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Abstract—In multi-robot deployments, the robots need to share 
and integrate their own experience and perform transfer 
learning. Under the assumption that the robots have the same 
morphology and carry equivalent sensory equipment, the 
problem of transfer learning can be considered incremental 
learning. Thus, the transfer learning problem inherits the 
challenges of incremental learning, such as catastrophic 
forgetting and concept drift. In catastrophic forgetting, the 
model abruptly forgets the previously learned knowledge 
during the learning process. The concept drift arises with 
different experiences between consecutively sampled models. 
However, state-of-the-art robotic transfer learning approaches 
do not address both challenges at once. In this paper, we 
propose to use an incremental classifier on a transfer learning 
problem. The feasibility of the proposed approach is 
demonstrated in a real deployment. The robot consistently 
merges two classifiers learned on two different tasks into a 
classifier that performs well on both tasks. 

Keywords-component; multi-robotics; incremental learning; 
inductive transfer learning; classification 

I.  INTRODUCTION 

In multi-robot systems, there is an important step the 
robots need to take to become a fully integrated collective. It 
is the ability to transfer and integrate experience gained by 
each other individual robot. The goal of the experience 
transfer is to improve the robot model by integrating the 
experience of other robots that operate in different 
environments or perform various tasks [1–3]. The problem of 
experience transfer is known in machine learning as transfer 
learning, and it is still an open problem of integrating a 
source model (or models) into a target model, and thus 
increase the performance of the target model [4]. In this 
work, we focus on transfer learning between robots that 
share the same morphology and sensory equipment and learn 
to classify terrain. 

The homogeneous robots experience the environment 
using the same sensory equipment, and therefore, they 
perceive the environment similarly; however, space and time 
where and when the experience is drawn differ. Transferring 
models learned on experiences drawn from the same 
distribution but under different tasks (conditions) is a well-
defined problem known as inductive transfer learning [5]. 
During inductive transfer learning, a source model, which is 
trained during a particular task, is integrated into the target 

model that is then utilized for a similar testing task; the 
source model should improve the performance of the target 
model on the testing task. The problem of integrating one 
model into another can be addressed as incremental learning, 
where the model is transferred from the past into the present. 

The herein addressed inductive transfer learning inherits 
two main challenges of incremental learning: catastrophic 
forgetting, when the target model abruptly forgets its 
previously learned knowledge; and concept drift when the 
underlying concept is different in the source and target 
models [6]. In the current state-of-the-art on inductive 
transfer learning, to the best of the authors’ knowledge, no 
method addresses both challenges simultaneously. 

In our previous work [7], we propose a memory-replay- 
based incremental learning algorithm ENSGENDEL, which 
is designed to resist catastrophic forgetting and adapt to 
concept drift. In this paper, we propose to use the 
incremental learning algorithm ENSGENDEL for the 
inductive transfer learning problem. Moreover, we adapt the 
minimal evaluation scenarios for incremental algorithms [7] 
for inductive transfer learning in the designed robotic 
deployment visualized in Fig. 1. Inductive transfer learning 
is deployed on real hexapod walking robots and evaluated on 
the adapted minimal evaluation scenarios, demonstrating the 
feasibility of the proposed solution. 

The rest of the paper is organized as follows. The related 
work on terrain classification and transfer learning in 
robotics are overviewed in Section II. The problem statement 
and the method are described in Section III and Section IV, 
respectively. The presented transfer learning algorithm 
deployed on a real walking hexapod robot is presented in 
Section V, and the results of the experimental deployment 
are discussed in Section VI. Finally, the paper is concluded 
in Section VII. 

II. RELATED 

The transfer learning proposed in this paper is focused on 
the transfer of classification models. Specifically, we 
consider terrain classification utilized in robot navigation 
through operational environments with various terrain types, 
where a selection of the suitable terrain and control might 
improve the robot locomotion. Therefore, a brief overview of 
terrain classification is presented to provide the necessary 
background to the addressed learning problem. 
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Figure 1. The minimal evaluation scenarios adapted for inductive transfer learning, where two robots learn to predict hard/easy terrain based on the color of 
a fabric laid down on the terrain. In each of the four scenarios, there are three tasks (tracks): in the first and second tasks, the robots train on their respective 
tasks; then a transfer learning is executed where the model of the second (source) robot is merged into the first (target) robot model, which is then evaluated 
in the third testing task. Each scenario tests a specific aspect of inductive transfer learning: the addition scenario (ADD) tests the ability to add a new class 
into the classifier, and the expansion scenario (EXP) tests the ability to expand an existing class, both without forgetting; the inclusion scenario (INC) tests 

the ability to adapt to concept drift, and finally the separation scenario (SEP) tests the ability to unlearn without forgetting [7].

The authors of [8] use terrain geometry to discriminate 
impassable parts of the environment in rough terrain 
planning. Beyond passability prediction, the terrain can be 
described by its type, such as sand or concrete, which can be 
predicted by the model presented in [9], where Support 
Vector Machines (SVM) and Random Trees classify terrains 
using color and elevations descriptors. A similar problem is 
addressed in [10], where the authors combine a vibration-
based SVM classifier with an SVM laser-based classifier and 
a Gaussian mixture. Moreover, we investigate terrain-
traversal time-series segment classification in [11] as a part
of our effort on incremental terrain learning for autonomous 
mobile robots [12, 13]. The terrain learning can speed up 
multi-robot deployment, where multiple robots are exploring 
the terrain in parallel. Sharing their individually learned 
models through transfer learning can thus support better 
exploitation of the acquired knowledge about the operational 
environment, which motivates the presented approach on 
inductive learning.

In transfer learning scenarios, the learner applies to its 
current task a model learned on the previously sampled tasks 
[4, 5]. In robotics, transfer learning commonly entails 
scenarios with multiple robots. Two heterogeneous robots 
are deployed in [1] and apply the transfer learning for a place 
recognition scenario. Another scenario with heterogeneous 
robot deployment is presented in [2], where the employed 
algorithm represents measured data from different sensors in 
a learned abstract feature space. The therein proposed 
approach is extended in [14] to provide distributed robot 
team control on missions such as search-and-rescue. A 
prediction of the traversal cost over the terrain observed from 
an aerial scan using a model learned by a ground crawler is 
proposed in [15]. In that scenario, the transfer learners aim 
for knowledge transfer between heterogeneous robots. On 
the other hand, transfer learning can be transformed into 
incremental learning for homogeneous robots.

Incremental learning concerns learning scenarios where 
the training data arrive one-by-one and where the learning
algorithm is constrained by limited memory resources [6]. 

Existing incremental learning algorithms range from 
incremental versions of the SVM [16] to self-organizing 
networks such as [17]. Regarding the particular learning 
algorithm employed in this paper, the proposed approach is 
built on the results of [7], where we propose an 
incrementally learnable classifier. Besides, we leverage on 
the proposed scenarios to evaluate the ability of incremental 
learning to be robust against catastrophic forgetting and 
concept drift. The relation between the utilized incremental 
learning approach and the addressed inductive learning is 
described in the following section.

III. PROBLEM STATEMENT AND ANALYSIS

This paper concerns a scenario where multiple 
homogeneous robots are learning to classify terrain, share 
their models, and improve their performance using inductive 
transfer learning. The goal of the classifier transfer learning 
is to improve the target classifier by merging it with the 
source classifier, where target and source classifiers are 
trained on different tasks. In the transfer learning problem, 
each i-th model is trained in specific domain and task [5]. 
The domain can be formally defined as �i = (���Pi(X)), where 
� is a feature space and Pi(X) is the marginal distribution 
over the finite discrete feature set X � �.
The task Ti = (Y, Fi(.)) is defined by the label space Y and the 
model Fi: ��→ Y that is trained by the dataset 
Di = {(x, y)}x�X

i, where y � Y are the observed labels.
Each model is learned by a different robot deployed 

within the same environment but at a different location or 
time. Since the robots are also homogeneous, i.e., have the 
same body morphology and sensory equipment, we assume 
that the robots learn within the common 
domain � = (���P(X)). However, the individual tasks are 
different since the robots operate at different locations or 
time, and thus they are trained on different tasks Ti ≠ Tj. In 
particular, the robots learn models Fi(.)≠ Fj(.), since they 
collect the datasets Di ≠ Dj. Transfer learning where the 
models are trained in the common domain �, but under 
different tasks, Ti ≠ Tj is called inductive transfer learning.
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The description of the inductive transfer learning where 
the model Fi is trained during the task Ti with the dataset Di

is equivalent to the description of incremental learning 
presented in [7], where instead of multiple robots (agents) 
merging their models, one agent merges models from the 
past into the present. Thus, the only difference between the 
inductive transfer learning and incremental learning is the 
semantic interpretation of the index i. In transfer learning, the 
index i is the robot index, while in incremental learning, the 
index i represents the time-step index. Therefore, for 
inductive transfer learning, we can use the same method as 
for incremental learning.

IV. METHOD

In the presented inter-robotic classifier, we focus on the 
simplest case of inductive transfer learning where two robots 
i�{1, 2} train the classifiers Fi: ��→ {L1, L2}. We adapt the 
results presented in [7] to learn the model and evaluate the 
result: the basic scenarios of incremental classification, and 
the incremental learning algorithm ENSGENDEL described 
in Alg. 1.

Algorithm 1: The ENSGENDEL update.
Variables: During a task, the model F is given a dataset 

D = {(x1, y1), (x2, y2), …}, where x�X and y�{L1, L2}. The 
dataset is used to train model F = {eL1, eL2, dL1, dL2, fL1, fL2}, 
which is implemented as a set of neural networks. The networks 
el:��→Z, dl:Z→�� are the encoder and decoder of the 
autoencoder that is used to generate the features of the l-th class. 
The network fl:�→[0, 1] is a discriminator network trained to 
distinguish whether the feature x belongs to the l-th class. The 
parameters N, M,��, and�	 are the number of generated samples,
maximum epoch, deletion neighborhood radius, and acceptance 
threshold, respectively.
function UPDATE(D, F):

for l in {L1, L2} do
Al ← {x|y = l; (x, y) � D}
S ← {s � uniform_sample([-1, 1]dim(Z))}N

Bl ← {dl(s) | fl(dl(s)) > 0.9; s � S }
end for
CL1 ← AL1 
 {b � BL1| �a�AL2: ||b – a|| > �}
CL2 ← AL2 
 {b � BL2| �a�AL1: ||b – a|| > �}
for (l, k) in {(L1, L2), (L2, L1)} do

for M times if �x � Cl : ||x – dl(el(x))|| > 
	�do

Jf
l ← ∑x�Cl ln(fl(x)) + ∑x�Ck ln(1 – fl(x))

Jed
l ← ∑x�Cl ||x – dl(el(x))||

Jl ← (|Cl| + |Ck|)-1 Jf
l – |Cl|-1 Jed

l
el, dl, fl ← optimize(Jl, el, dl, fl)

end for
end for
return {eL1, eL2, dL1, dL2, fL1, fL2}

end function

Algorithm 2: Dataset extraction from ENSGENDEL 
model.

Variables: For a given model F = {eL1, eL2, dL1, dL2, fL1, fL2} (learned 
by the update algorithm described in Alg. 1) the extract algorithm 
generates a dataset D = {(x, y)} of the maximum size 2N.
function EXTRACT(F):

for l in {L1, L2} do
Al ← {x | y = l; (x, y) � D}
S ← {s � uniform_sample([-1, 1]dim(Z))}N

Bl ← {dl(s) | fl(dl(s)) > 0.9; s � S }
Dl ← {(x, l) | x � Bl}

end for
return {DL1 
 DL2}

end function

In the basic scenarios, the algorithm is trained in two 
time-steps. The scenarios also provide an evaluation 
methodology for observing how the incremental learning 
algorithm handles catastrophic forgetting and concept drift. 
In the herein presented robotic inductive transfer learning 
deployment, two hexapod walking robots traverse over 
terrains, considered hard L1 or easy L2 to traverse. The robot 
i trains the classifier Fi, which labels the terrain as hard or 
easy based on the terrain mean RGB color. The target (first) 
robot then merges its classifier F1 with the transferred 
classifier F2 from the source (second) robot, creating the 
merged classifier F̂1. The target robot then traverses the 
testing track, which combines both the target and source 
robot tasks. The used four basic scenarios are described in 
Fig. 1.

The employed incremental learning algorithm 
ENSGENDEL, which is adapted for transfer learning, 
comprises an ensemble of generative discriminator neural 
networks with the ability to delete (untrain) the previously 
trained knowledge. The model Fi predicts the label with its 
discriminator network Fi(x) = argmaxl � Y fi

l(x). The transfer 
learning is then implemented as a target robot merging its 
ENSGENDEL model F1 with the model of the source robot 
F1, where the source model F2 is used to generate a labeled 
dataset, see Alg. 2. It then trains the target model F1, creating 
the new merged model F̂1.

In each scenario described in Fig. 1, the target robot 
traverses the first track and collects the dataset D1. The 
dataset is utilized to update the target robot model
F1← UPDATE(D1, F1) (see Alg. 1). The source robot 
traverses the second track and updates the source robot 
model F2← UPDATE(D2, F2). Then, the source robot 
transfers its model into the target robot, which merges the 
source model with its own target model F̂1← 
UPDATE(EXTRACT(F2), F1), see Alg. 2 for the EXTRACT
definition.

It is assumed that the merged model F̂1 performs better 
on the third track of the scenario than the original model F1,
which is verified in the experimental deployment described 
in the following section.
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V. RESULTS

The proposed inductive transfer learning algorithm has 
been deployed on the real hexapod walking robot shown in 
Fig. 2. The hexapod robot performed the four scenarios 
described in Fig. 1. During each scenario, the robot is 
deployed on the respective track to traverse terrain that 
appears either red, white, or black, as it is illustrated in Fig.
2b, and which is either hard or easy to traverse. The terrain 
appearance is described using the RGB color feature x �
����������, and the hard and easy terrain types correspond to 
the labels L1 and L2, respectively. The layer sizes of the 
ENSGENDEL model discriminator f and the auto-encoder 
generator d ○ e are 3-30-30-15-2 and 3-30-30-15-2-15-30-
30-3, respectively. All the layers are composed of rectified 
linear units (ReLU). We use the Adam optimization 
algorithm [19] to train the neural networks with the learning 
rate set to 0.001. The hyperparameters of the update and 
extract algorithms (Alg. 1 and Alg. 2, respectively) are 
empirically set to 	����������� = 200, 
M = 10, and ������.

Figure 2. (a) The utilized hexapod walking robot [18] with the Intel 
RealSense T265 and D435 cameras, providing localization and visual 
perception with depth information, respectively. (b) Illustration of the 

robotic setup.

TABLE I. ACCURACIES OF MODELS WITH (F̂1) AND WITHOUT (F1)
TRANSFER LEARNING. ACCURACIES ARE EVALUATED ON THE TESTING 

TRACK

Model ADD EXP INC SEP

Fs
1 0.88 0.46 0.39 0.57

F̂s
1 1.00 0.87 0.76 0.78

The features are labeled by a supervisor who remotely 
controls the robot. The labels are associated with terrain 
color using the robot localization provided by the Intel 
RealSense T265, thus creating the datasets Di

s. The labels are 
shown at the top of the plots in Fig. 3. In each -th scenario, 
the ENSGENDEL models are updated using Alg. 1 
Fs

1 ← UPDATE(Ds
1, Fs

1), Fs
2 ← UPDATE(Ds

2, Fs
2), and the 

transfer learning is performed by merging the source model 
Fs

2 into the target model Fs
1, creating the merged model 

F̂s
1 ← UPDATE(EXTRACT(Fs

2), Fs
1). Then, the merged 

model F̂s
1 predicts the terrain class on the testing track. The 

predictions are compared to manually created ground truth. 
The test track ground truth is used to evaluate the accuracy of 
the models before F1. Accuracies of both models with and 
without transferred knowledge, F1 and F̂1 respectively, are 
compared in Table I, where it can be observed that the 
classifier performance improves after the transfer learning.

The terrain color perceived by RGB-D camera (the Intel 
RealSense D435) is visualized at the bottom of the individual 
plots in Fig. 3. The clusters of the perceived RGB features 
are shown in Fig. 4.

Figure 3. The sequence of RGB features and the corresponding labels 
captured by the hexapod walking robot traversing the track. Each column 
and row correspond to a scenario and its respective track. On top of each 
track plot, there are visualized easy (blue, labeled as E) and hard (orange, 

labeled as H) terrain labels corresponding to the RGB features visualized at 
the bottom of the plot as RGB values and color time series. The labels on 

the first and second tracks are given by the supervisor who remotely 
controls the robot. There are two label sources on the test track: the 

prediction provided by the merged model, and the ground truth.

Figure 4. RGB features collected during each scenario projected into a 2D 
plane using principal component analysis. The projected features are 

colored by their respective labels, which are given by the supervisor for the 
first and second tracks, or by the merged model for the test tracks. 

Triangles mark means of the colors used in the experiment.

VI. DISCUSSION

Each of the four deployment scenarios assesses different 
aspects of transfer learning. The ADD scenario tests whether 
the target model is able to integrate a new unknown class 
from the source model without forgetting the previously 
learned ones. As can be observed in Fig. 4, in the ADD test 
track, the predictor assigns labels for both classes. The 
neighborhoods of L1 (easy terrain) features in the test track 
and in the first track correspond to each other, as both are on 
the left side; likewise, the neighborhoods of L2 (hard terrain) 
also correspond to each other. A similar result can be 
observed in the EXP scenario, which tests the ability to 
expand an existing class, the L1 class in this case, without 
catastrophic forgetting. While the ADD and EXP scenarios 
evaluate the handling of catastrophic forgetting, the INC and 
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SEP scenarios specialize in concept drift, which in transfer 
learning manifests as conflicting source and target models. 
Such conflict can be observed in Fig. 4 for the INC scenario, 
where the feature neighborhoods of the first track L2 and the 
second track L1 overlap.

In the presented work, we assume that the source model 
learned on the second track is the current truth, and thus, as 
can be observed in the INC test track, the merged model
learns to label the features at the bottom as L1, which 
corresponds to the source model labeling. However, in the 
SEP scenario, it can be observed from Fig. 3 and Fig. 4 that 
the model fails to unlearn the conflicting feature labels.

Overall, the transfer learning improves the classification 
accuracy as it can be seen in Table I. Thus, we can conclude 
that the same approach can solve the inductive transfer and 
incremental learning. Note, the herein presented scenario 
deployment is artificially setup using distinct feature clusters 
so that the transfer learning can be intuitively demonstrated. 
In our future work, we aim to deploy the presented algorithm 
in more realistic homogeneous multi-robot deployments to 
combine both incremental and transfer learning. This paper 
assumes that the perfect mapping between terrain and 
traversability property is the same for both homogenous 
robots. Future research should examine the case of 
heterogeneous robots, where the terrain traversability can be 
different for each robot.

VII. CONCLUSION

In this paper, we show that transfer learning for 
homogeneous robots deployed in a similar environment is 
equivalent to incremental learning with one robot. The 
equivalence between incremental and transfer learning is 
demonstrated by adapting the incremental learning algorithm 
ENSGENDEL for transfer learning. The adapted 
ENSGENDEL algorithm is deployed in four robotic 
scenarios, where a real hexapod walking robot is trained to 
recognize two types of terrain based on its color. The trained 
classifiers are then merged within the transfer learning 
framework producing the merged classifier, which 
outperforms the baseline classifier without transfer learning. 
Therefore, we conclude that in the context of deploying 
multiple homogeneous robots, it is possible to solve both 
incremental and transfer learning by the same algorithm.
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