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Abstract. Motivated by the deployment of multi-legged walking robots
in traversing various terrain types, we benchmark existing online and
unsupervised incremental learning approaches in traversal cost predic-
tion. The traversal cost is defined by the proprioceptive signal of the
robot traversal stability that is combined with appearance and geometric
properties of the traversed terrains to construct the traversal cost model
incrementally. In the motivational deployment, such a model is instanta-
neously utilized to extrapolate the traversal cost for observed areas that
have not yet been visited by the robot to avoid difficult terrains in mo-
tion planning. The examined approaches are Incremental Gaussian mix-
ture network, Growing neural gas, Improved self-organizing incremental
neural network, Locally weighted projection regression, and Bayesian
committee machine with Gaussian process regressors. The performance
is examined using a dataset of the various traversed terrains by a real
hexapod walking robot. A part of the presented benchmarking is thus a
description of the dataset and also a construction of the reference traver-
sal cost model that is used for comparison of the evaluated regressors.
The reference is designed as a compound Gaussian process-based model
that is learned separately over the individual terrain types. Based on the
evaluation results, the best performance among the examined regressors
is provided by Incremental Gaussian mixture network, Improved self-
organizing incremental neural network, and Locally weighted projection
regression, while the latter two have the lower computational require-
ments.

Keywords: Terrain Characterization, Multi-Legged Walking Robot, In-
cremental Learning

1 Introduction

The addressed traversal cost assessment is motivated by the deployment of mo-
bile robots in long-term autonomous missions, where robots have to plan their
motion in the environment and identify hard to traverse areas [1,2]. Our particu-
lar interest in the traversal cost assessment problem stems from the deployment
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of a hexapod walking robot (see Fig. 1), that can benefit from the ability to plan
the motion of each leg [20] and thus traverse rough terrains. More specifically,
in this paper, we focus on traversable areas since untraversable terrains such as
walls, extreme slopes, or ravines can be easily recognized in a 3D terrain map
build as a part of the robot localization [9]. Thus, we investigate approaches
to improve the efficiency of the robot motion over traversable areas by learn-
ing models for prediction of the traversal cost based on the perceived terrain
geometry and appearance features.

In our previous work [13,14], we have deployed the Incremental Gaussian
Mixture Network Model (IGMN) [11] to learn the cost of transport [17]. How-
ever, the IGMN suffers from the quadratic time complexity regarding the input
dimension. On the other hand, the recent deployments of the Gaussian Pro-
cess (GP) regression in robotic applications such as occupancy mapping [10] can
motivate for GP-based traversal cost model, but the deployment of GPs in in-
cremental life-long setups is hampered by their cubic learning time complexity
regarding the training set size. Therefore, there is a need for efficient unsuper-
vised incremental learning approaches that would provide competitive results to
the IGMN or GPs-based models, but would be computationally less demanding.

Our early results on incremental learning are reported in [4], and the herein
presented work extends therein proposed evaluation, and we report on bench-
marking of five incremental learning approaches for traversal cost prediction
using geometry and appearance terrain descriptors. Five competing approaches
include the Growing Neural Gas (GNG) [5], Improved Self-Organizing Incre-
mental Neural Network (ISOINN) [15], Locally Weighted Projection Regres-
sion (LWPR) [18], IGMN [11], and an incrementally learned product of the GP
regressor experts constructed using the Bayesian Committee Machine (BCM-
GP) [16] which we have previously deployed in an exploration setup in [12]. All
the regressors are evaluated using a real dataset that has been collected by a
hexapod walking robot in a testing environment with seven terrain types. The
performance of the incremental learners is benchmarked over areas observed
but not necessarily traversed by the robot. Therefore, the traversal cost ground
truth is not readily available, and the examined approaches are compared with a
compound reference GP-based model that is prepared offline from the collected
dataset for which an individual model is created for each particular terrain type.

The rest of the paper is organized as follows. Section 2 describes the used
dataset of the real terrain traversal cost. The proposed benchmarking method-
ology for evaluation of the regressors in the addressed problem is presented in
Section 3. The evaluation results together with the description of the learning
approaches and their parametrizations are reported in Section 4. Finally, the
paper is concluded in Section 5.

2 Terrain Traversal Dataset

The dataset for the benchmarking of the terrain traversal cost learning consists of
learning data and testing data that both have been collected by the real hexapod
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walking robot in a laboratory test site. The learning data, which are called trails,
are sequences of terrain descriptors accompanied by the proprioceptive measure
of the robot traversal cost over the terrains. The testing data are considered as
terrain descriptors organized into grids that represent maps of seen environments
for which the traversal cost is not available and has to be predicted.

(a) walking robot (b) flat PVC flooring (c) black fabric

(d) artificial turf (e) wooden cubes (f) slope terrains
Fig. 1. The (a) hexapod walking robot and some of the (b-f) traversed terrains. The
cubeblack and cubeturf terrains are created by covering the (e) wooden cubes with the
(c) black fabric and (d) artificial turf, respectively.

The used hexapod walking robot is shown in Fig. 1 together with the seven
particular terrains denoted: flat, slope, cubes, turf, black, cubeblack, and cubeturf.
The terrains have been set with the intention to confuse the learners. For ex-
ample, using only appearance and geometric features, it is hard to distinguish
whether the black fabric and artificial turf cover the cubes (cubeblack and cu-
beturf ) or similarly the flat ground (black and turf, respectively). Moreover, the
slope terrain consists of two distinct sloped areas that are both descended and
ascended by the robot, and thus provide different robot experience.

The robot trails are sequences of terrain feature descriptors that are paired
with traversal cost measurement. The terrain descriptor dt = (s1, s2, s3, a1, a2)
is based on our previous work [13], and it comprises of a three-dimensional shape
descriptor [7] and two-dimensional Lab space color descriptor. The features char-
acterize 0.2m radius around the robot at the particular location for which the
traversal cost c is measured as the square root of the robot roll variance for a 10 s
period. The traversal cost measurements are computed from inertial measure-
ments sampled with the frequency 400Hz. Overall, the robot terrain traversal
experience is captured by the descriptor de = (s1, s2, s3, a1, a2, c), where the
traversal cost c is experienced over the area characterized by dt. Thus, each ter-
rain descriptor is reported with the cost experienced over the period the robot
is present at the described location.

Since some of the benchmarked approaches compute Euclidean distance over
the feature space, both dt and c are normalized to be roughly zero mean and
unit variance to assure that each dimension is represented equally. Even though
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the work is motivated by incremental life-long learning, where the variance of
the incoming data is not known a priori, we leverage our expert knowledge of the
data which are presumed to be distributed normally with (µs, σs) = (0.5, 0.2)
for the shape features, (µa, σa) = (0.0, 10.0) for the appearance, and (µc, σc) =
(0.02, 0.01) for the cost.

An individual terrain trail is collected for each particular terrain type, and
therefore, the seven terrain trails are denoted Tblack, . . . , Tturf. Moreover, each
terrain trail Tt is divided into three equally length parts Tt = (T 1

t , T 2
t , T 3

t ),
where t stands for a particular terrain type. The lengths of the individual terrain
trails range from 202 descriptors in cubeturf to 824 in slope, and there are 3522
descriptors among all the trails in the total. Besides the terrain trails, four full-
length (with all terrain types) trails are created that simulate the traversal of all
the available terrains. The full-length trails are constructed as different orderings
of the terrain trails as follows

T1 = (Tblack, Tcubeblack, Tcubes, Tcubeturf, Tflat, Tslope, Tturf),
T2 = (Tflat, Tblack, Tturf, Tcubes, Tcubeblack, Tcubeturf, Tslope),
T3 = (Tflat, Tblack, Tcubeblack, Tturf, Tcubeturf, Tcubes, Tslope),
T4 = (T 1

black, T 1
cubeblack, T 1

cubes, T 1
cubeturf, T 1

flat, T 1
slope, T 1

turf, T 2
black, ..., T 3

turf).

(1)

The testing data are terrain descriptors organized into grid maps with the size
of the squared cell 0.1m. The individual grids are denoted Gblack, . . . ,Gturf. All
seven individual terrain grids are merged into a single grid Gmerged for evaluation
of the regressors on the whole testing dataset.

3 Benchmark Methodology

The addressed problem is to construct the terrain traversal cost model using a
set of experience descriptors de, and instantaneously use the model for predicting
the traversal cost c using the terrain descriptor dt determined from the available
model of the environment. In the motivational deployment scenario, the model
is constructed incrementally as new data about the terrain traversability are
collected during the robot movement over the terrain, and thus the model is
sequentially learned from descriptors of the trail T . Thus the modelM(T , k) at
the learning step k incorporates the k-th observation dk

e from the trail T , i.e.,
dk
e ∈ T , and the learning process can be defined as the iterative update

M(T , k)← update(M(T , k − 1),dk
e |d

k
e ∈ T ), (2)

where the initial modelM(T , 0) carries no information for any trail T .
The prediction of each examined regressor is evaluated over the terrain de-

scriptor grid maps. However, the robot has not traversed all the represented
areas, and thus the ground truth traversal cost is not available for the grid
maps. Therefore, the quality of the individual models is evaluated using a refer-
ence modelMref, and we follow the evaluation based on the correctness ratio [4].
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The cost prediction pred(M,dt) of the modelM for the terrain descriptor dt is
considered correct if it corresponds to 95 % confidence interval of the reference
modelMref, and the correctness correct(M,Mref,dt) is defined as

correct(M,Mref,dt) =

{
1 if |pred(M,dt)− µ(Mref,dt)| < 2σ(Mref,dt)

0 otherwise
,

(3)
where µ(Mref,dt) and σ(Mref,dt) are the predictive mean and square root of
the predictive variance of the referenceMref. The predicted cost is assumed to
be a random variable that is modeled by the mean and variance, and therefore,
the reference model is based on the individual GP for each particular terrain
type. A particular reference model for the dataset described in Section 2 is thus
a compound model of seven GPs.

The prediction of each examined regressor is evaluated over the terrain de-
scriptor grid maps. In particular, each terrain grid map Gt is associated with the
reference GP-based model MGt , which is learned using the particular terrain
type trail Tt. Although the individual terrain trails are ordered differently in the
four full-length trails T1, ..., T4, it does not affect the reference models, because
the reference models are not learned incrementally.

The prediction of the modelM over G is quantified by the correctness ratioR

R(M,G) =
∑

dt∈G correct(M,MG ,dt)

|G|
, (4)

where |G| is the number of descriptors in the grid G.

4 Evaluation Results

Five incremental learning algorithms are benchmarked for the terrain traversal
cost modeling with the hexapod walking robot. Namely, we use the Incremental
Gaussian Mixture Network Model (IGMN) [11], the Robust Bayesian Committee
Machine with Gaussian Process Regressors (BCM-GP) [3], the Growing Neu-
ral Gas (GNG) [5], the Improved Self-Organizing Incremental Neural Network
(ISOINN) [15], and the Locally Weighted Projection Regression (LWPR) [18].
In the rest of this section, the used parametrizations of the individual models
are described, and we report on the performance of the models in terms of their
correctness ratios and interpret their traversal cost predictions.

4.1 Parametrization of the Examined Traversal Cost Models

Except for the LWPR, which performs better when tuned manually, the para-
metrizations of the individual models are selected by maximizing the correctness
ratio R(M(T1),Gmerged) evaluated on the merged grid map Gmerged using a grid
search. Therefore, the selected parametrizations may not suit the other trails
perfectly; however, we consider this transfer of parametrization to be a part of
the evaluation of the incremental learners.
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The IGMN is an incremental approximation of the EM algorithm which
learns a set of Gaussian components. The algorithm is parameterized with the
grace period vmin = 5, scaling factor δ = 0.1, and is allowed up to 100 compo-
nents. The minimal accumulated posterior is fixed to spmin = 3 to enforce that
any spmin and vmin combination allows adding new components. The IGMN has
been implemented in Python as all the other algorithms.

The framework [19] implemented in Python has been used for the GNG [5]
and ISOINN [15] algorithms. The GNG is parameterized with the learning step
λ = 10 and maximal age amax = 10. The framework utilizes Gaussian kernel
smoother parameterized with K = 1000 smoothing neurons and smooth param-
eter smooth = 0. The ISOINN is parameterized with the learning step λ = 10
and maximal age amax = 1000, and it also utilizes smoother with K = 1000, but
with the smooth parameter smooth = −0.75. It is worth noting that amax = 1000
effectively inhibits edge deletion given the lengths of the trails.

Python bindings of the LWPR implementation [8] are used to compute the
LWPR models. In the best performing parametrization on R(M(T1),Gmerged),
the initial distance metric is set asDinit = 0.1I, where I is an identity matrix, and
the distance metric learning rate is αinit = 1000. However, such parametrization
is prone to overfitting when learning on other trails, and exhibits poor perfor-
mance overall. Therefore, we further report on results for the manually tuned
parametrization Dinit = 10I and αinit = 10 that is denoted LWPR+.

The BCM-GP [16] learns Gaussian Process regressor experts, which are com-
bined using the Robust Bayesian committee machine. Experts are constructed
incrementally one at a time, and after the expert is constructed, it is not further
modified. The BCM-GP is parameterized with the maximal expert size of 25
observations and uses the Matern 3

2 kernel. The GPy toolbox [6] is used to learn
the individual experts and the BCM-GP is also implemented in Python.

Finally, the reference GP-based models are learned using the GPy toolbox
with the RBF kernel.

4.2 Correctness Ratios of the Examined Regressors

The correctness ratios R of the examined regressor on Gmerged for four trails
T1, . . . , T4 are depicted in Table 1 and they range between approx. 55% and 75%.
The IGMN and hand-tuned LWPR+ appear to be the most stable incremental

Table 1. Correctness ratio R on the merged grid Gmerged for different trails

Trail BCM-GP GNG IGMN ISOINN LWPR LWPR+

T1 0.59 0.74 0.70 0.77 0.72 0.68
T2 0.62 0.57 0.71 0.59 0.48 0.69
T3 0.57 0.57 0.71 0.64 0.58 0.69
T4 0.72 0.63 0.67 0.69 0.70 0.66

regressors as their results are similar regardless of the trail ordering used for
learning. The GNG and ISOINN appear to be much more affected by the trail
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BCM-GP GNG IGMN ISOINN LWPR+
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Fig. 2. The evolution of the correctness ratio R computed on Gmerged for the incre-
mentally learned traversal cost models on T1.

ordering and are outperformed by the IGMN for T2 and T3. On the other hand,
the GNG and ISOINN outperform the IGMN for T1, and ISOINN also performs
slightly better for T4. The best performance for T4 is provided by the BCM-GP,
but its overall performance is not convincing, especially when compared to the
IGMN, ISOINN, and LWPR+.

BCM-GP GNG IGMN ISOINN LWPR+
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Fig. 3. The evolution of the correctness ratio R computed on Gmerged and Gturf for the
incrementally learned traversal cost models on T2.

The incremental nature of the learners can be observed in the evolution of
the correctness ratio R presented in Figs. 2–5. A drop of the correctness ratio is
expected behavior because of new information is incorporated into the models. It
is especially prevalent for the performance evaluation on the individual terrain
grids, where the GNG notably suffers by the dropout. Figs. 3 and 4 show a
significant drop in the GNG performance on the Gturf grid after learning the
model from Tcubeturf. Arguably, the performance of some of the other learners
on Gturf is also relatively poor. The showed evolution of R reinforces the claim
that the IGMN is the most stable approach, as new data rarely cause a drop in
the overall correctness, although there are some short term fluctuations.
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BCM-GP GNG IGMN ISOINN LWPR+
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Fig. 4. The evolution of the correctness ratio R computed on Gmerged and Gturf for the
incrementally learned traversal cost models on T3.

BCM-GP GNG IGMN ISOINN LWPR+

T1 bl
ac

k

T1 cu
be

bl
ac

k

T1 cu
be

s

T1 cu
be

tu
rf

T1 fl
at

T1 sl
op

e

T1 tu
rf

T2 bl
ac

k

T2 cu
be

bl
ac

k

T2 cu
be

s

T2 cu
be

tu
rf

T2 fl
at

T2 sl
op

e

T2 tu
rf

T3 bl
ac

k

T3 cu
be

bl
ac

k

T3 cu
be

s

T3 cu
be

tu
rf

T3 fl
at

T3 sl
op

e

T3 tu
rf

0.2

0.4

0.6

0.8

1000 2000 3000

0.2

0.4

0.6

0.8

R
on
G m

er
ge

d

Learning Step

Fig. 5. The evolution of the correctness ratio R computed on Gmerged for the incre-
mentally learned traversal cost models on T4.

4.3 Qualitative Analysis

In our experience, the most significant ability of a traversal cost model is the
inference of the traversal cost values that can be used to identify hard to tra-
verse terrains. The adherence to the GP-based reference traversal cost model
is not necessary, even though the reference model provides baseline predictions.
Therefore, we investigate the predicted values over individual terrains.

The grid maps in Figs. 6 and 8 indicate that the reference, IGMN, ISOINN,
and LWPR+ learned on T1 predict a higher cost on Gcubes than on Gflat, and thus
they provide desired information for path planning to avoid difficult terrains.

The differences between predictions on Gslope showed in Fig. 7 are not sur-
prising given that the predictive variance of the reference is higher than on other
terrains. Notice, the ISOINN and LWPR+ predictions are noisy over all the ter-
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0.00 0.01 0.02 0.03

(a) GP-based reference (b) BCM-GP (c) GNG

(d) IGMN (e) ISOINN (f) LWPR+

Fig. 6. The (a) mean of the GP reference model, and (b) BCM-GP, (c) GNG, (d)
IGMN, (e) ISOINN, (f) LWPR+ predictions over Gflat learned on T1. Only grid cells
corresponding to the spatial allocation of the flat terrain are shown.

0.00 0.01 0.02 0.03

(a) GP-based reference (b) BCM-GP (c) GNG

(d) IGMN (e) ISOINN (f) LWPR+

Fig. 7. The (a) mean of the GP reference model, and (b) BCM-GP, (c) GNG, (d)
IGMN, (e) ISOINN, (f) LWPR+ predictions over Gslope learned on T1. Only grid cells
corresponding to the spatial allocation of the slope terrain are shown.

rains, but the median values are applicable to path planning. However, several
failed predictions on Gflat can be seen in Fig. 9. These are especially prevalent
when learning on T2 and T3, where Tflat is traversed first. The overall perfor-
mance of the GNG is considered mediocre, and it fails to predict distinctively
low values on Gflat even when learned on T1. Nevertheless, its predictions on
Gcubes and Gslope are considered well-suited for path planning. Finally, the BCM-
GP fails to provide distinctive costs for most terrains, and therefore, it cannot
discriminate the hard to traverse areas.

4.4 Discussion

Based on the reported results, the IGMN, ISOINN, and LWPR+ provide satisfi-
able performance in traversal cost inference for the considered hexapod walking
robot, although ISOINN is more prone to forgetting or concept drift, see Fig. 9.
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0.00 0.01 0.02 0.03

(a) GP-based reference (b) BCM-GP (c) GNG

(d) IGMN (e) ISOINN (f) LWPR+

Fig. 8. The (a) mean of the GP reference model, and (b) BCM-GP, (c) GNG, (d)
IGMN, (e) ISOINN, (f) LWPR+ predictions over Gcubes learned on T1. Only grid cells
corresponding to the spatial allocation of the cubes terrain are shown.

0.00 0.01 0.02 0.03

(a) GNG learned on T1 (b) GNG learned on T2 (c) ISOINN learned on T2

Fig. 9. Examples of high-cost predictions over Gflat which make it hard to discriminate
the flat terrain from rough terrains.

The BCM-GP and GNG provide competitive results in terms of the correct-
ness ratio and outperform the IGMN and LWPR+ on some trails, but they do
not provide predictions applicable to path planning. A close inspection indicates
that the individual BCM-GP predictions are almost uniform and correspond
to the most commonly observed traversal cost, i.e., the cost over the various
easy to traverse terrains. Considering the previous deployment of the BCM-GP
model in the exploration task in [12], these results are somewhat underwhelming.
However, in the exploration task, the robot actively perceives the environment
until all observed terrains are sufficiently known. In our case, the terrains on the
test grids may remain unknown to the model. Nevertheless, the inability of the
BCM-GP to extrapolate the predictions for such terrains is disappointing.

Table 2. T1 learning and Gmerged prediction wall times Twall [s]. (Intel i5-4460 CPU)

Method/Phase BCM-GP GNG IGMN ISOINN LWPR+ Compound
GP

Learning 5.27 1.14 3.95 1.26 0.71 8.94
Prediction 22.44 0.62 4.54 0.60 0.59 8.64
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The best performing regressors among the examined approaches are consid-
ered IGMN, ISOINN, and LWPR+. The final IGMN and LWPR+ predictions
are the most stable, exhibiting only a very small difference when learning over
permuted trails. The ISOINN outperforms the IGMN in few tested trails in terms
of the correctness ratio. Moreover, according to the learning and inference times
reported in Table 2, the ISOINN and LWPR+ offer performance speedup over
the IGMN in high dimensional learning, as they do not suffer from the quadratic
time complexity with regards to the input dimension which hampers the IGMN.

5 Conclusion

In this paper, we present results on benchmarking five incremental learning ap-
proaches in traversal cost estimation of the hexapod walking robot. The main
motivation of the presented work is to find alternatives to the IGMN algorithm
we have used previously. The examined approaches include the Growing Neural
Gas, Improved Self-Organizing Incremental Neural Network, Bayesian Commit-
tee Machine with Gaussian Process regressors, and Locally Weighted Projection
Regression. Based on the presented results, the BCM-GP performs poorly, con-
tradicting our initial intuition. The GNG performance is ambiguous, and it seems
the used approach suffers from the concept drift for certain ordering of the learn-
ing sequences. The ISOINN and the hand-tuned LWPR+ perform similarly to
the IGMN in terms of the prediction correctness ratio, and all the three methods
provide distinguishable cost prediction that is applicable in path planning. How-
ever, a possible drawback of the LWPR is the necessity of tuning the parameters
and the grid search on Gmerged provides significantly worse results in the case of
T2 and T3 trails. Moreover, the ISOINN and LWPR offer better potential in high
dimensional feature spaces, where the IGMN suffers from quadratic time com-
plexity. Therefore, we consider the ISOINN and LWPR as the primary traversal
cost learners for further deployments.
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