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ABSTRACT2

A repetitive movement pattern of many animals, a gait, is controlled by the Central Pattern3
Generator (CPG), providing rhythmic control synchronous to the sensed environment. As a4
rhythmic signal generator, the CPG can control the motion phase of biomimetic legged robots5
without feedback. The CPG can also act in sensory synchronization, where it can be utilized6
as a sensory phase estimator. Direct use of the CPG as the estimator is not common, and7
there is little research done on its utilization in the phase estimation. Generally, the sensory8
estimation augments the sensory feedback information, and motion irregularities can reveal from9
comparing measurements with the estimation. In this work, we study the CPG in the context of10
phase irregularity detection, where the timing of sensory events is disturbed. We propose a novel11
self-supervised method for learning mistiming detection, where the neural detector is trained by12
dynamic Hebbian-like rules during the robot walking. The proposed detector is composed of three13
neural components: (i) the CPG providing phase estimation, (ii) Radial Basis Function neuron14
anticipating the sensory event, and (iii) Leaky Integrate-and-Fire neuron detecting the sensory15
mistiming. The detector is integrated with the CPG-based gait controller. The mistiming detection16
triggers two reflexes: the elevator reflex, which avoids an obstacle, and the search reflex, which17
grasps a missing foothold. The proposed controller is deployed and trained on a hexapod walking18
robot to demonstrate the mistiming detection in real locomotion. The trained system has been19
examined in the controlled laboratory experiment and real field deployment in the Bull Rock cave20
system, where the robot utilized mistiming detection to negotiate the unstructured and slippery21
subterranean environment.22

Keywords: locomotion, central pattern generator, hebbian learning, phase estimation, radial basis function neuron, reflexes, hexapod23
walking robot, bio-inspired robotics24

1 INTRODUCTION

Maintaining fluent gait motion in a body with a high degree of freedom while continually reacting to terrain25
irregularities is a challenging problem that, however, can be observed in nature (Bekey, 1996). During26
the gait, the legged locomotion control sustains the regular repetitive motion using reflexive reactions27
triggered by detected motion irregularities. In nature, animals demonstrate stunning adaptability to motion28
disruptions through reflexes (Pearson and Franklin, 1984; Duysens et al., 2000). Many of such reflexes29
are wired in neural circuits located close to the legs inside the vertebrates’ spine or thoracic ganglia of30
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many invertebrates. The spinal neural circuits must recognize an irregularity in the locomotion through31
proprioception to trigger a reflex (Bekey and Tomovic, 1986). Hence, the irregularity recognition needs a32
model of regularity to which a measured state is compared. In this work, we focus on phase irregularities,33
where the timing of the measured event is compared to its estimate. The tool for phase modeling is a neural34
structure that centrally generates rhythms, the Central Pattern Generator (CPG).35

CPGs play an essential role in gait locomotion control. The CPG’s rhythmic patterns are combined with36
the sensory-motor neural circuits and stabilize the gait periodicity. The CPG activity and spinal neural37
control can generally be controlled by descending (e.g., from the brain) signals. Interestingly, the locomotion38
can be sustained without the brain’s participation and sensory input in virtual locomotion (Brown, 1912),39
since the CPG sustains its rhythmic signals even if it is disconnected from its sensors and effectors. That40
suggests the CPG can work in an open-loop mode, and thus the CPG provides the motor control even41
without input excitations. On the other hand, if the CPG is synchronized to the sensory signals, the CPG42
acts as an estimator of the sensory phase (Kuo, 2002).43

We can identify that some signals are tightly coupled to the gait motion and thus inherit the gait period,44
such as swing stop or ground contact. The CPG that synchronizes to such a periodic signal continually45
estimates the signal phase. The estimated and measured sensory phase should be the same during a regular46
motion. However, a regular motion disturbed by unexpected dynamics, elevations, and depressions can47
induce disturbances in the sensory signal. Hence the motion irregularities can be detected by comparing48
the measured sensory phase with its estimation (Miall and Wolpert, 1996). Any difference between the49
timing of the measured and estimated sensory events can be utilized for mistiming detection (Goldschmidt50
et al., 2014), which is insufficiently researched within the context of plastic CPG-based neural networks.51

In this paper, we propose a trainable CPG-based event mistiming detector integrated into gait controller52
architecture introduced in (Szadkowski and Faigl, 2020). Unlike common architectures that model the53
phase of sensed (input) signal and motor (output) signal with one CPG, the employed architecture models54
each signal with either the motor CPG, generating the motor signal phase, and sensory CPG, estimating the55
phase of the sensory signal. We propose to utilize the sensory CPG for the detection of irregularities in the56
sensory phase. We couple a plastic Radial Basis Function (RBF) neuron to each sensory CPG, which learns57
to anticipate sensory events. The difference in timing of anticipated and measured events is the phase error.58
The error is integrated by Leaky-Integrate-and-Fire (LIF) neuron, which learns to distinguish the regular59
phase error induced by regular measurement imperfections, and fires on irregular phase error detecting the60
event mistiming. Two types of event mistiming are distinguished: event absence, which occurs when the61
sensory event is delayed, and event disruption occurs when the sensory event is too early; see Fig. 1. Both62
types of event mistiming are detected by the proposed CPG-based mistiming detector that augments the63
sensory feedback information.64

We demonstrate the benefits of the proposed mistiming detector using the detection as a trigger of two65
reflexes: the elevator and search reflexes. The elevator reflex elevates the leg to avoid an obstacle detected66
during the leg swing phase. The search reflex is a behavior where the leg searches for supporting ground67
after not detecting the expected support at the end of the swing phase. Hence, the elevator reflex is triggered68
by the early stop of the swinging leg, and the escape reflex is triggered by ground contact absence. Finally,69
even though the focus of this work is plastic mistiming detection, we also extend the motor control of our70
previous work to control multiple motion phases with position and maximum torque commands.71

The proposed CPG-based controller is deployed on a real hexapod walking robot. The robot is trained72
to walk tripod gait on flat terrain. First, the robot self-learns to estimate the sensory phase needed for73
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Figure 1. (A) The utilized hexapod walking robot in Bull Rock cave. The unstructured environment causes
motion disturbances, which result in sensory event mistiming. The sensory phase φx measurement is
compared to its estimation φ̂x, where their difference is the phase error e. We distinguish two types of
phase error: event absence, φx > φ̂x, and disruption, φx < φ̂x. An example of event absence is illustrated
in (B), where at the beginning of the stance phase, the front leg finds itself in a depression (orange dot) and
thus detects the ground contact later than expected (blue dot). In the disruption example (C), at the end of
the swing phase, the front leg hits elevated terrain (orange dot) and thus detects the ground contact sooner
than expected (blue dot).

mistiming detection in a regular environment. Then, we demonstrate the mistiming detector by guiding the74
robot over elevations and depressions in two scenarios. In the first scenario, the robot walks in a controlled75
environment, where the detections are isolated and thus easily observable. The second scenario tests the76
proposed controller’s limits in the Bull Rock cave system, which provides highly unstructured terrain77
depicted in Fig. 1A.78

The rest of the paper is organized as follows. The following section is dedicated to related work. In79
Section 3, the phase estimation problem is described within the context of gait control and the theoretical80
foundations for the event mistiming detection. The CPG-based controller is presented in Section 4, where81
the sensory prediction and mistiming detection system is described, followed by the description of the82
motor control and reflex system. The experimental deployment is described in Section 5 and further83
discussed in Section 6. Finally, the paper is concluded in Section 7.84

2 RELATED WORK

CPG-based gait controllers were proposed for many robots and body models, where the controller85
implementations vary in architecture. In this section, we provide a brief overview of existing related86
CPG-based controller architectures. In particular, we focus on whether the CPG represents the phase of a87
sensory signal (input), motor/control signal (output), or both. Existing CPG-based controllers primarily use88
the CPG as a generator of the motor phase. For example, the CPG in the controller presented in (Maufroy89
et al., 2008) determines whether the leg is in the extension or flexion phase to select a subnetwork that90
controls the respective actuator. Similarly in limbless locomotion, a chain of coupled CPGs controls91
the flexion rhythm of each servomotor in a modular lamprey-like robot (Li et al., 2014). Locomotion92
patterns can be changed by altering the parameters of the CPG. In (Yu et al., 2020), the frequency of93
the CPG oscillation is temporarily increased as a part of reflexive behavior, where the leg performs fast94
spiral motions. Switching the topology of coupling between CPGs changes the gait pattern, which is used95
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in (Wang et al., 2014) where CPG network generates multiple gaits for a fish-like robot, such as forward96
and backward swimming and turning. Besides the motor signal generation, a CPG can also be used as a97
sensory phase estimator. A CPG that is entrained by a periodic sensory signal can become synchronized98
with the signal where the phases of the CPG and its entraining signal evolve at the same rate (except for a99
short transient behavior) (Pikovsky et al., 2001). In (Kuo, 2002), Kuo proposes the CPG synchronization to100
model the sensory signal phase continuously. He showed that the actuator controller, which uses the CPG’s101
sensory estimate, is more stable than a controller using a raw sensory signal.102

The difference between a motor CPG and a sensory CPG is that the former represents an actuator phase,103
while the latter represents a phase of the entraining sensory signal. Assuming the sensor and motor phases104
are the same, a single CPG can represent both phases. In (Yan et al., 2017), it is assumed that the gait phase105
is a function of the sensory phase, e.g., a function of the hip joint angle. Thus the gait phase is estimated106
by the CPG synchronized to sensory events, such as maximum hip flexion. The functional dependence107
between the sensory and motor variables is implicitly assumed by synchronizing the CPG to the sensory108
input and using the same CPG as the motor phase generator (Righetti and Auke Jan Ijspeert, 2006; Endo109
et al., 2004; Fukuoka et al., 2003). However, such an architecture needs some prior knowledge about the110
robot morphology, where it must be determined which motors and sensors are functionally dependent.111
On the other hand, the morphology agnostic approach is not to assume any functional dependence and112
model each phase, be it sensory or motor, with its respective CPG. The controller presented in (Héliot and113
Espiau, 2008) is composed of a layer of the sensory CPGs estimating the phase that is fused and fed into114
the central motor CPG, which controls the gait phase. A more general approach is presented in our previous115
work (Szadkowski and Faigl, 2020), where both the sensory and the motor variables have their own CPGs116
forming a layer of sensory CPGs, which is connected to a layer of the motor CPGs. Hence, the CPGs in117
biomimetic controllers have two basic roles: motor phase generator and the sensory phase estimator. In the118
rest of this section, we focus on the sensory CPGs only, as the proposed approach enriches their utilization.119

A sensory model that estimates the sensory state can help in the detection of motion disturbances. In120
the context of animal locomotion, such disturbances can be small obstacles, depressions, slippage, and121
others, to which the animal reacts with reflexes documented in (Pearson and Franklin, 1984) and (Duysens122
et al., 2000). The reflexes are triggered by proprioceptive events such as increased load on a muscle or123
tensile sensing (Bekey and Tomovic, 1986; Duysens et al., 2000), which indicates a motion disturbance.124
Motion disturbance detection is implemented in a number of biomimetic reflex controllers, where each125
reflex has to be triggered by such a disturbance. The disturbance detection can be realized by comparing126
the estimated values with the measured ones; if the difference is too high, a disturbance is detected. In127
the context of periodic sensory signals, two differences can be measured: difference in amplitude and128
difference in phase. The amplitude trigger is simple; the detector directly measures a value above (or129
below) a certain threshold, which triggers the reflex reaction. For example, the reflexive slip responses130
can be triggered by detecting leg movement while the leg is on the ground (Boone and Hodgins, 1995).131
The elevator reflex, where the leg avoids an obstacle blocking its protraction during a swing motion, can132
be triggered by a significant angle error in the protractor motor, as shown in (Klaassen et al., 2002). The133
authors of (Bläsing, 2006) show that the search reflex, where the leg tries to find support during the stance,134
can be triggered by lowering the leg under the threshold, which indicates a gap. Besides, the search and135
elevator reflexes are implemented in multiple other controllers (Espenschied et al., 1996; Li et al., 2018; Yu136
et al., 2020). However, the above-mentioned reflex triggers are hand-tuned and thus dependent on the robot137
body morphology. Generally, the robot morphology can change in time or is not entirely known, and thus138
the disturbance detection algorithm must adapt. A simple, adaptive mechanism is used in (Lewinger and139
Quinn, 2010), where the system remembers the depressor motor position during the last stance. Another140
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learning algorithm is presented in (Kirkwood et al., 1989), where the controller is trained to fuse multiple141
sensor inputs into a given reflex trigger.142

The presented amplitude-based detectors are dependent on measuring unusual sensory values directly,143
where the value crosses a threshold. However, some disturbances do not change the sensory signal’s144
amplitude but a phase, causing a sensory mistiming, such as the absence of anticipated foot contact or145
protraction stopping too early. The event mistiming can be detected from the difference between the phase146
measurement and phase estimation provided by the internal model. Generally, the internal model estimates147
the sensory feedback either by directly processing the current sensory measurement or processing the copy148
of motor command (so-called efference copy) (Miall and Wolpert, 1996). In (Goldschmidt et al., 2014) the149
efference copy from a motor CPG is processed into a ground contact phase estimation, where the absence150
of ground contact triggers the search reflex. G. Maffei et al. pointed out that the sensory model that maps151
the efference copy onto sensory estimation is sensitive to the specific controller configuration. The authors152
propose to adapt the sensory model directly to the sensory feedback (Maffei et al., 2017). In the context153
of phase estimation, the CPG entrained to the sensory feedback estimates the sensory phase. The idea154
of phase estimating CPGs introduced in (Kuo, 2002) is expanded in (Dzeladini et al., 2014), where the155
difference between the measured and estimated sensory phase is used as a corrective term that participates156
in motor activity regulation. However, the authors use one CPG per actuator and select the entraining157
sensory feedback using prior knowledge.158

In the proposed approach, we leverage the sensory/motor CPG distinction presented in (Szadkowski159
and Faigl, 2020) and design a self-learning mistiming detector on the sensory CPG layer. Hence, the160
main expected advantage of the proposed motion irregularity detection is that no prior knowledge about161
sensory-motor relation is needed.162

3 PROBLEM STATEMENT

The sensory mistiming detection is based on the periodicity of the sensory signal, which is entrained163
by the repetitive gait motion. The repetitive motion pattern arises from the rhythmical motor actuation.164
The motor actuation is controlled by the control signal u(t) which has period T gait during the regular165
motion. The periodically actuated body interacts with the environment, and the effects of the interactions166
are measured by sensors. We focus on such a sensory signal x(t) that inherits the actuation periodicity167
T gait. The motor φu and sensory φx phases are defined as variables that grow linearly with time at the168
rate ωgait = 2π(T gait)−1 during the regular motion, formally φ̇x = φ̇u = ωgait; see Fig. 2. Likewise, we169
define the sensory amplitude Ax as a variable that does not change, i.e., Ȧx = 0 and similarly for the motor170
amplitude Au; however, this work is focused on the phase variables.171

The phase difference between sensory and motor phases ∆φux = φu(t) − φx(t) is not changing in172
regular environments with ∆φ̇ux = φ̇u − φ̇x = 0, but it is dynamic in irregular environments, which173
cause disturbance of the motion. The motion disturbances propagate into the controller through the sensory174
signal, and the controller needs to react to sustain the regular gait.175

The disturbance in a sensory signal can be assessed by comparing the sensory signal with the sensory176
estimation x̂(t). Focusing on the phase, the sensory phase estimation φ̂x(t) yields the phase of a sensory177
signal during regular motion: φ̂x(t) = ωgaitt + Φ, where Φ is the sensory phase at t = 0. During the178
regular motion, the phase difference between estimated and measured phase, refereed to as phase error, is179
e(t) = φx(t)− φ̂x(t) = 0. However, the phase error can be non-zero due to sensory signal disturbances180
caused by irregular motion. The authors of (Pikovsky et al., 2001) describe the disturbance in dynamic181
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Figure 2. (A) An illustration of an ant during the tripod gait, a motion pattern where three legs propel
the body while the other three legs swing forward. During the tripod gait, the ant puts a front leg on the
ground and senses the ground contact with x(tevent) = 1 at the fourth of the gait period tevent = 1

4T
gait.

During the regular motion, such an event occurs periodically with x(tevent + nT gait) = 1 for any n ∈ N .
Therefore, (B) for the sensory signal x, we define the sensory phase φx on which we can map the event
occurrence at φx(tevent + nT gait) = 1

2π for any n ∈ N . Notice that the sensory phase is directly measured
only at tevent, and there is no sensory phase measurement for the rest of the gait cycle.

systems with stable periodicity as perturbations in the phase and amplitude of the system. The perturbations182
can be approximately formalized as Ȧx(t) = pA(t) and φ̇y(t) = ωgait + pφ(t), where pA(t) and pφ(t) are183
amplitude and phase perturbations, respectively. The phase error then gains dynamics driven by the phase184
perturbation ė(t) = ωgait + pφ(t)− ωgait = pφ(t). Hence, the positive error e(t) > 0 represents sensory185
signal being ahead of time while negative e(t) < 0 is being delayed, which is illustrated in Fig. 1B and186
Fig. 1C. If the phase error accumulated over one gait cycle exceeds a given threshold,

∫ τ
τ−T gait |e(t)|dt > θ,187

then the sensory mistiming is detected at the time τ .188

There are two necessary tools for detecting the sensory mistiming: the sensory phase estimator φ̂x(t) and189
the phase error threshold θ. Moreover, the sensory phase is rarely measured continually, as pointed out190
in (Héliot and Espiau, 2008). Instead, it is measured as a short periodic event, and only during this sensory191
event, the phase measurement can be compared to the phase estimation. In this work, the i-th sensory192
input xi(t) ∈ [0, 1] is a binary signal, where its high level xi(t) ≈ 1 indicates the event. However, since193
each sensor has a different sensitivity and the sensory events have different duration, the estimator and194
the error threshold must be self-learned for each sensor input. The proposed neurodynamic approach for195
self-learnable mistiming detection and its utilization in gait locomotion is presented in the next section.196

4 THE GAIT LOCOMOTION CONTROLLER

This section presents the proposed sensory event mistiming detector that is integrated within the CPG-based197
gait controller. The overall architecture of the gait controller, depicted in Fig. 3, can be described as two198
coupled sub-controllers: the phase control, which estimates the phase of sensory input and generates199
the motor phase, and the amplitude control, which generates the command values for the actuators. The200
phase controller is composed of two CPG layers: the sensory CPGs that estimate the phase for each i-th201
sensory input φx

i , and the motor CPGs that generate the motor phase of each j-th actuator φu
j . The sensory202

CPGs provide a continuous estimation of the sensory input phases utilized by the motor CPG. The motor203
CPGs generate the phase of the motion for each actuator. Based on the motor phase, the amplitude control204
generates the control signal uj for each j-th actuator, which performs the regular motion. In this work, the205
amplitude control is extended with reflex reactions to motion disturbances triggered by mistiming detection.206
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Figure 3. The proposed gait controller architecture takes the sensory signal x as the input and outputs
the control signal u. The gait controller is composed of two sub-controllers: (i) Phase Control, which
detects the mistiming and regulates the phase of the gait, and (ii) Amplitude Control, which maps the
motor phase φu and mistiming detections v into actuator commands u. The phase control is CPG-based,
where a coupled ensemble of CPGs estimates the sensory phase φx and generates the motor phase φu. The
mistiming detector compares the sensory phase estimation φx to sensory input x, and self-learns to detect
sensory phase errors v. The mistiming detection v and generated motor phase φu flow into the amplitude
control, which transforms the inputs into the control signal u. There are two modules of the amplitude
control: the regular control and the reflex control that modifies the regular control if triggered by mistiming
detection.

The mistiming detector is an extension of the sensory CPG layer utilizing the provided sensory phase207
estimation.208

4.1 Central Pattern Generator as Phase Estimator209

The CPG provides a stable periodic rhythm that can be synchronized with an input signal. In the gait210
motion context, the periodic stability sustains the motion periodicity while the synchronization is utilized211
for the sensory phase estimation. The synchronization is a property of CPGs modeled as a dynamic system212
with a limit-cycle attractor (Pikovsky et al., 2001). The employed CPG can be formalized as follows.213

Let ẏ = f(y, c(t)) ∈ RD be the CPG dynamics in the D-dimensional space with the input signal c(t).214
The limit-cycle Y ⊂ RD is a closed trajectory in the phase space to which the unperturbed dynamic215
system ẏ(t) converges. After the convergence, the unperturbed CPG produces a stable periodic signal with216
the natural frequency ωcpg. If the CPG is entrained by the periodic signal c(t) with a frequency close to217
the natural frequency ω ≈ ωcpg, the CPG synchronizes the input signal. The synchronization is a phase218
relation, where the phase difference between the CPG output and the entraining signal ∆φyc = φy(t)−φc(t)219
becomes stable. Note that the stable phase difference implies that the entrained CPG frequency becomes220
the same as the entraining signal frequency ωcpg = ω, and if the phase of the input signal shifts, the phase221
of the CPG shifts as well. Hence, the phase of the synchronized CPG continuously estimates the phase of222
the entraining signal: φ̂c(t) = φy(t)−∆φyc. However, since neither the phase difference ∆φyc, nor the223
function that maps the CPG state y ∈ Y onto the CPG phase φy(t) are known in general, the explicit value224
of the CPG phase φy(t) cannot be directly used in practice. Instead, we exploit the fact that there exists225
one-to-one mapping between the CPG phase φy(t) ∈ [0, 2π) and the limit-cycle points Y(φy) = y. Thus,226
since Y(φy −∆φyc) = Y(φ̂c) is one-to-one mapping, each point on the limit-cycle y ∈ Y represents the227
phase of the entraining signal φ̂c. This limit-cycle representation of the input signal phase is the essential228
CPG property in the proposed approach.229
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Figure 4. The architecture of the proposed mistiming detector with the sensory phase estimator. The
sensory CPG synchronizes the sensory signal x and thus estimates the sensory phase φx. The RBF neuron
learns the phase during which the event occurs; the RBF neuron is active, a ≈ 1, during the anticipated
event. A difference between the RBF neuron activation and sensory signal gives two types of mistiming
error: eabsence and edisruption. Each error excites its respective LIF neuron, where each LIF neuron learns
the activation threshold during the regular motion. If the sensory signal contains disturbances, the LIF
activation v exceeds the threshold and fires. The LIF firing detects the mistiming.

We employ Matsuoka’s neural oscillator (Matsuoka, 1987) as the CPG

ẏ = f(y, c(t)) =


τ ẏ1

τ ẏ2

γẏ3

γẏ4

 =


h(y3)− y1

h(y4)− y2

−y3 − h(y4)α− y1β + 1
−y4 − h(y3)α− y2β + 1 + c(t)λ

 , (1)

h(z) = max(z, 0), (2)

where the parameters α = 2.5, β = 2.5, τ = 0.5, and γ = 0.25 define the limit-cycle Y ⊂ R4 to which y230
converges; and the parameter λ = 0.5 scales the input signal c(t). The input signal of the sensory CPG is231
the sensory signal c(t) = x(t); thus, the limit-cycle Y represents the sensory phase.232

4.2 Sensory Event Mistiming Detection233

The mistiming detection module, depicted in Fig. 4, is composed of the CPG estimating the sensory234
phase, Radial Basis Function (RBF) neuron estimating the sensory event, and Leaky-Integrate-and-Fire235
(LIF) neuron, which fires on the integrated mistiming error. For each sensory input, the detector is trained236
to recognize two types of mistiming error: the sensory event absence and disruption.237

Event mistiming occurs when a sensory event unexpectedly transpires, or no event happens when the238
sensory phase estimator expects it. The phase estimation is provided by the sensory CPG entrained by239
its respective sensory signal ẏsense

i = f(ysense
i , xi(t)). Assuming the natural CPG frequency and gait240

frequency are similar ωcpg ≈ ωgait, the CPG synchronizes to the sensory signal and thus estimates the241
phase of the sensory signal continuously.242

The sensory event phase estimation is utilized by the RBF neuron, which learns to anticipate the sensory243
event, when x(t) ≈ 1. The RBF neuron activity coupled to the CPG represents a particular phase interval,244
be it motor phase (Pitchai et al., 2019) or sensory phase. The RBF neuron uses the activity function245

ϕ(y;m) = exp(−ε||y −m||2), (3)

where y is the CPG state and m is the center parameter. Hence, the RBF neuron is excited if the CPG246
state is near the RBF center. The excitation timing is learned to be the same as the timing of the regular247
sensory event using the periodic Grossberg learning rule ṁi = ν(t)xi(t)(yi −mi). The periodic Grosberg248
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rule pushes the RBF center near the point on the CPG limit cycle Ysense
i that represents the phase during249

the signal event xi(t) ≈ 1. Therefore, the RBF activation ϕ(ysense
i (t);mi) = ai(t) anticipates the binary250

sensory event xi(t) ≈ 1.251

Motion disturbances can perturb the timing of the sensory event. Then, the perturbed sensory event252
does not overlap the imitated event |ai(t)− xi(t)| > 0 and thus generates the phase error. Two types of253
mistiming errors are used to measure the lack of overlap: the disruption error (4) and absence error (5):254

edisruption
i (t) = h(xi(t)− ai(t)), (4)

255
eabsence
i (t) = h(ai(t)− xi(t)). (5)

The disruption error is nonzero edisruption
i (t) > 0 when the RBF neuron does not anticipate the event256

occurrence, while the absence error is nonzero eabsence
i (t) > 0 when the event is anticipated but does not257

occur.258

The mistiming errors indicate the phase perturbation; however, they can also be non-zero during the259
regular motion in practice. In particular, since the waveforms of the signals ai(t) and xi(t) are generally260
different; thus, there is always some mistiming error even during the regular motion. Moreover, false sensory261
events may occur due to sensory processing or measurement imperfections. Hence, in practice, the integral262
of the mistiming error (i.e., the absence or disruption) over one gait period E(τ) =

∫ τ
τ−T gait e(t)dt might263

be nonzero even during the regular gait and E(τ regular) > 0. We assume that if the motion is disturbed264
during the gait, the integrated mistiming error is greater than the regular error E(τdisturbed) > E(τ regular).265
Therefore it is possible to set the threshold θ = E(τ regular) which delimits the regular sensory input error266
from irregular.267

We propose approximating the integration with the LIF neuron and adapting the firing threshold θ using
a learning rule. The LIF neuron with activation dynamics v̇i = −viγ + ei fires when the neuron activation
vi reaches the threshold θi. Since the threshold depends on many factors, such as the sensory variance and
the shape of the CPG limit-cycle, the threshold must be parameterized for each sensory input xi. A similar
LIF threshold parametrization problem is described in (Diehl and Cook, 2015), where authors introduce a
learning rule for threshold adaptation. The adaptation mechanism increases the threshold during LIF firing
and then slowly decays when LIF is at a non-firing activity. The LIF fire rate is then lower, and it is more
likely that LIF fires at an irregular input. We employ the idea of the threshold adaptation in the following
dynamics:

θ̇i = ν(t)(h(vi + γ − θi)− (θmin − θi)), (6)

where γ adds margin to the threshold and θmin sets the default threshold value. The threshold is adapted268
only during learning ν(t) > 0, when LIF is fed by a regular input; therefore, the LIF threshold is adapted269
to regular integrated phase error. For each i-th signal input, there are two LIF neurons. The first is for the270
disruption error vdisruption

i , θdisruption
i and the second is for the absence error vabsence

i , θabsence
i . If a motion271

irregularity occurs, the integrated mistiming error (the absence or disruption) in the LIF neuron exceeds the272
respective threshold θi, and the neuron fires. Thus, the firing activity of the LIF neuron vi indicates the273
mistiming detection, which can trigger a reflex reaction modifying the regular motor control.274
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4.3 Amplitude Motor Control275

The amplitude controller generates a control signal combining the regular gait motion, which produces276
the tripod gait, and the reflexive motion triggered by sensory event mistiming. The regular motion of an277
actuator is divided into four phases: first, the (i) early and (ii) late swing phases, and then the (iii) early and278
(iv) late stance phases, illustrated in Fig. 2. Each phase defines the joint angle and torque limit set into the279
actuator during the motion. If a disturbance is detected, the respective reflex reaction modifies the joint280
angle and torque limit for a short period. Hence, the modification of the regular control causes a reflex281
behavior.282

4.3.1 Control of Regular Motion283

The regular motor phase of the j-th actuator is generated by the motor CPG284

ẏmotor
j (t) = f(ymotor

j , cmotor
j (t)). (7)

Four motor RBF neurons are trained with periodic Grossberg rule to be excited at the corresponding k-th
motor phase Φu

j,k . For the training, we generate target binary signals dj,k(t) ∈ [0, 1] for six-legged
robot walking a tripod gait, where two tripplets of legs alternate in stance. Thus, four motor phases
k ∈ {1, 2, 3, 4} and legs of the first group j ∈ {actuators of the left front/hind and right middle legs}, the
signals are defined as

dj,k(t) =

{
1 if for any n ∈ N : t ∈ [(n+ (k − 1)/4)T gait, (n+ (k − 1)/4 + 0.05)T gait],

0 else.

The target signals for actuators of the second group j′ is shifted dj′,k(t) = dj,k(t + T gait/2). The four285
motor phases on the limit-cycle Ymotor

j are approximated by four RBF centers learned with the periodic286

Grossberg rule ṁj,k = ν(t)dj,k(t)(y
motor
j −mj,k) . During the learning, the motor CPG is entrained by the287

first target signal cmotor
j (t) = dj,1(t) to keep the limit-cycle consistent through multiple learning episodes;288

see Fig. 5C. After the learning, the RBF activities amotor
j,k = ϕ(ymotor

j ;mmotor
j,k ), see (3), generate peaks,289

where each peak indicates the particular motor phase Φu
j,k.290

The regular motor control transforms the motor phase into regular actuator commands, see Fig. 3.291
Commands of each j-th actuator are uangle

j =
∑K=4

k=1 amotor
j,k uangle

j,k and utorque
j =

∑K=4
k=1 amotor

j,k utorque
j,k for292

joint angle and maximum torque, respectively; where uangle/torque
j,k are the set parameters. The motion293

command parameters are set up so that the leg performs stance and swing, depicted in Fig. 5B. The294
swing is designed to be flexible and protracts the leg below the anterior extreme position. If the leg hits295
an obstacle, the leg stops due to its flexibility caused by a low torque limit. On the other hand, during the296
stance, the leg becomes rigid and pushes the body forward by retracting the leg. Three legs move together297
during the stance, the ipsilateral front, hind legs, and the contralateral middle, creating the tripod gait.298

4.3.2 Control during Irregular Motion299

The controller provides two mechanisms reacting to the phase error: sensory-motor phase difference300
stabilization and reflexes. The phase difference stabilization (introduced in the base work (Szadkowski301
and Faigl, 2020)) couples the sensory and motor CPGs using a layer of sensory RBFs. Each motor CPG302
is connected to all sensory CPGs through RBF neurons, each trained by the target signal dj,1(t) to find303
the corresponding phase on the sensory CPG. Effectively, each sensory RBF center encodes the phase304
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Figure 5. The leg motion control and the inter-limb synchronization for the tripod gait. (A) For each j-th
joint, the motion is divided into four phases Φu

j,1,Φ
u
j,2,Φ

u
j,3,Φ

u
j,4. (B) At the k-th phase, the j-th joint is

controlled by the set control command uj,k that sets the joint angle uangle
j,k and torque utorque

j,k . In effect, the
leg performs the motion with the foot-tip trajectory. The leg is rigid (high maximum torque set on joints)
during stance so it can propel the body forward, while during the swing, the leg is flexible (low maximum
torque) and stops on the obstacle contact. The contact is detected as the difference between the expected
and measured positions. The ground contact is measured by poking the end of the swing at Φu

j,1 when the
flexible leg tries to lower the foot tip below the expected ground. (C) The relation between motion phases
of each leg depends on the gait. During the tripod gait, two groups of legs move together, where the first
group is composed of the left front/hind (L1, L3) and right middle leg (R2), and similarly the second with
legs R1, R3, and L2. The phase relations for the tripod gait is trained by the target signal d. Targets for the
l-th leg’s coxas dl,1 representing motor phase Φu

l,1 are shown in the plot. A single gait cycle is 223 steps
long.

difference between the particular sensory CPG and motor CPG. The averaged sensory RBF activity entrains305
the motor CPG, and thus the sensory-motor phase difference is stabilized.306

The sensory-motor phase difference stabilization is used to handle the long term phase errors. However,307
reflexes represent a more suitable tool for critical errors since they affect the amplitude control by modifying308
the regular commands; thus, creating the reflexive behaviors. Two reflexes are implemented in this work:309
the search reflex and the elevator reflex. The search reflex is triggered by the absence of the ground contact310
event, and its reaction is the leg’s rapid elevation and protraction.1 The elevator reflex is triggered by a311
disruption of the protraction stop event, where the leg rapidly retracts and elevates, and then continues312
the protraction. Both reflexes utilize the presented sensory event mistiming detection and demonstrate the313
proposed approach in a practical deployment from which results are reported in the next section.314

5 DEPLOYMENT AND EMPIRICAL VALIDATION

The proposed CPG-based controller has been deployed on the real hexapod walking robot depicted in315
Fig. 6A. The setup of the deployment is detailed in Section 5.1. The robot controller learns the motor316
control for the tripod gait and the mistiming detector; see the description provided in Section 5.2. The317
trained controller has been examined in two scenarios. Section 5.3 reports on the first scenario, where the318
robot encounters two obstacles, detects mistiming events, and performs the elevator and search reflexes. The319
robustness of the proposed controller has been examined in the second scenario, described in Section 5.4,320

1 It is a simplified version of the search reflex observed in a locust (Pearson and Franklin, 1984), where the insect searches for the foothold with circular
motions.
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in which the robot traverses highly unstructured terrain in the Bull Rock cave system. Further, the found321
insights are discussed in Section 6.322

A B

Figure 6. (A) Photo of the hexapod walking robot in the laboratory test track. The robot has six legs,
each comprising three Dynamixel AX-12 servomotors; however, only the body-coxa and coxa-femur
servomotors are controlled in experiments presented in this work. The servomotors also provide the joint
angle measurement, which is further processed into swing stop and ground contact events for each leg. (B)
Leg schema.

5.1 Setup and Deployment323

The proposed mistiming detector is deployed on the hexapod walking robot shown in Fig. 6 , a six-legged324
robot where each leg is formed from three Dynamixel AX-12 servomotors (Faigl and Čı́žek, 2019). In325
this work, we control two servo motors per leg: the body-coxa and coxa-femur joint servomotors; the third326
servomotor, femur-tibia joint, is set to a static angle. The servomotors provide the joint angle measurements327
processed into sensory signals for leg protraction stops and ground contact events. Both events occur328
during the swing when the leg is flexible. The stop of the l-th leg protraction xstop

l occurs at Φu
4 (see329

Fig. 5B), where the body-coxa servomotor position change is near zero. If the leg encounters an obstacle,330
the body-coxa stops sooner due to low torque. The ground contact of the l-th leg xcontact

l occurs at the end331
of Φu

1 , where the coxa-femur servomotor cannot lower the leg anymore because of the ground, and the332
position error therefore grows. On the other hand, if there is a depression in the ground, the coxa-femur333
servomotor continues to lower the leg, and the contact event occurs later than usual, or not at all if the334
leg does not reach a foothold. Each leg generates a pair of sensory signals, xstop

l and xcontact
l , fed into the335

controller during both phases: the learning and deployment.336

The dynamics of the proposed controller described by the differential equations are numerically solved337
by the Euler method with the step size of 0.01. The execution of 100 steps was measured to be 5.15 s long338
(T gait = 223 steps ≈ 11.5 s).339

340

5.2 Tripod Gait Training and Mistiming Detection Learning341

The controller has been learned in two parts with the hexapod walking robot on flat ground. First, the342
robot is trained to generate the motor phase. In the second part, the robot learns to detect sensory mistiming.343
The reflexive behavior is turned off during the learning. The individual training parts are detailed as follows.344
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5.2.1 Tripod Gait Training345

The motor phase generation has been trained for 30000 steps on a flat terrain by the given target signal346
d for each joint, as shown in Fig. 5C. Four motor RBFs are trained to be active during their respective347
motion phases, which determine the hand-tuned configuration of the control commands, see Fig. 7A. The348
regular control signal uregular for body-coxa and coxa-femur joint angles, shown in Fig. 7B, follows the349
general foot-tip trajectory depicted in Fig. 5B. The maximum torque utorque is set to 1.25 N m (rigid) during350
stance and 0.5 N m (flexible) during swing. The reflex control signal ureflex is hand-tuned to perform the351
elevator and search reflexes, plotted in Fig. 7C and Fig. 7D, respectively. During any reflex, the coxa-femur352
servomotor, affecting the leg elevation, is rigid, while the body-coxa servomotor is flexible. The inter-leg353
phase relations given by the target d(t) are learned by the motor phase generator, and the hexapod robot354
walked the tripod at the end of the gait training. The walking hexapod robot interacts with the environment355
that generates the regular sensory signal, which trains the mistiming detector.356

Figure 7. The regular and reflex motions of the left front leg during late swing Φmotor
1 (in the yellow),

early stance Φmotor
2 (in the blue), late stance Φmotor

3 (in the red), and early swing Φmotor
4 (in the green). (A)

The limit cycle Ymotor generated by the motor CPG of the front left body-coxa joint. The duration of each
motor phase Φmotor

i is projected on the limit cycle. The motion phases determine the joint angle control.
(B) The regular triangular leg trajectory. At the end of the late swing Φmotor

1 , the leg pokes the ground. (C)
The search reflex triggered at the end of the late swing. The leg tries to grasp for support in the protraction
direction. (D) The elevator reflex triggered shortly after early swing Φmotor

4 . The leg avoids the obstacle
from above. (E) Five gait-cycles of body-coxa (black curve) and coxa-tibia (red curve) joint angles during
regular motion and the search and elevator reflexes. Both reflexes are highlighted by the grey area, where
the search reflex starts at 222 step, and the elevator reflex starts at step 832.

5.2.2 Mistiming Detection Self-Learning357

The mistiming detection is learned during 13000 steps of walking tripod gait in the regular environment,358
as shown in Supplementary Video 1.359
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Figure 8. Detail of learning the left leg’s contact event anticipation and the overall anticipation accuracy.
(A) Projected CPG limit-cycle Ysense (in the grey) and the event RBF weight msensor trajectory (in the
magenta) of the front left leg’s contact event. During the learning, the RBF weight approaches the limit-
cycle segment, during which the left leg senses contact x > 0 (in the blue). At the end of the learning, the
RBF weight (the magenta dot) is close to the limit-cycle segment; therefore, the RBF activity a spikes
during the phase segment can be seen in the following plots. (B) At the start of the learning, the RBF
activity a (in the magenta) is low and peaks outside of the left leg contact event x > 0 (in the blue). (C)
However, at the end of the learning, the RBF activity peaks are close to the maximum possible activity (one),
and the peaks overlap with the events. Ideally, the total number of such overlaps during one gait-cycle is
twelve, one per each sensory input. (D) The plotted sum of the anticipation-event overlaps over a sliding
window of the size T gait = 223 divided by the number of sensory inputs (twelve). At step 4000, all RBF
neuron anticipations overlap with the measured sensory events.

We first let the robot learn to anticipate the sensory events for 8000 steps with the learning rate ν(t)360
linearly decreasing from one to zero. As can be seen in Fig. 8, the event RBF neurons find their respective361
phase represented by a limit-cycle Ysense. At the end of the anticipation learning, the event RBF neurons362
anticipate the sensory events with high accuracy, as shown in Fig. 8D.363

After the event anticipation learning, the robot adapts the LIF thresholds during 5000 steps, where the364
learning rate ν(t) linearly decreases from one to zero. At the start, mistiming error causes LIF to fire, as it is365
shown in Figures 9A and 9B, which increases the threshold with dynamics (6). Then, the threshold slowly366
decays. On some occasions, the threshold descends too close to the regular LIF activity and fires again,367
increasing the threshold. However, since the learning rate ν(t) converges to zero, the threshold increments368
are smaller as the learning progresses. At the end of the learning, the thresholds are adapted so LIFs do not369
fire in the regular environment, see Fig. 9C and Fig. 9D. The thresholds are also close to the LIF activity370
maxima; therefore, LIF fires and detects the phase mistiming if there is more error accumulated due to the371
motion disturbances.372

5.3 Walking Over Obstacles373

The proposed mistiming detection is demonstrated in the deployment of the robot on track depicted in374
Fig. 6A, where the mistiming detector triggers reflexes. The robot’s left legs must negotiate one obstacle375
and one depression to continue its gait. The obstacle is 7 cm high and 4 cm long, which is higher than376
the maximum elevation during the regular swing. Hence, the leg is stopped by the swing, and the event377
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Figure 9. Adaptation of the firing threshold θ. (A) Detail of the LIF threshold θdisruption (visualized as the
red dashed line) adaptation for the left leg’s early swing stop. Initially, the threshold is set to zero, thus LIF
fires (in the green) at the first non-zero error edisruption (in the black), where the error is rectified difference
between the early stop event x (in the blue) and RBF anticipation a (in the magenta), h(x− a). During
the LIF firing, the threshold rapidly grows; therefore, the next LIF non-zero activity at step 400 is below
the threshold, and LIF does not fire. The threshold slowly decays (not observable in plots). (B) The LIF
detector (in the yellow) for the left leg’s contact absence behaves similarly. The last thousand steps of the
LIF neuron activations are aggregated in histograms, where it is shown that the respective thresholds are
upper-bound of the regular activations. (C) The swing stop perception is precise during the regular motion;
thus, the LIF activity (in the green) is similar for all legs, and so are the thresholds (showed as the red
dashed line). (D) However, the ground contact perception differs for each leg (probably due to different
loads on the legs during the stance) and is less precise (the leg sometimes did not detect the ground contact).
It resulted in the increased variance of the ground contact absence thresholds across the legs. Note that the
contra-lateral legs (e.g., cL1 and cR1) have similar thresholds.

disruption is detected, which triggers the elevator reflex, see Fig. 10A. After avoiding the obstacle, the leg378
encounters a depression 10 cm deep, and 5 cm long, which is further than the leg reaches during regular379
motion. Since the leg is not stopped by the ground as anticipated, an absence of the ground collision is380
detected, which triggers the search reflex, see Fig. 10B. The searching leg grasps the far away support, and381
the motion continues. In Fig. 10C, we can see the right legs moving regularly as no obstacle was detected.382
The record of the robot walking over obstacles is provided in Supplementary Video 2.383

5.4 Irregular Locomotion in Bull Rock Cave384

Limits of the proposed controller have been tested during the field deployment in Bull Rock cave, where385
the robot crawled over highly unstructured terrain with a wet slippery surface and cracks, see Fig. 1A. In386
such an environment, multiple reflexes are triggered at once; see Fig. 11C and Supplementary Video 3,387
which changes the locomotion of the whole body and, in some cases, detects event mistiming when there is388
seemingly none. For example, the combination of triggered reflexes toggles the robot on the left side, and389
thus when the right leg enters the stance, it touches the ground later, which triggers the search reflex. On390
the other hand, the elevator reflex works in unintended situations, that have been observed for a leg is stuck391
in a crack, which is documented in Fig. 11A and Fig. 11B. In such a situation, the leg does not move during392
the swing, and thus the elevator reflex is triggered, which frees the leg. Overall, the hexapod walking robot393
with the proposed locomotion control traversed the highly irregular terrain multiple times and detected394
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Figure 10. Walking over obstacles deployment scenario. (A) At step 300, the front left leg (L1) encounters
an obstacle, which stops the swing sooner, and thus the xstop event starts sooner, creating a high error
edisruption (in the black). The error excites the LIF neuron activity (in the green) over the threshold
(visualized as the dashed red line), thus the LIF fires triggering the elevator reflex on the L1 leg. (B) At step
1000, the RBF neuron anticipates ground contact, which does not happen. The absence of the error excites
the LIF neuron (in the yellow) and triggers the search reflex. (C) An overview of the triggered elevator (in
the green) and search (in the yellow) reflexes for each leg. The black events show early and late stance
phases. The left legs of the hexapod walking robot gradually detect and avoid the obstacle. At step 1050,
the front left leg steps into the depression, and the search reflex is triggered. Since there are no obstacles on
the robot’s right side, no reflexes are triggered for the right legs.

parallelly multiple phase mistiming, supporting the expected advantage of the mistiming detector in a real395
cave environment.396

6 DISCUSSION

The proposed controller has been trained to perform the tripod gait. During the tripod gait on flat terrain,397
the hexapod walking robot learned to anticipate the ground contact and swing stop with accuracy shown in398
Fig 8. LIFs then adapt the regular difference between sensory anticipation and measurement. The thresholds399
are upper-bound of the regular LIF activity, see Fig 9; therefore, LIFs are at rest during regular motion.400
The benefit of mistiming detection is further demonstrated in two deployment scenarios where mistiming401
detection triggers the designed reflex reactions. The reflexes allowed the robot to locomote through terrains402
that are otherwise untraversable with the regular gait. From this perspective, the expected advantage of the403
proposed idea has been fulfilled.404

On the other hand, in some cases, the reflexes were triggered even though there was no obstacle nor405
depression. In the testbed scenario visualized in Fig. 10C, the middle left leg performs the elevator reflex406
at step 1100, albeit the leg already cleared the obstacle at step 900. The elevator reflex at step 1100 has407
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Figure 11. The hexapod walking robot deployed in the Bull Rock cave. (A) During the traversal, the front
left (L1) leg got stuck in a crack for two gait-cycles. At step 1850, the leg detects the swing stop disruption
and performs the elevator reflex. (B) The elevator reflex worked well in this context and successfully
unstucked L1. (C) An overview of the triggered reflexes. In the examined unstructured environment, the
motion was highly irregular, which resulted in many triggered reflexes.

been triggered by detected early swing stop, which has not been caused by an obstacle, but by the search408
reflex of the front left leg triggered at step 1050. Such behavior can also be observed in Fig. 11C, where409
the search reflex of the front legs causes the elevator reflex of the middle legs. The search reflex leaves410
the robot body slightly tilted, which causes the adjacent middle leg to stop the swing earlier. Thus, the411
middle left leg detects the search reflex of the adjacent leg. It is a cautionary tale that the interpretation412
of mistiming detection, or generally any sensory error, is dependent on the context in which the robot is.413
The direct interpretation of the situation in which an obstacle stops the swing is correct only if the robot’s414
current state is close to the state of the regular motion. Sustaining the regular gait motion improves not only415
the locomotion but also the interpretability of the sensory input. Therefore, improving the gait control, e.g.,416
adding balancing reflex, is one strategy preventing incorrect interpretation of the sensory input. Another417
strategy can be based on fusing multiple sensory inputs as it is less likely that each of the sensory input418
provides incorrect interpretation at the same time.419

The proposed mistiming detector relies on the CPG providing the sensory phase estimation; thus, the420
mistiming detector inherits the robustness of the CPG dynamics but also its drawbacks. While short-term421
changes of sensory signal properties have little effect on the CPG, if the change is lasting, then the CPG422
behavior changes as well. Consider that the sensory signal changes in phase or frequency. If the sensory423
signal changes in phase, the sensory CPG shifts its phase and maintains the stable phase difference between424
the signal and the CPG. However, there are more possible outcomes if the sensory signal frequency of ωc425
changes. The CPG has a range of detuning ∆ω = ωc−ωcpg where the CPG can synchronize with the input426
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signal. Outside the synchronization range, the phases of the CPG and input signal evolve with different427
speeds; therefore, if the detuning is too high 2, the sensory CPG does not estimate the sensory phase.428

In the gait control context, the sensory inputs for the mistiming detector are a consequence of the429
interaction between the environment and periodic motor activity. A persistent change in motor activity can430
induce a change in the sensory signal, influencing the sensory CPGs, as described above. The terrain in Bull431
Rock cave is a source of such persistent change, see Fig. 11, where the rough terrain caused a change in the432
motor activity by triggering one reflex after another. Although it was not observed during the short span of433
the Bull Rock cave deployment, the change of the sensory CPG properties (phase or frequency) influences434
the motor phase generation (see Fig. 3), which may compromise the gait pattern. Therefore, the presented435
gait controller can generate a disturbing motion pattern if it operates in a highly unstructured environment.436
Such disturbances can be prevented by adding more reflexes, which would stabilize the regular motion, or437
the controller can react to an unstructured environment by a switch to a different gait. For both cases, the438
mistiming detector provides the means to recognize a highly irregular environment.439

The mistiming detection adds an alternative to usual amplitude error detection, where the measured440
sensory value rises above some threshold. Notice, from a practical point of view, the ground contact absence441
and the swing stop detections are implemented simply from reading the position from the Dynamixel442
AX-12 servomotors, without the need for any additional sensory equipment. Generally, the proposed443
mistiming error augments the information gained from the measured sensory input, and further utilization444
of the augmentation is a subject of our future work.445

7 CONCLUSION

In this paper, we present a novel learnable CPG-based event mistiming detection. We propose to combine446
CPG with the RBF neuron into a sensory event estimator and compare the estimation and measurement to447
assess the phase error. The phase error is integrated by the LIF neuron, which detects the irregularity in448
the timing of event occurrence. The proposed mistiming detection is self-learned with dynamic Hebb-like449
learning rules by the robot on which the system is deployed. We integrated the mistiming detection with450
the CPG-based gait controller, where the detection triggers reflexive behavior. An absence of the ground451
contact triggers the search reflex, while the elevator reflex is triggered by detecting an obstacle during the452
swing. The CPG-based controller is deployed on a real hexapod walking robot, which is trained to walk453
using a tripod gait and learns the properties of twelve sensory signals. The learned controller has been454
examined in two deployment scenarios. In the laboratory testbed, the robot encounters a depression and an455
obstacle on flat terrain, where each leg reacts independently with corresponding reflexes. In the second456
scenario, we demonstrate the robustness of the proposed controller in Bull Rock cave, where the robot457
traverses slippery and highly unstructured terrain. The proposed plastic CPG-based mistiming detection458
enhances the information gained from the periodic sensory signal, which can be utilized not only for reflex459
control but also can serve as an input for other control centers.460

8 DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding author.461

2 In particular, the synchronization range depends on the input signal strength, which is set to λ = 0.5 in this work. The range gets smaller with lesser input
strength creating a structure in the λ-∆ω plane called the Arnold tongue. In general, the Arnold tongue cannot be found analytically, yet there must be some
small synchronization region around ∆ω = 0 for high enough λ.
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13 SUPPLEMENTAL DATA

• Supplementary Video 1 The hexapod walking robot self-learns the mistiming detector.471

• Supplementary Video 2 The hexapod walking robot walks over obstacles.472

• Supplementary Video 3 The hexapod walking robot deployed in Bull Rock cave.473

14 CONTRIBUTION TO THE FIELD STATEMENT

The biological evidence shows that the function of the Central Pattern Generator (CPG), a neural circuit474
controlling the rhythm of animal motion, is two-fold: (i) it generates motion patterns; and (ii) it is475
synchronized to sensory inputs. Existing CPG-based motion control models utilize the CPG mainly as476
the pattern generator; however, sensory input synchronization benefits are not thoroughly researched.477
Using the mathematical analysis of the CPG dynamics, we show that the CPG synchronized to a sensory478
input estimates the sensory phase. We utilize the sensory phase estimation to design a neural mistiming479
detector to detect whether a sensory event occurs too soon or too late. The proposed mistiming detector480
is self-learnable and does not require knowledge about the robot’s morphology on which the detector is481
deployed. The mistiming detector’s benefits are demonstrated in hexapod walking robot deployment, where482
the mistiming detection triggers reflexive behaviors. The robot self-learns the mistiming detector first, and483
it is then deployed in scenarios where the robot detects and negotiates obstacles.484
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