
the presented run can be seen in Tbl. 5. Overall, we conclude that the real deployment confirms that the656
robot can actively learn the traversability as a part of the exploration mission and benefits from using such657
learned models.658

6 DISCUSSION

The presented exploration system is proposed as a combination of spatial geometric modeling and learning659
terrain-gait traversal cost models. However, the system is designed to support additional models that do660
not describe the robot’s traversal cost. Moreover, since the models are kept separate, there is no need to661
use the same feature set for each of them. Therefore, the approach is compatible with spatial models such662
as magnetism models (Karolj et al., 2020) or GP-based occupancy (Wang and Englot, 2016). The only663
requirement for a model is that it produces a set of learning goals in the environment that are resolved once664
particular information is sampled. Hence, the proposed system can be extended by including additional665
traversability models, such as modeling the passability of potentially non-rigid obstacles.666

Besides, we approach the traversal cost prediction so that it supports any cost model that is additive along667
the traversed path, such as time to traverse or consumed energy. In addition, individual cost predictors668
describe the gaits of a hexapod walking robot, but they can also describe any discrete set of robot669
configurations. Hence, the approach is viable for any mobile robot that describes its motion experience670
using an additive cost and can also be used to model the energy a tracked robot consumes, e.g., with671
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Figure 10. The environment evaluation and the real robot exploration run; (A) the dominant color in the
histogram feature; (B) merged cost used for planning; (C) selected gait (fast in red, tall in purple); (D)
costs used for learning the fast gait model (adjusted by hyperbolic tangents), visualized over the terrain
appearance; (E) clusters used in the fast gait model (arbitrary colors used to distinguish clusters); (F)
fast gait cost predictions assigned by the dilated clusters. (G) costs used for learning the tall gait model
(adjusted by hyperbolic tangents), visualized over the terrain appearance; (H) clusters used in the tall gait
model (arbitrary colors used to distinguish clusters); (I) tall gait cost predictions assigned by the dilated
clusters. (J) exploration run; (K) test-tour run using the baseline model without the learned traversal costs;
(L) test-tour run using the learned traversal costs.

adjustable flippers. A particular limitation of the cost modeling used in the presented approach is that we672
assume that the individual gaits are switched for free w.r.t. the cost (i.e., instantaneously for cost modeled673
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as the time to traverse), while in practice, the gait requires some time to exhibit its properties. In this paper,674
we leave the question of how to predict gait-change cost open for future work.675

The used cost model goal generation stems from the idea that adding new observations does not increase676
GP uncertainty if the hyper-parameters are fixed (Rasmussen and Williams, 2006). Therefore, sampling677
new measurements should not increase uncertainty and thus not spawn new goals in areas containing none.678
In practice, even though we use fixed GP hyper-parameters, the non-increasing nature of the uncertainty679
does not strictly hold for the approximated information gain since, in addition to the GP hyper-parameters,680
the information gain also depends on the terrain clusters and the costs and descriptors in the learning set, all681
of which might drift during the exploration. However, the robot behavior demonstrated in both evaluation682
setups shown in Fig. 7J and Fig. 10J suggests that the assumption holds in general. The robot clears the683
areas corresponding to the individual terrains (goals) and is not compelled to return to previously visited684
areas.685

The primary limitation of the proposed approach is identified in its inability to compare the utility of the686
goals originating from the different models. We are motivated to build a modular system that would support687
different model types; therefore, the proposed decoupled approach considers each goal equally valued,688
regardless of the source model. This limits how the models are used since the goal utility, such as the689
information gain, is relegated to be used only inside the particular model to determine which environment690
features (locations or terrain types) are goals to use in creating an instance of the GTSP. The proposed691
approach provides a non-myopic solution to visit the goals reported by the individual models, where the692
models are also non-myopic since each can report multiple goals. Myopic models that would report their693
respective highest utility goal (potentially with multiple sampling sites) can be used. However, similarly to694
the myopic planner with the results reported in Tbl. 5, the time to explore would likely increase since the695
GTSP planner would lack the information on where to go after the current goals are sampled, and thus the696
exploration path would often change significantly. Integrating goal utility into the decoupled planning and697
using alternative utility functions such as the GP-UCB remains the subject of future work.698

7 CONCLUSION

In this paper, we present a system for autonomous mobile robot exploration that incorporates active learning699
of traversal cost models in addition to spatial model building. During the exploration, the robot builds700
the spatial geometric model of the environment and learns the traversal cost models, each comprising a701
Gaussian Process regressor and a Growing Neural Gas terrain clustering scheme. The geometric model702
is used to determine areas passable by the robot, while the cost models predict the traversal costs over703
the passable terrains from the terrain’s appearance. Each cost model corresponds to a particular hexapod704
walking robot locomotion gait. The robot approaches exploration in a decoupled manner, creating a set705
of goals for the spatial exploration and for each traversal cost model. The exploration path is planned by706
solving an instance of the Generalized Traveling Salesman Problem over the goals that are sets of possible707
sites of visits to improve the particular model. The proposed system has been evaluated in simulation setup708
and real experimental deployment with two different walking gaits. The results suggest that the proposed709
system yields the robot to explore the environment and learn the traversal cost models. The learned models710
benefit the robot’s operation in the environment. In future work, we plan to model the gait change costs,711
include additional traversability models such as obstacle rigidity, and extend the proposed approach to712
support goal utility and exploration-exploitation models.713
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1 TERRAIN CLUSTER EROSION AND DILATION

In practice, it is not desirable to place cost exploration goals at the boundaries of terrains classes because,914
in such areas, a real robot with the imprecise path following might fail to traverse the correct terrain, and915
the descriptors in such areas might be distant from the prototype ta(T ). Besides, it might not be possible to916
acquire enough samples to learn the traversal cost on a small terrain area of a particular class. Hence, after917
assigning the terrain classes to cells, we erode cells that border different (or already eroded) terrain class918
using919

T−−(ν) =

{
T−(ν) if ∀ν ′ ∈ 8nb(ν) : T−(ν) = T−(ν ′),

∅ otherwise,
(25)

where ∅ is the eroded non-class terrain, T− and T−− are the class assignments before and after an erosion920
step, respectively, and the erosion process is repeated nsteps

erode-times.921

As a result of the erosion, some cells are assigned the eroded non-class ∅ with no prototype to use.922
Hence, when assigning cost predictions for path planning, we first dilate the terrain classes by selecting the923
most common class in the vicinity as924

T++(ν) =

argmaxT∈T
∑

ν′∈8nbn
size
dilate(ν)

|T = T+(ν ′)| if ∃ν ′ ∈ 8nbn
size
dilate(ν) : T+(ν ′) ̸= ∅,

∅ otherwise,
(26)

where 8nbn
size
dilate is the nsize

dilate-times repeated neighborhood function 8nb, T+ and T++ are the class925

assignments before and after a dilation step, respectively, and the dilation process is repeated nsteps
dilate-times.926

2 GAUSSIAN PROCESS REGRESSION

Assuming function f(x) that is observed with the noise ϵ927

y = f(x) + ϵ, ϵ ∈ N (0, σ2ϵ ), (27)

Gaussian Process (GP) is defined as the distribution928

f(x) ∼ GP(m(x), K(x, x′)), (28)

where m(x) is the mean929
m(x) = E [f(x)] , (29)

and K(x, x′) is the covariance930

K(x, x′) = E
[
(f(x)−m(x))

(
f(x′)−m(x′)

)]
. (30)

Given the training data X , the GP regressor’s predictions and the query X∗ are931

µ(X∗) = K(X,X∗)
[
K(X,X) + σ2ϵ I

]−1
y,

(σ(X∗))
2 = K(X∗, X∗)

−K(X,X∗)
T
[
K(X,X) + σ2ϵ I

]−1
K(X,X∗),

(31)
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where K(X,X ′) is the covariance function.932

3 INCREMENTAL GROWING NEURAL GAS

The Incremental Growing Neural Gas (IGNG) is a soft-computing clustering approach proposed by Prudent933
and Ennaji (2005). The approach builds on the Growing Neural Gas (GNG) (Fritzke, 1994), which adapts934
a graph topology to continually provided measurements. However, unlike the GNG, which is enlarged after935
a fixed number of measurement adaptation steps, the IGNG is only grown when adapting to a value x that936
is out of the bounds of the current structure.937

Algorithm 11: Incremental Growing Neural Gas: Adaptation
Input: Ω – IGNG structure with terrain classes T ; x – Adapted measurement for the terrain

descriptor ta.
Output: Ω – IGNG structure for the terrain classes T ).

1 Procedure adaptIGNG(Ω, x)
2 ω1 ← argminω∈Ωneurons ∥x, ω∥ // Find the closest neuron to the adapted measurement.

3 ω2 ← argminω∈Ωneurons/ω1 ∥x, ω∥ // Find the second closest.

4 if |Ωneurons| = 0 ∨ ∥x, ω1∥ > σIGNG then // If there are no neurons or the closest is too far.

5 Ωneurons ← Ω ∪ ωnew, ωnew = x // Add the measurement as a new neuron.

6 else
7 if |Ωneurons| = 1 ∨ ∥x, ω2∥ > σIGNG then // If there is only 1 neuron or the second closest is too far.

8 Ωneurons ← Ωneurons ∪ ωnew, ωnew = x // Add the measurement as a new neuron.

9 Ωconnections ← Ωconnections ∪ (x, ω1) // Connect the new neuron with the closest.

10 else
11 ω1 ← ω1 + ϵIGNG

1 (x− ω1) // Warp the closest neuron to the measurement.

12 for ωnb ∈ nb(ω1) do // For each neighbor of the closest neuron.

13 ωnb ← ωnb + ϵIGNG
nb (x− ωnb) // Warp it to the measurement.

14 a(ω1, ωnb)← a(ω1, ωnb) + 1 // And age their connections.

15 if (ω1, ω2) ∈ Ωconnections then // If the first and closest are connect.

16 a((ω1, ω2))← 0 // Reset the connection age.

17 else
18 Ωconnections ← Ωconnections ∪ (ω1, ω2) // Otherwise insert new connection.

19 for ωnb ∈ nb(ω1) do // For each neighbor of the closest neuron.

20 a(ωnb)← a(ωnb) + 1 // Age the neighbor.

21 for (ωa, ωb) ∈ Ωconnections : a((ωa, ωb)) > aIGNG
max do // Find too old connections.

22 Ωconnections ← Ωconnections/(ωa, ωb) // And remove them.

23 for ω ∈ Ωneurons : a(ω) ≥ aIGNG
mature do // Find isolated mature neurons.

24 if ¬∃ω′Ωneurons : (ω, ω
′) ∈ Ωconnections then // And remove them.

25 Ωneurons ← Ωneurons/ω

26 return Ω

938
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The IGNG adaptation is summarized in Alg. 11, and it operates as follows4. The algorithm keeps a graph939
of neurons (graph vertices) and their connections (graph edges) and keeps an age value for each neuron and940
connection. When adapting to a new measurement x, the algorithm first finds the closest neuron ω1 and the941
second closest neuron ω2. If the graph is empty or the closest neuron is too far with ∥x− ω1∥ > σIGNG, a942
new embryo neuron ωnew with the age a(ωnew) = 1 is inserted at x. If ω1 is close enough, but the second943
closest ω2 is not, or there is only one neuron in the graph, a new neuron is also inserted at x. Moreover, an944
edge between the new neuron and ω1 is inserted into the graph with the age a((ω1, ωnew)) = 0.945

If both ω1 and ω2 are close enough, ω1 and all of its neighbors (neurons with an existing connection to946
ω1) are warped towards x by ϵIGNG

1 and ϵIGNG
nb , respectively. Then, if there is already a connection between947

ω1 and ω2, its age is set to 0. Otherwise, the connection is created. Next, the ages of all neighbors a(ωnb)948
of ω1 and their respective connections a((ω1, ωnb)) are incremented by one.949

After adapting to the measurement, the graph is pruned to remove old connections and isolated neurons.950
In general, it is desirable for neurons to be old (since measurements were often observed near then) and for951
connections to be young (since measurements were recently observed along the edge). First, we identify952
neurons that are mature with a(ω) ≥ aIGNG

mature. Then, connections that are too old with a((ω, ω′)) > aIGNG
max953

are removed from the graph. If it leads to isolated mature neurons, these are also removed.954

4 The herein presented description is limited to the basic operation of the algorithm and omits its use for semi-supervised labeling since it is not used in the
presented work. We refer the interested reader to Prudent and Ennaji (2005).
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