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Abstract. Terrain classification is a crucial feature for mobile robots
operating across multiple terrains. One way to learn a terrain classifier is
to use a stream of labeled proprioceptive data recorded during a terrain
traversal. In this paper, we propose a new terrain classifier that com-
bines a feature extraction from a data stream with the long short-term
memory (LSTM) network. Features are extracted from the information-
sparse data stream by applying a sliding window computing three central
moments. The feature sequence is continuously classified by the LSTM
network into multiple terrain classes. Furthermore, a modified bagging
method is used to deal with a limited and unbalanced training set. In
comparison to the previous work on terrain classifiers for a hexapod
crawling robot using only servo-drive feedback, the proposed classifier
provides continuous classification with the F1 score up to 0.88, and thus
provide better results than SVM classifier learned on the same input
data.

1 Introduction

Continuous proprioception processing is essential for crawling robots that adapt
their locomotion to particular terrain type. In the animal world, a propriocep-
tive signal carries information about locomotor organs such as muscle stretch or
muscle force output [17, 4]. For multi-legged walking robots, the proprioception
describes the state of joint or servomotor actuators, and since the state of actu-
ators is correlated with the robot surrounding environment, it is possible to use
the proprioception for a local terrain classification [9, 18]. A terrain classifier can
be integrated into locomotion control of a hexapod, a six-legged walking robot, to
improve the performance [1] such as speed or stability. The robot is controlled in
real time, and therefore, the proprioceptive data must be processed continuously
to make the terrain classifier synchronous with the locomotion control.

Two types of terrain classification can be distinguished: local and remote [11].
The remote classification relies on ranged exteroceptive sensors, e.g., camera [1]
and range sensors such as LiDARs [7, 19]. The local classification relies on pro-
prioception [10] or local exteroception [12], which measures the environment in
the close vicinity of the robot body that can be used to select an appropriate
motion gait [13]. On the other hand, the primary function of proprioception is
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to sense the internal state of the body (i.e., muscle stretch pressure or a joint
angle) and to participate in the locomotion control. Contrary to local exterocep-
tive sensors that generate extra costs, the proprioception is usually already on
board of multi-legged robots. Therefore proprioceptive signals can be considered
as an alternative to the local exteroception for the immediate experience of the
robot with the terrain the robot is currently traversing [9, 18].

One of the proprioceptive signals generated by a walking hexapod robot is a
sequence of joint angle errors. The joint angle error is a difference between an ac-
tual joint angle and desired joint angle which is given by a repetitive locomotion
pattern, a gait. In [2], authors classified the terrain using sequences of joint angle
errors generated by a simple periodic gait. This simple gait; however, limited the
robot to traverse only the flat terrains. To traverse irregular terrains [9] intro-
duces an adaptive gait that adapts the motion to irregularities. Even though the
adaptive gait is repetitive, it is not periodic; therefore the adaptive gait cannot
be used with classifier [2]. The paper [8] addresses this issue by parsing the gait
phases into segments of the same size and then embedded the segments into a
feature vector. However, this method relies on prior knowledge about the gait
phases, which is not always available. Moreover, SVM-based methods [8, 2] have
to wait three gait-cycles to get enough data to produce the feature vector.

We propose to describe the terrain classification as the continuous classifica-
tion conditioned on a periodic stream of proprioceptive signals. We implemented
the continuous classifier as a bagging ensemble [3] combining several Long-Short
Term Memory (LSTM) networks [6]. In the ideal case, such a classifier should be
trained with a sufficiently large and well-balanced dataset. However, each dataset
collection is a costly operation as it requires a complex experimental setup, real
robots, and most importantly a human supervisor. Moreover, datasets collected
during usual deployments (e.g., exploration) are generally not balanced as it de-
pends on the deployment location. Therefore, in practice, we deal with datasets
that are small and unbalanced. We aggregate several LSTM networks into a
bagging predictor [3] to address this issue. In particular, we use asymmetric
bootstrapping [15] that artificially balances the dataset. We propose a method
that exploits the periodic properties of the proprioceptive signal to generate new
datasamples, and thus enlarges the dataset. The performance of the proposed
predictor is statistically compared with the former SVM-based approach [8].
Regarding the reported results, the proposed method achieves competitive per-
formance while its main benefit is in a continuous prediction.

2 Proprioceptive Signals and Data Collection

The robot classifies the terrain it traverses by processing the stream of proprio-
ceptive signals. We work with the hexapod depicted in Fig. 1(a) which consists
of a body and six legs each with three joints connecting body, coxa, femur, and
tibia, see Fig. 1(b). When the hexapod traverses a terrain, it moves its joints in
a repetitive pattern called a gait. A single repetition of the pattern is called a
gait-cycle. A particular gait is defined by a motion pattern, e.g., a robot walking
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Fig. 1. The utilized hexapod and schema of its leg.

with a tripod gait always has at least three legs on the ground in the supporting
phase, and three legs are simultaneously moving forward in the swing phase.
The gait rules utilized in this paper are conditioned on the terrain interaction,
which makes the gait adaptive [9].

2.1 Adaptive Gait

In [9], the authors take advantage of the proprioceptive signals provided by the
servomotors to detect terrain irregularities. During a single gait-cycle, each leg
goes through four phases: up, forward, down, and support. For each i-th leg
and each j-th joint, two variables are monitored: the current angle θcuri,j and the

desired angle θdesi,j . The joint angle error is defined as the absolute difference
between the current and desired angles

θerri,j = |θcuri,j − θdesi,j |. (1)

During the i-th leg swing-down phase, the error of the body-coxa joint, θerri,C ,
is compared with a predefined threshold. If θerri,C is above the threshold, it is
assumed the deviation is caused by the ground reaction force, and therefore,
the motion is stopped and the i-th leg enters into the support phase. Once all
moving legs are in the support phase, the body leveling is initiated and move
the robot forward. The process is repeated for the next subset of moving legs.

2.2 Data Collection and Preprocessing

The herein proposed approach uses the same data source as in [8] where the
SVM classifier processes the angle errors θerri,j of the two front legs to classify
the terrain. To collect the dataset, we let the hexapod crawl on seven types of
terrain: office, asphalt, dirt, bricks, obstacles, stairs, and grass (see Fig. 2).

In each session, the hexapod executes up to ten gait-cycles on a single terrain
type. The number of collected gait-cycles for each terrain is shown in Tab. 1. For
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Fig. 2. The hexapod deployed in various terrains for data collection.

each gait-cycle, we recorded the angle errors of the front leg joints, θerr ∈ R6 with
the uniform sampling rate. Due to the adaptation to the terrain irregularities, the
length of each record of errors may differ. Each gait-cycle record is preprocessed
by a sliding window method which computed the mean, standard deviation, and
skewness. The width of the window is set to 20 units and the window jumps
ahead 5 units. Thus, the preprocessing yielded a sequence of feature vectors
x, where each feature vector has 18 dimensions (2 legs × 3 joints × 3 central
moments).

Table 1. Numbers of the sampled gait-cycles and division to train and test sets.

Dataset Asphalt Bricks Dirt Grass Obstacles Office Stairs

Train set 69 26 56 66 61 77 87

Test set 18 9 15 17 16 20 22

Complete set 87 35 71 83 77 97 109

3 Proposed Terrain Predictor

The proposed terrain predictor is based on the basic LSTM model using the
bagging extension to deal with the small and unbalanced data. The addressed
classification task can be formalized as follows. Let C be a finite set of terrain
classes. Our goal is to find a predictor φ∗ that predicts a distribution over C
for each feature vector x(m) in a continuous feature vector stream. Assuming
that at the m-th iteration the distribution is conditioned on the sequence xm =
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(x(m),x(m− 1), . . . ,x(1)), we denote the output of the predictor φ∗ as

y(m) = (P (C = c1|xm), P (C = c2|xm), . . . , P (C = c|C||xm)), (2)

where P (C = ci|xm) is probability that the class at the m-th step is ci ∈ C. The
continuous prediction over the sequence (x(m),x(m − 1), . . . ,x(1)) then yields
a sequence of the probability distributions (y(m),y(m− 1), . . . ,y(1)).

The terrain prediction (2) can be considered as the sequence-to-sequence
problem where the input sequence is mapped to the output sequence. We propose
to approximate φ∗ by the neural network φ composed of a single LSTM hidden
layer (see [6] for equations) with the softmax output layer. In the training phase,
each i-th training pair

((xi(Mi),xi(Mi − 1), . . . ,xi(1)), di) (3)

is presented to the neural network φ, where Mi is the length of the training
sequence. The desired class di is time-invariant because the terrain class does not
change during the training sequence. For each feature vector xi(m), we get the
output yi(m) that is compared with the desired class di using the loss function
L(yi(m), di). We followed a common practice with neural network classifiers,
and we chose the cross-entropy error as the loss function. The loss of the whole
i-th training sequence is then evaluated as

L(yi, di) =

Mi∑
m=Mmin

L(yi(m), di), (4)

where Mmin denotes the offset of the first feature vector in the sequence that is
being evaluated. Preliminary experiments showed that it is better to leave several
initial samples unevaluated. The length of the i-th sequence Mi determines how
much information about the terrain di is provided to the predictor.

The problem of small and unbalanced dataset collected by the robot is evident
from Tab. 1 and it is addressed by implementation of the terrain predictor as
a bagging ensemble [3] with a modified bootstrapping method. The bagging
ensemble is denoted as

φB(x) =

∑S
j=1 φ(x;Dj)

S
, (5)

where Dj is the j-th bootstrap dataset, S is the number of the bootstrap
datasets, and φ(x;Dj) is the output of the neural network trained on Dj . The
bootstrap datasets are usually generated by taking N random samples with
the replacement from the source dataset D. The distribution of the bootstrap
datasets then approximates the probability distribution of D [3]. However, in
our case, this is undesirable because the source dataset D is unbalanced. There-
fore, we propose the modified bootstrapping method described in Algorithm 1.
This algorithm uses asymmetric bootstrapping which balances the bootstrap
dataset [15]. Then the algorithm creates new samples by combining randomly
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selected gait-cycle sequences. Note, that by using this random combination we
assume that the gait-cycles from the same terrain are independent. After be-
ing trained, the proposed predictor does not need to parse the input stream
into gait-cycles, i.e., the predictor can work without any knowledge of the gait
implementation.

Algorithm 1 Bootstrap dataset generator

Input C: classes; Gi: set of single gait-cycles for class i ∈ C;
L: number of gait-cycles in one sequence; N : size of the bootstrap dataset.
Output D′: bootstrap dataset containing (sequence, class) training pairs.

1: for N times do
2: class← random choice(C)
3: sequence← (∅)
4: for L times do
5: gaitcycle← random choice(Gclass)
6: sequence.concatenate(gaitcycle)
7: end for
8: trainpair ← (sequence, class)
9: D′.add(trainpair)

10: end for

4 Experiments

The dataset collected using the method described in Sec. 2.2 is divided into a
training dataset and a testing dataset (see Tab. 1), the latter is used only for
the evaluation. The Algorithm 1 generates bootstrap datasets with N = 1000
training pairs, and each training sequence contains L = 3 gait-cycles because it
should contain enough information to classify the terrain [8]. The average length
of the training sequence is 73 and Mmin is set to 50. We generate 30 bootstrap
datasets for 30 neural networks, where each network consists of 20 hidden LSTM
units with forget gate [5], the input layer has 18 units, and the output layer has
seven units corresponding to the particular terrain classes.

We use the rmsprop [16] with the learning rate set to 0.01 and decay rate α set
to 0.99 to backpropagate the error. During one epoch, each training sequence is
forward-passed and backpropagated. Therefore, the learning algorithm performs
1000 backpropagation iterations per one epoch, and each network is trained on
100 epochs. Finally, all 30 trained networks are aggregated into the bagging
predictor. For the evaluation, we generated testing sequences composed of four
gait-cycles instead of three gait-cycles that are used during training, because we
aim to study the temporal generalization of the networks.

Two examples of how the terrain distribution prediction changes in time are
shown in Fig. 3. The performed evolution of the prediction accuracy for each
type of the classified terrain is shown in Fig. 4. Based on the results, it seems
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Fig. 3. Example of terrain probability distribution changes generated by the proposed
predictor. On the left, the office (brown) is correctly predicted with high certainty,
after 20 iterations. On the right, dirt (green) is mispredicted as an obstacle (violet)
and then as a grass (red).
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Fig. 4. Evolution of the prediction accuracy for each terrain type. Office floor, stairs,
and grass terrain types are classified at almost 100% at the 40th iteration. The accuracy
of each terrain settles up around the 70th iteration (marked by the vertical line), which
roughly corresponds to the end of the 3rd gait-cycle.

that for each terrain, the accuracy settles up at a different iteration step, and
thus each terrain requires a different amount of the proprioceptive data to be
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classified with high confidence. Another observation is that after 40 iterations,
which roughly corresponds to one and half a single gait-cycle, the prediction
accuracy of the grass, office, and stairs terrains is almost perfect. The confusion
matrix evaluated on the 70th iteration can be found in Tab. 2.

Table 2. Confusion matrix evaluated at the end of the 70th iteration (about the end
of 3rd gait-cycle).

Asphalt Bricks Dirt Grass Obstacles Office Stairs

Asphalt 12 0 2 0 0 0 0

Bricks 0 3 0 0 0 0 2

Dirt 0 0 6 5 0 0 0

Grass 0 0 0 13 0 0 0

Obstacles 0 0 2 0 10 0 0

Office 0 0 0 0 0 16 0

Stairs 0 0 0 0 0 0 18

Finally, we compared the bagging ensemble with the SVM classifier utilized
in [8]. The comparison is not straightforward because both models are qualita-
tively different. Our ensemble predicts continuously through iterations as can
be seen in Fig. 3 contrary to the SVM classifier [8] that relies on the well de-
fined gait-cycle phases. Therefore, we also consider an uninformed variant of the
approach [8] where the feature vector does not contain information about gait-
cycle phases. The comparison is shown in Tab. 3 where we use the weighted F1
score [14] because the testing dataset is unbalanced.

Table 3. Predictor comparison using the weighted F1 score [14]. All the predictors are
trained and tested using the same training set and test set except for the SVM classi-
fier [8] which uses information about gait-cycle phases. The predictors are considered
for the sequences of different lengths up to four gait-cycles.

Predictor
Gait-cycles

1 2 3 4

Bagging predictor 0.83 0.86 0.87 0.88

SVM uninformed 0.63 0.75 0.79 0.77

Single LSTM predictor 0.66 0.78 0.83 0.82

SVM [8] 0.54 0.78 0.88 0.90

Discussion – The results in Fig. 4 indicate that the prediction accuracy is almost
perfect for office, dirt, and stairs terrains. We hypothesize that it is because these
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three terrains are mutually well distinguishable. From the results in Tab. 2 we
can see that the classifier confuses intuitively similar terrains. An example of
such confusion can be seen in Fig. 3. From Fig. 4, it is also evident that for the
classification, each terrain needs a different number of iterations. This can be
exploited by classifiers that process every feature vector continuously. In that
regard, the proposed continuous processing of the proprioceptive data adds a
qualitative advantage over non-continuous approaches [2, 8].

5 Conclusion

In this paper, we report on the proposed LSTM based terrain predictor suitable
for a hexapod crawling robot using proprioceptive signals to process a stream of
the joint angle errors generated during crawling irregular terrains by the adaptive
locomotion. Due to a small and imbalanced dataset, the basic LSTM methods are
not directly applicable. Therefore, we propose to wrap multiple LSTM predictors
into a bagging ensemble using a modified bootstrapping algorithm to deal with
the class imbalance. The proposed modification takes advantage of the period-
icity of the input stream to enlarge the dataset artificially. The resulted bagging
predictor has been statistically compared with the existing SVM-based predictor
utilized in the previous work on the terrain classification using a real hexapod
crawling robot. The main advantage of the proposed solution is that, unlike the
SVM-based predictor, it can provide prediction each iteration step. The reported
results demonstrate that different terrains need a different amount of the input
information to get prediction with high confidence. Therefore the proposed for-
mulation of the terrain classification task as the sequence-to-sequence problem
seems to be suitable for processing stream of proprioceptive signals.

The main shortcoming of the terrain classification is that it depends on the
gait used for the training. Different gaits have different properties such as the
servomotor load, and thus the particular gait influences the patterns of the pro-
prioceptive signals. The proposed classifier is designed with the intention to sup-
port the locomotion controller, and therefore, we plan to address the influence
of the gait to the classification and thus improve the transferability to different
gait types in our future work.
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