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Abstract. In this paper, we consider a challenging variant of the trav-
eling salesman problem (TSP) where it is requested to determine the
shortest closed curvature-constrained path to visit a set of given loca-
tions. The problem is called the Dubins traveling salesman problem in
literature and its main difficulty arises from the fact that it is necessary to
determine the sequence of visits to the locations together with particular
headings of the vehicle at the locations. We propose to apply principles of
unsupervised learning of the self-organizing map to simultaneously deter-
mine the sequence of the visits together with the headings. A feasibility
of the proposed approach is supported by an extensive evaluation and
comparison to existing solutions. The presented results indicate that the
proposed approach provides competitive solutions to existing heuristics,
especially in dense problems, where the optimal sequence of the visits
cannot be determined as a solution of the Euclidean TSP.

1 Introduction

A problem of finding a shortest closed path to visit a given set of locations
can be formalized as the traveling salesman problem (TSP) for which several
approaches have been proposed [4]. The basic variant of the TSP is the Euclidean
TSP where locations are placed in a plane and each pair of the locations can be
connected by a straight line segment with the length computed as the Euclidean
distance between the locations. Although this problem formulation addresses
many practical problems [4], it does not fit surveillance missions with curvature-
constrained vehicles such as aircraft, for which the shortest path connecting two
locations depends on the particular headings of the vehicle at the locations.

Optimal path planning for a vehicle with a constant forward velocity and
limited turning radius ρ has been studied by Dubins who showed that the optimal
path connecting two locations with prescribed headings is one of the six possible
maneuvers [5]. The optimal maneuver can be determined analytically and it is
called Dubins maneuver where the motion model is called the Dubins vehicle.
However, the analytic solution does not allow to directly solve the so-called
Dubins traveling salesman problem (DTSP), which stands to find a shortest
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closed path for the Dubins vehicle to visit a given set of locations [11]. It is
because each heading can be selected from the interval 〈0, 2π) and the total
length of the shortest path visiting the locations depends on the headings and
also on the order of their visits. Therefore, it is necessary to determine both the
headings and sequence of visits to the locations in the DTSP.

Three fundamental approaches for the DTSP can be found in literature. The
first are methods based on a solution of the Euclidean TSP (ETSP) with the re-
laxed curvature constraint that include approximate algorithms with a relatively
high approximation ratios [9] and heuristic algorithms such as the Alternating
algorithm (AA) [12] or Local iterative optimization (LIO) [14]. Heuristics provide
relatively good results in instances with locations far from each other, for which
the solution of the ETSP provides optimal or close to optimal sequence in the
DTSP. Moreover, for locations with mutual distance longer than 4ρ, the optimal
headings for a given sequence can be found by convex optimization [7]. There-
fore, it seems that instances with dense locations are more challenging, since it
is necessary to simultaneously determine the optimal sequence and headings.

Two additional types of approaches are sampling-based methods [10] and
evolutionary techniques such as genetic [15] and memetic [16] algorithms that
consider particular values of possible headings at each location and solve the
sequencing part of the problem. Sampling-based methods need a prescribed dis-
cretization of the headings and address the DTSP as the Generalized Asymmet-
ric TSP which is transformed into the Asymmetric TSP [10] that can be solved
optimally by the Concorde solver [2]. Although sampling-based approaches are
able to provide high quality solutions, they become quickly computationally in-
tractable for increasing number of locations and samples. On the other hand,
evolutionary methods provide the first feasible solutions relatively quickly, which
is then further improved if more computational time is available.

In this paper, we consider principles of existing self-organizing map (SOM)
approaches for the TSP [1, 13, 6] to address challenges of the DTSP. The main
difficulty of applying SOM to the DTSP is in computation of the best matching
unit, which needs to respect the locations and headings regarding the previous
and next waypoints in the tour. The proposed SOM for the DTSP encodes ex-
pected headings at the locations into the network structure and heading values
are refined during the unsupervised learning. Although the proposed approach
does not provide optimal solution of the DTSP, which has been also observed
in SOM for the ETSP [3], it provides better results than simple existing heuris-
tics [12, 14] in problems where the optimal sequence of the visits is not the same
as the optimal solution of the underlying ETSP. Moreover, the proposed SOM
provides competitive results to the existing Memetic algorithm [16] with the
computational time limited to 1 hour while SOM is significantly faster.

2 Problem Statement

The motivation of the addressed curvature-constrained traveling salesman prob-
lem is a solution of the surveillance missions with a fixed-wing aerial vehicle



SOM for the Curvature-Constrained TSP 3

that is modeled as the Dubins vehicle with the minimum turning radius ρ and
constant forward velocity v. The state of the vehicle q is a triplet q = (x, y, θ)
from the special Euclidean group q ∈ SE(2), where (x, y) is the vehicle position
in a plane and θ ∈ S1 is the vehicle heading at (x, y). The model can be formally
described as:  ẋẏ

θ̇

 = v

 cos θ
sin θ
u
ρ

 , |u| ≤ 1, (1)

where u is the control input. For simplicity and without loss of generality, we
consider v=1 and ρ=1 in the rest of the paper.

In surveillance missions, the Dubins vehicle is requested to visit a set of n
locations P = {p1, . . . , pn}, pi ∈ R2 by a closed path. Therefore, the problem
stands to determine a sequence of visits to the locations together with the vehi-
cle’s heading at each location pi ∈ P [8]. The problem can be formally described
as follows. Let Σ = (σ1, . . . , σn) be an ordered permutation of {1, . . . , n} and
P be a projection from SE(2) to R2 such that P(qi) = (xi, yi), where qi is an
element of SE(2) whose projection is the location pi = (xi, yi). The problem is
to determine the minimum length tour that visits every location pi ∈ P while
satisfying the constraints of the Dubins vehicle (1). This is an optimization prob-
lem over all possible permutations Σ and headings Θ = {θσ1

, θσ2
, . . . , θσn

} in
the states (qσ1 , qσ2 , . . . , qσn) such that qσi = (pσi , θσi):

minimizeΣ,Θ

n−1∑
i=1

L(qσi
, qσi+1

) + L(qσn
, qσ1

) (2)

subject to qi = (pi, θi) i = 1, . . . , n, (3)

where L(qσi
, qσj

) is the length of the shortest possible path (Dubins maneuver)
for the Dubins vehicle (1) between the states qσi and qσj .

3 Proposed Self-Organizing Map for the DTSP

The proposed unsupervised learning procedure builds on existing self-organizing
maps for the Euclidean TSP [13, 6]. SOM for the TSP is two-layer neural network
which maps the input space R2 into an array of output units. The input of the
network are the locations to be visited P = {p1, . . . , pn}, pi ∈ R2, while neurons
N represent particular states of the Dubins vehicle in SE(2), N = {ν1, . . . , νm},
where νi ∈ SE(2) and we use m=2n according to [13].

Similarly to SOM for the ETSP, connected neurons form a ring representing
a closed path in the input space. Since the sequence is prescribed by the output
layer and each neuron has associated heading, it is straightforward to determine
the optimal curvature-constrained path for the Dubins vehicle (1) using analytic
solution of the optimal Dubins maneuvers [5].

In contrast to the solution of the ETSP, we need to adapt not only neuron
weights to the locations P but we also need an adaptation rule to adjust the
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headings at the locations. It is known that the distance function L of the Dubins
maneuvers is sensitive to headings, especially for two close locations. Therefore,
in addition to the main heading θi associated to each neuron νi, we consider up
to 2k headings around θi according to the neighbouring function f(σ, d), where d
is the distance in the number of nodes and σ is the learning gain. These headings
may be considered as additional neurons; however, they are utilized only in the
evaluation of the winner and in the local improvement of the solution of the
DTSP represented by the ring. Based on the empirical evaluation, k=12 provides
a suitable tradeoff between the solution quality and computational requirements.

winner neuron

*
ν

prevν

nextν

presented to the network
the current location

p

Fig. 1. Example of winner selection (left) and the final found solution (right). The
locations to be visited are represented by green disks, the neurons are in blue and they
are connected into a ring by Dubins maneuvers (black curve). The green straight line
segment connects the current winner with its location p ∈ P while the selected previous
νprev and next νnext neurons of the winner are highlighted by the blue segments. The
red curve (left) is the Dubins path used for the selection of the winner neuron.

The key idea of the proposed SOM for the DTSP is the winner selection
that considers headings and also the length of the Dubins path. The winner
ν∗i for p ∈ P is selected as the best matching unit according to the distance
computed as the length of the two Dubins maneuvers connecting νprev with the
state (p, θi) and (p, θi) with νnext, where θi is the heading of ν∗i . The neurons
νprev and νnext represent the previous and next neighbouring neurons of νi, i.e.,
prev < i and next > i, and they are determined according to the neighbouring
function f(σ, d) as the farthest neighbors for which f(σ, d) ≥ 10−4. It has been
empirically observed that such a selection of νprev and νnext provides better
results than the immediate neighbouring neurons. Besides, σ is decreasing after
each learning epoch and, therefore, in later epochs, the immediate neurons are
utilized which further support stabilization of the network. An example of the
relation between the winner, neighbouring neurons, and the presented location
to the network is visualized in Fig. 1.

Let headings associated to νi ∈ N be Θi = {θ−ki , θ−k+1
i . . . , θi, θ

k
i , . . . , θ

k
i }

then, the winner neuron ν∗ is selected with the heading θ according to:

(ν∗, θ) = argminνi∈N ,νi /∈I,θ∈Θi
L(νprev, (p, θ)) + L((p, θ), νnext), (4)

where I denotes all neurons selected as winners in the current epoch. After
that, the winner ν∗ is adapted towards p and its main heading is set to θ. The
neighbouring neurons are also adapted towards p, but only using the position
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as in the standard SOM for the ETSP. The neighbouring function f(σ, d) =
exp(−d2/σ2) for d < 0.2m, and f(σ, d) = 0 otherwise, is used for the adaptation.

Finally, to further improve convergence of the network and selection of the
most suitable headings at the locations P , we update the main headings of the
current winners after each learning epoch, i.e., after complete presentation of all
locations P to the network. Since each location p has a unique winner, the order
of winners in the output layer prescribes the sequence of visits to the locations.
We consider the associated headings to the winners and construct all possible
feasible Dubins paths connecting the locations P in the sequence defined by the
winners. The best heading for each winner is determined by a forward search,
which time complexity can be bounded by O(nk3). In comparison to the winner
selection with the time complexity O(n2k), this is negligible since k � n. Beside
improving the headings at the winners, this also provides a feasible solution of
the DTSP at the end of each learning epoch. The selection of the winners, their
adaptation and ring regeneration is repeated until the solution is not improving
or after reaching the maximal number of learning epochs. The overall adaptation
procedure is summarized as follows.

1. Initialization: For n locations P and the Dubins vehicle with the minimal
turning radius ρ, create 2n nodes around the centroid of P equidistantly
placed on a circle with the radius ρ. The learning gain σ is set to σ =
12.41n + 0.06, the learning rate µ=0.6, and the gain decreasing rate α=0.1
according to [13]. The epoch counter i is set to 1, i=1.

2. Randomizing: Create a random permutation of the locations Π(P ).
3. Learning epoch: Clear inhibited neurons I = ∅ and for each p ∈ Π(P )

(a) Select winner ν∗ and its heading θ for p ∈ Π(P ) using (4).
(b) Adapt the winner and its neighbouring nodes to p using f(σ, d) and

update headings of the winner according to the selected value θ.
(c) Update the inhibited neurons I = I ∪ {ν∗i }.

4. Ring regeneration: Update headings of the current winners from the shortest
Dubins path for the sequence of the locations defined by the winners in the
ring and their associated headings.

5. Update the learning gain and epoch counter: σ = σ(1− α), i = i+ 1.
6. Termination condition: If solution is not improving or i > imax Stop the

adaptation. Otherwise go to Step 2.
7. Construct the final Dubins path from the last winners and their headings.

An example of the final found solution is depicted in Fig. 1. Evaluation results
and comparison with existing approaches are reported in the next section.

4 Experimental Results

The proposed SOM for the DTSP has been evaluated in several randomly gen-
erated problems with different numbers of locations n and mutual distances
between the locations. We consider a relative density d of the n locations and
the minimal turning radius ρ and generate the locations inside squared area
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with the side s = (ρ
√
n)/d. In particular, we consider 20 instances for each

n ∈ {10, 20, 50, 70, 100} and d ∈ {0.3, 0.5, 1.0, 1.3, 1.7, 2.0}, which gives 600 dif-
ferent problem instances in total.

The performance of the proposed SOM algorithm has been compared with
the AA [12] and LIO [14] heuristics and Memetic algorithm [16]. To evaluate the
performance of the algorithms in so many instances, we consider the solution
quality as the average ratio RL of the particular path length to the reference
path length Lref and its standard deviation σR. Because optimal solution of the
DTSP is not available, we consider the best found solution from all the solutions
as Lref . For providing high quality reference solutions, we consider the Memetic
algorithm [16] with the computational time limited to one hour. On the other
hand, for comparison with SOM and heuristics, we limit the computational time
to 100 seconds to make the computational requirements of the Memetic algo-
rithm competitive to SOM. Notice, AA and LIO are deterministic algorithms,
while SOM is stochastic. Therefore, we performed 20 trials for SOM and each
problem, which gives 13 800 trials in total. Only a single trial is performed by
the Memetic algorithm to provide an overview of its convergence speed.

(a) Memetic–1 h, L=95 (b) Memetic–100 s, L=104 (c) SOM T=5.8 s, L= 102

Fig. 2. Selected found solutions for the same problem with n=50 locations and d=1.0

All the algorithms have been implemented in C++ and executed on a single
core of the iCore7 CPU running at 3.4 GHz with 16 GB RAM and thus, the
presented required computational times can directly compared.1 The results are
listed in Table 1, where R′L is the average ratio of the best found solution for
each problem from 20 trials. The standard deviation for R′L is always less than
0.1 and typically around 0.05. Selected found solutions are shown in Fig. 2.

The fastest algorithms are the heuristics that provide a solution in less than
one second, which includes optimal solution of the underlying ETSP by the Con-
corde [2]. Although the AA and LIO algorithms provides relatively good results
for sparse problems, i.e., d=0.3, with increasing density, the solution quality is
quickly decreased. The proposed SOM does not provide competitive results to
the Memetic algorithm for sparse problems. However, with increasing density of
the locations, SOM solutions are competitive with the Memetic algorithm with
the running time limited to 100 seconds, while SOM provides solutions in less
than 30 seconds.

1 Reference solutions provided by the Memetic algorithm with 1 hour computational
time has been found using a computational grid to decrease real time requirements.
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Table 1. Average ratio of the solution length in the DTSP instances

d n
ETSP-AA [12] ETSP-LIO [14] Memetic∗ Proposed

RL σR T [ms] RL σR T [ms] RL σR RL σR T [s] R′L

0.3 10 1.35 0.14 3.7 1.32 0.15 9.4 1.04 0.06 1.11 0.10 0.5 1.00

20 1.38 0.11 9.0 1.26 0.08 21.9 1.07 0.04 1.12 0.07 1.6 1.01

50 1.35 0.11 52.7 1.27 0.08 148.0 1.10 0.06 1.10 0.06 7.2 1.01

70 1.47 0.60 202.0 1.27 0.06 237.3 1.14 0.05 1.08 0.05 13.5 1.01

100 1.31 0.06 346.5 1.24 0.05 641.8 1.23 0.04 1.07 0.05 26.2 1.00

0.5 10 1.65 0.20 4.7 1.73 0.31 11.5 1.09 0.09 1.23 0.16 0.5 1.02

20 1.61 0.13 10.5 1.73 0.23 31.2 1.10 0.08 1.20 0.11 1.5 1.03

50 1.71 0.54 60.9 1.68 0.08 145.7 1.10 0.05 1.14 0.07 7.4 1.03

70 1.68 0.54 258.2 1.65 0.10 500.0 1.14 0.04 1.11 0.06 13.5 1.01

100 1.50 0.05 766.8 1.63 0.10 587.9 1.23 0.05 1.09 0.05 25.8 1.01

1.0 10 1.72 0.21 6.6 2.33 0.27 14.8 1.12 0.14 1.29 0.18 0.4 1.06

20 1.97 0.15 18.4 2.57 0.14 34.0 1.11 0.10 1.25 0.13 1.5 1.05

50 1.94 0.11 93.4 2.63 0.16 174.2 1.12 0.06 1.17 0.08 7.3 1.03

70 1.94 0.06 440.2 2.70 0.15 585.5 1.21 0.07 1.14 0.06 13.1 1.03

100 1.93 0.07 332.8 2.63 0.12 537.9 1.31 0.06 1.11 0.06 25.1 1.01

1.3 10 1.64 0.17 7.0 2.35 0.22 14.8 1.12 0.10 1.29 0.15 0.4 1.04

20 1.97 0.14 19.7 2.73 0.29 42.8 1.12 0.08 1.28 0.13 1.3 1.08

50 2.09 0.10 113.7 3.04 0.11 183.8 1.13 0.07 1.18 0.08 7.0 1.04

70 2.12 0.09 194.1 3.13 0.16 332.0 1.24 0.06 1.14 0.07 12.8 1.01

100 2.05 0.07 443.0 2.97 0.11 540.6 1.32 0.06 1.10 0.06 24.4 1.00

1.7 10 1.56 0.15 6.6 2.31 0.28 11.7 1.12 0.11 1.30 0.17 0.4 1.07

20 1.80 0.17 19.5 2.79 0.26 36.7 1.10 0.10 1.31 0.14 1.2 1.12

50 2.16 0.12 90.6 3.34 0.21 174.2 1.17 0.07 1.20 0.10 6.7 1.05

70 2.16 0.11 275.4 3.36 0.19 359.8 1.21 0.05 1.15 0.07 12.4 1.02

100 2.24 0.11 354.3 3.46 0.19 554.3 1.33 0.06 1.11 0.07 23.7 1.00

2.0 10 1.40 0.08 7.8 2.17 0.18 13.7 1.11 0.11 1.26 0.13 0.4 1.06

20 1.69 0.13 19.5 2.64 0.23 38.7 1.09 0.07 1.32 0.13 1.2 1.12

50 2.11 0.15 120.7 3.36 0.23 268.4 1.16 0.10 1.25 0.11 6.5 1.10

70 2.21 0.10 222.5 3.46 0.15 345.7 1.22 0.08 1.16 0.08 12.2 1.03

100 2.25 0.10 339.5 3.59 0.19 541.0 1.33 0.07 1.11 0.06 23.6 1.00

∗Computational time of the Memetic algorithm [16] has been limited to 100 seconds

5 Conclusion

We proposed probably the first SOM-based solution of the Dubins traveling
salesman problem which includes challenges of the underlying combinatorial TSP
with the continuous optimization of the headings at the locations. Although the
results do not show significantly better solutions of SOM than a more compu-
tationally demanding Memetic algorithm, the results support feasibility of the
proposed idea and better scalability for larger and denser problems.

The distance of the farthest neurons utilized in the winner selection influences
how close the solution is to the underlying ETSP, which provides better results
for sparse problems, or the adaptation is more focused on optimization of the
headings. In this paper, we consider dense problems regarding the motivation of
surveillance planning, because we aim to further deploy the proposed solver in
more general problems with continuous sensing, i.e., sensing along the path and
not only in a finite set of locations. This problem can be considered as the TSP
with Neighborhoods, where SOM already exhibits its flexibility [6] for problems
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without curvature-constrained paths. The proposed SOM for the DTSP is an
initial building block for solving this more general problem.
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