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Abstract. This paper presents a self-organizing map approach for the
multi-goal path planning problem with polygonal goals. The problem is
to find a shortest closed collision free path for a mobile robot operating in
a planar environment represented by a polygonal mapW. The requested
path has to visit a given set of areas where the robot takes measure-
ments in order to find an object of interest. Neurons’ weights are consid-
ered as points in W and the solution is found as approximate shortest
paths connecting the points (weights). The proposed self-organizing map
has less number of parameters than a previous approach based on the
self-organizing map for the traveling salesman problem. Moreover, the
proposed algorithm provides better solutions within less computational
time for problems with high number of polygonal goals.

1 Introduction

A problem of finding a collision-free path for a mobile robot such that the robot
visits a given set of goals is called the multi-goal path planning problem (MTP).
The problem arises in various robotic tasks and one of them is an inspection
task in which model of the robot work space is a priori known. A model can be a
building plan that can be represented as the polygonal domain, i.e., a polygonal
map with obstacles. In such a map, a goal can be a single point or a polygonal
region. Goals represent places in the environment where a mobile robot takes
measurements. A practical motivation for this type of problems are searching
missions where a mobile robot has to inspect the environment to find an object
of interest, e.g., victims in search&rescue missions [7].

The planning problem for point goals can be formulated as the well-known
traveling salesman problem (TSP), and for which many self-organizing map
(SOM) approaches have been proposed since the first work of Angéniol and
Fort. In the case of polygonal goals, the problem formulation can be found as
the safari route problem [8], or the zookeeper problem [2]. These problems can
be solved in a polynomial time for particular restricted problem formulations,
e.g., problems without obstacles, with a given starting point, and polygonal goals
attached to the boundary. However, these problem variants can be formulated
as the traveling salesman problem with neighborhoods (TSPN) [6]. Although
approximation algorithms for restricted variants of the TSPN exist [3,1], in gen-
eral, the TSPN is APX-hard and cannot be approximated with a factor 2 − ε,
where ε > 0, unless P=NP [9].
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Here, it is worth to mention that SOM approaches for the TSP are focused
on its Euclidean variant, i.e., distances between nodes and goals are determined
as the Euclidean distances between two points. The main difference of the MTP
is that a path between two goals (or node–goal path) has to be collision free;
thus, geodesic paths (distances) avoiding the collision with obstacles have to be
considered in the self-organizing procedure, which increases the complexity of
the adaptation process.

In this paper, new SOM adaptation procedure for the MTP with polygo-
nal goals is proposed. The approach follows standard SOM adaptation schema
for the TSP that has been extended to the polygonal domain using approxi-
mate shortest path in [5]. The adaptation uses new winner selection procedure
that finds and creates new neurons using a distance to a segment of the goal.
Moreover, practical aspects of the adaptation process in the polygonal map are
considered to decrease the computation burden of the adaptation. In addition,
simplified adaptation rules based on [11] are used and together with the novel
winner selection procedure they lead to less number of adaptation parameters.
The proposed procedure is also able to deal with point goals. As such, it provides
a unified way to solve various modifications of the MTP, which includes safari
route problem and also the watchman route problem as a variant of the MTP
where goals are polygons of a convex cover set of W [4].

2 Self-Organizing Map for Multi-Goal Path Planning
with Polygonal Goals

The problem addressed in this paper can be defined as follows. Having a polyg-
onal map W and a set of goals G = {g1, . . . , gn}, the problem is to find a
closed shortest path such that the path visits at least one point of each goal
gi ∈ G. A goal can be a single point, or a polygonal region, and all goals
entirely lie in W . A polygonal goal g is represented as a sequence of points
g = (pg
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The proposed adaptation procedure is based on two-layered competitive neu-

ral network. The input layer consists of two dimensional input vector. An array
of output units is the second layer, and it forms a uni-dimensional ordered struc-
ture. The neuron’s weights represent coordinates of a point inW , which is called
node, and denoted as ν in this paper. Connected nodes form a ring that rep-
resents the requested path. In SOM for the TSP (for example [10]), goals are
presented to the network in a random order and neurons compete to be the
winner using the Euclidean distances between them and the goal. Then, the
winner node is adapted towards the presented goal. However, in the MTP, a
collision free path has to be determined because of obstacles in W . The adapta-
tion process may be considered as a node movement along the node–goal path
towards the goal, i.e., the node (neuron’s weights) is placed on the path closer
to the goal while it travels distance according to the neighbouring function f .
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An approximation of the shortest path may be used for the node–goal path
determination [5].

Novel winner selection procedure is proposed to address polygonal goals. The
procedure is based on consideration of the ring as a sequence of straight line
segments in W . Again, due to obstacles in W , such a sequence is found using an
approximate shortest path between two points (point–point path) in W [4].

Let the ring r be a sequence of line segments r = (sr
1, s

r
2, . . . , s

r
l ). The winner

node is found as a “closest” point of the ring to the set of segments representing
the goal g. The exact shortest path between two segments inW is substituted by
the following approximation. First, the Euclidean distance between the segments
sr

i and sg
j is determined; thus, two points on the segments are found, pr ∈ sr

i

and pg ∈ sg
j . The point–point path for these points is found to approximate the

shortest path between two segments in W . So, a pair (pr, pg) with the minimal
length of the approximate shortest path between pr and pg is the result of the
winner selection procedure. The point pr is used for creating new node if a node
with the same coordinates is not already in the ring. The found point pg at the
goal segment is used as a point goal towards which nodes are adapted using the
point–point path. In the case of a point goal g, a similar procedure is used for
approximating shortest segment–point path and pg is the point goal itself.

The adaptation is an iterative stochastic procedure starting with an initial
creation of m nodes, where m = 2n and n is the number of goals. The neurons’
weights are set to form a small circle around the first goal g1, or around the
centroid of g1 for the polygonal goal. The used neighbouring function is f(σ, d) =
exp(−d2/σ2) for d < 0.2m, and f(σ, d) = 0 otherwise, where σ is the learning
gain (the neighbouring function variance) and d is the distance of the adapted
node from the winner node measured in the number of nodes (the cardinal
distance). The adaptation process performs as follows.

1. Initialization: For a set of n goals G and a polygonal mapW , create 2n nodes
around the centroid of the first goal. Let the initial value of the leaning gain
be σ = 10, and adaptation parameters be μ = 1, β = 10−5, and i = 1.

2. Randomizing: Create a random permutation of goals Π(G).
3. Winner Selection: For a goal g ∈ Π(G) and the current ring r as a path

in W find the pair (pr, pg) using the proposed winner selection procedure.
Create a new node ν with coordinates pr if such a node does not already
exist. A node at the coordinates pr is the winner node ν�.

4. Adapt: If g is a point goal or ν� is not inside the polygonal goal g:
– Let the current number of nodes be m, and N be a set of ν�’s neighbor-

hoods in the cardinal distance less than or equal to 0.2m.
– Move ν� along approximate shortest path S(ν�, pr) towards pr by the

distance |S(ν�, pr)|μ, where |S(., .)| is the length of the approximate
path.

– Move nodes ν ∈ N for which μf(σ, d) < β towards pr along S(ν, pr) by
the distance |S(ν, pr)|μf(σ, d), where f is the neighbouring function and
d is the cardinal distance of ν to ν�.

Remove g from the permutation, Π(G) = Π(G) \ {g}, and if |Π(G)| > 0 go
to Step 3.
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5. Ring regeneration: Create a new ring as a path in W using only the winner
nodes of the current adaptation step, i.e., remove all other nodes. Make
nodes from the endpoints of sr ∈ r that do not correspond to the winners,
i.e., nodes correspond to the sequence of path’s vertices.

6. Update adaptation parameters: Set i = i+1, σ = (1−0.001i)σ, and μ = 1/ 4
√

i.
7. Termination condition: If all polygonal goals have particular winner inside

the polygonal goal, and if all point goals have the winner in a sufficient
distance, e.g., less than 10−3, or σ < 10−4 Stop the adaptation. Otherwise
go to Step 2.

8. Final path construction: Use the last winners to determine the final path
using point–point approximate path in W .

It is clear that the proposed adaptation procedure considering ring as a collision
free path inW with the closest ring–goal segments selection is more computation-
ally demanding than a consideration of node–goal points, which does not require
determination of shortest path between two nodes. The adaptation performed
only if μf(σ, d) < β (called β − condition rule) decreases the computational
burden without significant influence to the solution quality. Also the used evo-
lution of σ, μ [11] provides fast convergence. However, it decreases the solution
quality in few cases in comparison to Somhom’s parameters [10] used in [5,4].
An experimental comparison of these algorithms is presented in Section 3.

Regarding the necessary parameters settings the main advantage of the pro-
posed procedure is that it does not require specific parameters tuning. Based
on several experiments the procedure seems to be insensitive to changes of
the initial values of σ and μ. Also the used size of the winner neighborhood
(0.2m) provides the best trade-off between the solution quality and computa-
tional time.

It is worth to mention that the used approximation of the shortest path be-
tween two points (described in [4]) is more computationally demanding, and it
is less precise than the node–goal path approximation. However, it requires less
memory. It is because precomputed shortest paths from all map vertices to the
goals are used in the node–goal path queries. Thus, lower memory requirements
and a faster initialization are additional advantages of the proposed method.

3 Experiments

The proposed adaptation procedure has been experimentally verified in two sets
of problems with polygonal goals, and compared with the SOM approach for
the watchman route problem (WRP) [4]. The first set represents a “general-
ized” safari route problem, where convex polygonal goals, possibly overlapping
each other, are placed in W . The second set represents the WRP with re-
stricted visibility range presented in [4]. Moreover, the proposed procedure has
been compared with the SOM approach for the TSP in W [5] where goals are
points.
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(a) dense5-A (b) h25-A (c) jh4-A (d) potholes2-A

Fig. 1. Selected solutions of the safari route problems, light polygons are goals, small
disk at convex goal are the last winner nodes, black lines are found paths

The WRP algorithm adapts nodes towards centroids of the convex polygonal
goals1. An alternate point is determined at the polygon border using node–
centroid path to avoid placement of nodes too close to the polygon centroid, i.e.,
the node movement towards the centroid is stopped at the border. For the safari
route problem, the WRP algorithm has been modified to do not consider the ring
coverage, and to adapt nodes towards the determined alternate points. Besides,
the WRP and the TSP algorithms has been modified to use the β − condition
rule and the Euclidean distance for pre-selection of winner nodes candidates,
i.e., approximate node–goal path is determined only if the Euclidean node–goal
distance is less than the distance of the current winner node candidate to the
goal. These two modifications are technical, as they do not affect the solution
quality; however, they decrease the computational burden several times.

The examined algorithms have been implemented in C++, compiled by the
G++ 4.2.1 with the -O2 optimization, and executed within the same computa-
tional environment using single core of the i7-970 CPU at 3.2 GHz, and 64-bit
version of the FreeBSD 8.2. Thus, the presented average values of the required
computational times T can be directly compared.

The SOM algorithms are randomized, and therefore, each problem has been
solved 50 times, and the average length of the path L, the minimal found path
length Lmin, and the standard deviation in percents of L denoted as sL% are used
as the quality metrics. Reference solutions from [4,5] are used for the WRPs and
the TSPs, and the solution quality is measured as the percent deviation to the
reference path length of the average path length, PDM = (L−Lref)/Lref ·100%,
and as the percent deviation from the reference of the best solution, PDB =
(Lmin−Lref )/Lref ·100%. All presented length values are in meters. The number
of goals is denoted as n in the presented tables.

The experimental results for the safari route problems are presented in Ta-
ble 1 and selected best solutions found by the proposed algorithm are depicted
in Figure 1. The proposed procedure provides better solutions for most of the
problems. The procedure is more computationally demanding for complex envi-
ronments like the problem h25-A because shortest paths have many segments.
This is also the case of the jh10-coverage problem, which is an instance of the
WRP with many overlapping convex goals.

1 In [4], triangles of a triangular mesh are used to support determination of ring
coverage, which is not necessary for safari route problems.
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Table 1. Experimental results for the safari route problems

Problem n
SOM for WRP [4] Proposed

L sL% Lmin T [s] L sL% Lmin T [s]

dense-small 35 114.2 3.45 105.63 0.34 113.7 3.99 102.80 0.98

dense5-A 9 62.6 1.96 60.66 0.14 59.0 2.77 58.05 0.23

h25-A 26 407.2 0.98 399.34 1.22 405.2 0.88 396.07 2.12

jh-rooms 21 88.3 0.76 87.84 0.13 88.1 0.10 87.83 0.15

jh10-doors 21 67.6 1.34 66.11 0.16 63.7 1.43 61.99 0.15

jh10-coverage 106 106.9 1.34 103.89 1.49 97.9 6.20 92.99 2.66

jh4-A 16 61.1 1.86 58.71 0.33 57.3 1.32 56.59 0.32

jh5-corridors 11 65.8 1.87 62.77 0.14 59.7 0.35 59.53 0.20

pb5-A 7 275.8 4.47 265.29 0.31 271.7 4.36 264.70 0.31

potholes2-A 13 71.9 1.91 70.37 0.04 71.6 2.08 70.09 0.08

Table 2. Experimental results for the WRP

Map
d

n
Lref SOM for the WRP [4] Proposed

[m] [m] PDM PDB sL% T [s] PDM PDB Lmin sL% T [s]

jh inf 100 207.8 -52.67 -53.39 1.53 1.45 -53.71 -54.17 95.27 2.78 2.40

jh 10.0 108 207.3 -51.84 -53.02 3.27 1.95 -50.65 -54.02 95.30 6.89 2.64

jh 5.0 130 216.4 -48.67 -51.75 3.39 1.27 -51.54 -53.06 101.56 4.18 5.75

jh 4.0 169 219.9 -43.48 -46.34 3.22 2.97 -48.38 -49.42 111.22 2.71 9.21

jh 3.0 258 225.5 -27.92 -30.60 1.61 5.18 -35.04 -37.04 142.01 2.27 13.12

jh 2.0 480 281.9 -8.99 -11.09 1.06 20.68 -17.25 -19.85 225.91 1.64 23.16

jh 1.5 852 350.3 -3.81 -5.51 1.02 109.81 -14.56 -15.68 295.39 0.74 100.40

jh 1.0 1800 470.8 3.96 2.36 0.59 430.88 -9.06 -10.25 422.50 0.55 452.03

pb inf 52 533.3 -18.11 -22.26 4.98 1.44 -16.18 -23.18 409.69 5.70 1.28

pb 10.0 111 612.7 -12.48 -14.86 3.92 2.57 -15.46 -17.94 502.78 4.73 3.46

pb 5.0 262 682.9 -7.35 -9.34 2.45 5.56 -7.01 -10.62 610.38 4.45 15.23

pb 4.0 373 720.1 -6.17 -8.78 3.25 16.80 -7.46 -10.09 647.41 3.16 20.37

pb 3.0 714 774.8 -5.62 -6.72 0.55 42.52 -3.04 -9.54 700.81 6.95 114.08

pb 2.0 1564 901.9 -2.88 -4.41 1.02 244.72 -0.30 -9.40 817.12 4.53 373.74

pb 1.5 2787 1115.9 1.03 0.07 0.54 997.68 -9.12 -12.12 980.59 2.27 1078.42

pb 1.0 6188 1564.2 2.55 1.90 0.41 5651.06 -12.52 -13.89 1346.87 0.78 3276.43

ta inf 46 203.6 -30.99 -31.48 0.52 0.28 -33.67 -33.94 134.52 1.69 0.76

ta 10.0 70 202.6 -28.11 -28.80 0.28 0.41 -28.36 -28.89 144.08 1.45 1.63

ta 5.0 152 254.1 -15.68 -17.97 1.81 1.26 -19.61 -20.35 202.39 0.83 6.39

ta 4.0 209 272.2 -7.39 -9.91 1.36 3.69 -15.70 -16.65 226.90 0.85 11.64

ta 3.0 357 315.0 -6.28 -8.75 1.61 12.61 -13.46 -14.42 269.57 1.30 15.58

ta 2.0 757 408.3 1.09 -1.20 0.87 66.48 -10.97 -12.52 357.18 1.00 59.00

ta 1.5 1320 522.1 1.06 -1.18 0.97 194.25 -12.81 -13.63 450.92 0.59 251.08

ta 1.0 2955 743.6 5.21 3.80 0.57 1398.71 -12.45 -13.54 642.89 0.57 987.77

The results for the WRP are presented in Table 2, where d denotes the
restricted visibility range. Also in this type of problems, the proposed proce-
dure provides better solutions. Although the procedure is more computationally
demanding for small problems, it provides significantly better results with less
required computational time for problems with d=1 m, which have many convex
polygons. The results indicate that the proposed procedure scales better with
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Table 3. Experimental results for the TSP

Problem n
Lref SOM for the TSP [5] Proposed

[m] PDM PDB sL% T [s] PDM PDB sL% T [s]

jari 6 13.6 0.36 0.00 0.55 0.01 0.23 0.00 0.15 0.01

complex2 8 58.5 -0.00 -0.00 0.00 0.01 0.47 -0.00 1.60 0.02

m1 13 17.1 0.31 0.00 1.15 0.02 0.17 0.00 0.20 0.03

m2 14 19.4 9.52 0.00 3.50 0.03 10.76 5.32 3.16 0.04

map 17 26.5 5.92 0.73 4.39 0.05 6.87 0.73 4.37 0.07

potholes 17 88.5 4.58 2.37 2.17 0.06 5.56 2.37 2.48 0.06

a 22 52.7 0.89 0.31 1.00 0.09 1.58 0.31 2.37 0.11

rooms 22 165.9 1.02 0.00 0.86 0.11 0.12 0.00 0.11 0.15

dense4 53 179.1 15.04 8.33 3.16 0.68 18.17 9.00 2.38 0.68

potholes2 68 154.5 6.12 2.50 2.01 0.65 7.54 3.11 2.23 0.35

m31 71 39.0 6.71 2.29 1.53 1.41 8.72 4.80 1.64 1.00

warehouse4 79 369.2 5.97 2.42 2.13 1.92 8.47 2.87 2.68 0.81

jh2 80 201.9 1.94 0.48 0.64 0.95 2.04 0.67 0.66 0.71

pb4 104 654.6 1.06 0.01 1.34 1.53 1.95 0.51 3.05 0.84

ta2 141 328.0 2.97 1.69 0.69 2.27 3.69 2.19 0.75 1.11

h25 168 943.0 2.85 2.00 0.60 8.75 2.42 1.65 0.53 6.70

potholes1 282 277.3 6.84 4.91 1.02 10.47 6.97 4.19 0.91 2.71

jh1 356 363.7 4.02 2.74 0.56 22.29 4.32 3.23 0.46 7.05

pb1.5 415 839.6 2.60 1.12 2.25 24.13 10.40 1.47 5.21 6.62

h22 568 1 316.2 2.81 1.87 0.51 87.61 3.00 1.97 0.46 32.19

ta1 574 541.1 5.51 4.63 0.41 38.11 6.39 4.88 0.73 10.86

increasing number of goals. The reason for this is in the number of involved neu-
rons. While the algorithm [4] derives the number from the number of goals, the
proposed procedure dynamically adapts the number of neurons using shortest
path inW . Thus, for very large problems in the same map, additional neurons do
not provide any benefit, and only increase the computational burden. The worse
average results for the map pb, d=3 and d=2 are caused by the used point–point
shortest path approximation, which provides unnecessary long paths in several
cases. Nevertheless, the proposed procedure is able to find significantly better
solutions, regarding the PDB, than the WRP algorithm [4].

The results for the TSP are presented in Table 3. The proposed procedure
provides competitive results to the algorithm [5]. Worse average solutions are
found for several problems. In these cases, the point–point path approximation
provides longer paths than the point–goal path used in the TSP algorithm. The
used schema of parameters evolution [11] leads to faster convergence, which
“compensates” the more complex winner selection. However, the schema is the
main reason for the worse performance of the proposed procedure than the TSP
algorithm [5] with parameters’ evolution [10].

4 Conclusion

Novel winner selection procedure for self-organizing maps has been proposed in
this paper. The proposed adaptation procedure is able to deal with variants of
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the multi-goal path planning problem including the TSP, the WRP and the safari
route problem. Moreover, the procedure can be considered as parameterless, as
the number of neurons is determined during the adaptation process. It provides
a unified approach to solve various routing problems in the polygonal domainW .

Although the proposed algorithm provides outstanding results in many cases,
both the required computational time and the solution quality may be improved
as the former algorithms for the WRP and the TSP provide better results in
particular problems. Both these aspects are related to the evolution of the adap-
tation parameters, e.g., σ, μ, or size of the winner node neighborhood. Besides,
the utilized approximation may be improved. Shortest path approximation and
investigation of adaptation schemata with different evolution of parameters are
subjects of the further work.
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