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Abstract. This paper reports on the deployment of self-organizing maps
in unsupervised learning of the traversal cost for a hexapod walking
robot. The problem is motivated by traversability assessment of terrains
not yet visited by the robot, but for which shape and appearance fea-
tures are available. The perception system of the robot is used to extract
terrain features that are accompanied by traversal cost characterization
captured from the real experience of the robot with the terrain, which is
characterized by proprioceptive features. The learned model is employed
to predict the traversal cost of new terrains based only on the shape and
appearance features. Based on the experimental deployment of the robot
in various terrains, a dataset of the traversal cost has been collected that
is utilized in the presented evaluation of the traversal cost modeling using
self-organizing map approach. In comparison with the Gaussian process,
the self-organizing map provides competitive results and the found paths
using the predicted traversal costs are close to the optimal path based
on reference traversal cost of the particular terrain types. Besides, the
self-organizing map can also be utilized for unsupervised identification of
the terrain types, and it further supports incremental learning, which is
more suitable for practical deployments of the robot in a priory unknown
environments where reference traversal costs are not available.

1 Introduction

The work reported in this paper is motivated by a deployment of the multi-
legged walking robot (depicted in Fig. 1) in an unknown environment, where
the robot is requested to perform data collection missions or long-term envi-
ronmental monitoring. In the motivational deployment, it is expected the robot
continuously operates while it also improves its motion performance by avoiding
hard to traverse areas. The robot can perceive its surrounding environment using
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its exteroceptive sensors such as RGB-D camera [18] while the proprioceptive
signals (e.g., energy consumed, velocity, attitude stability) can be utilized to
model the robot experience with the traversed terrain. A fundamental require-
ment to improve the robot motion performance is to avoid difficult terrains [2],
and therefore, it is desirable to model the robot traversal cost and extrapolate
the cost for seen but not yet visited areas to avoid costly terrains [11].

The herein reported empirical evaluation on unsupervised learning of the
terrain traversability assessment is a part of our ongoing effort on terrain learn-
ing [10,12] for which we aim to develop computationally efficient unsupervised
learning system to model and predict the robot traversal cost. Although mod-
els based on Gaussian Processes (GPs) [13] can be utilized for the traversal
cost learning and prediction, e.g., modeling elevation maps [16], GP-based ap-
proach can be considered computationally demanding, and it does not scale with
incremental deployment. In this paper, we focus on the evaluation of the Self-
Organizing Map (SOM) [8] for unsupervised model learning and prediction of the
traversal cost in a priory unknown environments, where the information about
the ground truth traversal cost is not available. Based on our recent results on the
evaluation of traversal cost learning reported in [4], we identified that combining
data from similar terrain types might improve traversal cost estimates based on
new exteroceptive measurements. Therefore, we employ SOM in traversal cost
prediction, and we further investigate the clustering of the learned SOM [17]
to identify prototypes corresponding to the similar terrain types. Moreover, the
traversal cost defined as the attitude stability in [4] is extended by two additional
cost indicators (the required power and achieved velocity) in the herein reported
model learning, which supports the generalizability of the presented approach.

The remainder of the paper is organized as follows. A brief description of the
addressed problem and utilized evaluation methodology is presented in the fol-
lowing section. The studied unsupervised terrain types identification is discussed
in Section 3. The empirical results and description of the found evaluation in-
sights are reported in Section 4. Concluding remarks are dedicated to Section 5.

2 Problem Specification

The addressed problem of traversal cost modeling follows our previous work re-
ported in [4], and therefore, a brief problem specification is presented here to
make the paper self-contained. The terrain characterization from exteroceptive
measurements is described by the three shape features [9] and two appearance
features of the ab channel means of the Lab color space. The exteroceptive fea-
ture descriptor dsa is thus a vector dsa = (s1, s2, s3, a1, a2). In the learning
phase, the descriptor is further accompanied by three traversal cost estimates
c1, c2, and c3, where c1 is the mean value of the instantaneous power consump-
tion, c2 is the mean forward velocity, and c3 characterizes the attitude stability
determined as the variance of the robot roll; and all the cost indicators are
computed from 10 s long period corresponding to the one motion gait cycle of



On Unsupervised Learning of Traversal Cost using Self-Organizing Maps 3

the multi-legged robot. The full descriptor d is thus eight dimensional vector
d = (s1, s2, s3, a1, a2, c1, c2, c3).

The learning is performed for a sequence of descriptors called trail T , e.g.,
T = (d(1), . . . ,d(n)), to learn the traversal cost model M(T ). The model is
used to predict the traversal cost using a new exteroceptive feature dsa that can
be expressed as

(c1, c2, c3)← predict(M,dsa). (1)

For the traversability assessment of a new environment, the features correspond
to a grid map of the environment. Hence, we consider the model evaluation for
a set of m descriptors characterizing the new terrain G = {dsa(1), . . . ,dsa(m)}.

Although a ground truth traversal cost is not available in the motivational
deployment in a priory unknown environment, a reference value of the traversal
cost can be considered for the evaluation of the selected unsupervised learning
approaches. In the case labels of the particular terrain types in the trails used for
the learning are available, e.g., provided by a human, the real measured traversal
costs can be grouped for individual terrains, and “ground-truth” traversal costs
can be estimated as the mean values of the traversal costs that can be further
accompanied by the standard deviation. Thus, it is assumed the traversal costs
are from normal distributions. However, such a reference value cannot be utilized
for evaluation of the predicted traversal costs from explicitly unknown terrains,
where the trails are not annotated, and thus the explicit terrain type labels are
not available. In such a case, we can follow the approach based on the results
reported in [4], and we can consider a GP-based model compound from the
individual GPs for particular terrain types to model a probability distribution
of the traversal costs per particular labeled terrain type. Since an individual GP
is learned for each cost indicator and the terrain type trail, such a reference
model is compounded from three times more GPs than the number of terrain
types considered. Then, the compounded model can be utilized to provide a
reference traversal cost for unlabeled data as the predicted traversal cost with
the lowest variance of the predicted mean value.

The reference traversal cost model is denotedMref for the case of the mean
and standard deviation values computed from the labeled trails, and Mtt

GP for
the compounded GP-based model. The reference model Mref can be used to
estimate the traversal cost of the testing data G, which consists of partially
(human) labeled descriptors with the particular terrain types. For the unlabeled
descriptors, the traversability cost is provided by the individual GP-based model
with the lowest variance of the predicted mean value.

Even though we can utilize the root-mean-square error to evaluate the qual-
ity of the prediction, in a practical deployment, the traversal costs and also
the exteroceptive descriptors are random variables. Therefore, we measure the
performance of the modelM by the ratio R(M) defined as

R(M) =
|{dsa|dsa ∈ G and |predict(M,dsa)− µ(dsa)| ≤ 2σ(dsa)}|

|G|
· 100%,

(2)
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where µ(dsa) and σ(dsa) correspond to the reference “ground-truth” if the terrain
type for each dsa is known, or they are provided by the compounded GP-based
modelMtt

GP. The ratio R is motivated to measure “correctness” of the predicted
values according to the reference model, where the prediction is considered cor-
rect if it fits about 95% values of the reference GP-based model prediction, and
thus the ratio (2) is called the correctness ratio.

3 Unsupervised Terrain Types Identification

Even though we can imagine explicit terrain labels, e.g., flat ground and grass,
the robot does not have such explicit terrain types when it is deployed in an
unknown environment where it can only see its surroundings and perceive the
terrain by the proprioceptive measurements. Therefore, we can imagine that
similar terrain features can belong to the same “terrain type”, and thus we can
perform unsupervised clustering of the data to identify similarities.

For the SOM, we can consider a visualization of the learned lattices, e.g.,
using U-matrix [15]. Besides, we can also cluster the learned prototypes according
to the smallest cluster separation measure [3] as suggested in [17]. In particular,
we consider 2–30 clusters determined by 100 iterations of [7] initialized by [1].
The number of determined clusters can be considered as the number of terrain
types in the dataset used for the learning. We propose the following procedure
to evaluate the unsupervised identification of the terrain types.

First, we consider the dataset trail T is annotated by a human operator who
provides explicit terrain type labels. The clusters of SOM prototypes are then
examined for the terrain labels using the annotated descriptors of the trail T .
The learned prototypes do not precisely match the descriptors of T because of
learning error, and therefore, we propose to annotate each prototype according
to the label of the closest d ∈ T . Thus, for each cluster, we compute a histogram
of the specific terrain types of the given labels, and the cluster can be labeled
according to the terrain type with the largest histogram bin. However, the robot
experience with the terrain captured by the descriptors in T can be different
from the human labels, and we can also expect a different number of clusters
than the number of labels provided by the human. Therefore, we evaluate the
identified terrain types as the percentage ratio of each terrain type label within
each particular cluster and the total number of the clustered prototypes.

Let the total number of prototypes be M , the number of clusters be N , and
the number of prototypes within the i-th cluster be mi; then, the percentage
ratio Ti,l of the terrain type label l in the cluster i is computed as

Ti,l =
|{w|w ∈ Ni, such that label(argmind∈T (‖(w,d)‖)) is l}|

M
· 100%, (3)

where Ni is the i-th cluster of all prototypes in the SOM lattice N , i.e., Ni ⊆ N ,
and label(·) is the label of the corresponding descriptor d of the trail T . Since
the sum of all Ti,l gives one hundred percentage points, the ratios Ti,l describe
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a distribution of the human labels across the terrain types identified by the
unsupervised procedure.

A similar evaluation can be directly performed on the trail descriptors using
the same hierarchical clustering as for the SOM prototypes. Notice that the
number of prototypes of the learned SOM is considerably smaller than the size
of the input dataset, and thus continuous clustering of the trail descriptors can
be demanding for a practical deployment with online learning. The evaluation
results on the collected dataset with the real hexapod walking robot are reported
in the following section.

4 Results

Individual trails for seven particular terrain types have been collected with the
real hexapod walking robot. These trails are combinations of flat terrain and
wooden blocks that are further covered by artificial turf and black fabric, which
change the visual appearance of the terrain and impact the traversal costs, see
Fig. 1. In addition, the seventh terrain is a wooden sloped surface with a visual
appearance similar to wooden blocks.

Fig. 1. Utilized hexapod walking robot and terrains types – flat floor and wooden
blocks considered uncovered but also covered by artificial turf and black fabric. The
terrain types are further accompanied by a single wooden sloped surface (not shown
in the photo). The parts of the labeled trail on wooden blocks are visualized as color
curves. The unlabeled descriptors are small blue disks.

Since an explicit human label of the terrain types is available, we can com-
pute the “ground-truth” reference traversal costs as mean values accompanied
by the standard deviations from all measured traversal costs indicators per in-
dividual terrain types. The particular reference costs are depicted in Table 1
where the forward velocity c2 and attitude stability c3 costs are multiplied by
100 to scale them to a competitive value to the power cost c1 because their
absolute measured values are relatively small. From the listed values, we can
notice that some of the terrains are equal regarding the required energy cost
c1, such as wooden blocks covered by artificial turf and flat floor, which is be-
cause of the employed adaptive locomotion control [5], but the stability of the
motion (captured by the cost c2) differs. On the other hand, the most energy
demanding terrains are flat floor covered by black fabric, which causes slippage
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Table 1. Reference Traversal Costs – Average measured traversal cost values

Terrain
costsaverage costsstd.dev.
c1 c2

′ c3
′ σc1 σ′c2 σ′c3

flat floor covered by black fabric 13.2 1.6 2.2 0.75 0.57 0.99
wooden blocks covered by black fabric 11.0 1.5 2.2 0.68 0.62 0.74
wooden blocks 11.1 1.7 2.2 0.64 0.68 0.76
wooden blocks covered by artificial turf 10.7 1.6 1.9 0.54 0.47 0.68
flat floor 10.6 2.3 0.9 0.85 0.53 0.22
wooden sloped surface 13.3 1.9 2.4 0.77 0.92 1.12
flat floor covered by artificial turf 10.6 1.8 1.0 0.37 0.65 0.23

Presented values for c2 and c3 are multiplied by 100 because absolute measured
values are relatively small.

of the foot end-points, and wooden sloped surface. The increased slippage of
these terrains corresponds to the relatively small velocity c2 and high instability
of the motion c3. Regarding the navigation and avoiding difficult terrains, the
most distinguishable real measured values are for the energy consumption c1,
which is thus suitable for weighting the traversed distance in the path planning.
However, the weights of individual traversal costs can be further tuned according
to a particular deployment scenario.

In addition to the direct computation of the reference modelMref, the com-
pound GP-based reference modelMtt

GP is learned from the labeled trails, but all
these trails are concatenated into a single trail Tall with 2177 feature descriptors
for the evaluation of the learned GP and SOM from the unlabeled data. The
evaluation is performed for the testing set G with 4355 descriptors from which
only 1153 are labeled by the terrain type. The correctness ratio (2) computed
only from the labeled test descriptors is thus denoted R, and the ratio computed
from all descriptors is denoted Rall.

The standard SOM [8] with the three sizes of the squared lattice (10 × 10,
20 × 20, and 30 × 30) is utilized with the initial learning gain g0 = 10 and the
fixed learning rate µ = 0.99. The gain is decreased g ← (1 − α)g after each
learning epoch according to the gain decreasing rate α = 0.05. A single learning
epoch is considered as the adaptation of SOM to all input terrain descriptors
(in random order), and the total number of learning epochs is limited to 300.
The descriptors are used as they have been computed from the measured signals
without any normalization.

The SOM learning procedure has been implemented in C++ and learning
the complete model for Tall takes about 1.1 s, 3.9 s, and 8.6 s depending on the
lattice size using the Intel i7-8550U CPU. GP-based learning utilizes GPy [6] and
it takes about 113.9 s to learn Tall within the same computational environment.
The prediction of the cost for a single feature using SOM is negligible as it takes
about 0.5µs, 2.0µs, and 4.5µs depending of the lattice size, while a single cost
prediction using GP-based model takes about 8.7ms.

First, the prediction of the learned SOM has been compared with the GP-
based models using the correctness ratio (2) and the reference models Mref
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Table 2. Correctness ratios R for labeled data of Tall

Ratio Cost
Model learned from Tall

Mtt
GP MGP M10×10

SOM M20×20
SOM M30×20

SOM M10×10
SOM3

M20×20
SOM3

M30×30
SOM3

R -Mref

c1 80.1 56.3 78.2 75.3 77.3 87.5 83.9 73.4
c2 78.6 78.0 89.0 85.0 85.0 85.3 85.9 73.5
c3 91.6 89.8 73.0 72.5 72.5 73.4 86.4 73.5

R -Mtt
GP

c1 - 42.6 48.1 45.5 45.8 59.8 61.5 59.7
c2 - 69.7 77.3 75.7 74.5 79.2 81.7 80.4
c3 - 46.7 61.3 57.6 50.6 69.4 66.1 64.5

andMtt
GP. Two types of prediction using the learned SOM are considered. The

prediction using the closest prototype is denoted MSOM. Besides, we consider
prediction using the weighted average from k closest prototypes. Based on the
empirical evaluation, we found that the best performance is for computing the
average from three closest prototypes, and therefore, we report only results for
k = 3 that are denotedMSOM3 . Since SOM is randomized, the correctness ratios
are computed from 20 trials, and the average values for the labeled data are
reported in Table 2 and for the unlabeled data in Table 3, where the lattice size
is encoded in the superscript. The standard deviations are in units of percentage
points of the average values, and thus they are omitted for clarity.

Table 3. Correctness ratios Rall for unlabeled data using the referenceMtt
GP

Ratio Cost
Model learned from Tall

MGP M10×10
SOM M20×20

SOM M30×20
SOM M10×10

SOM3
M20×20

SOM3
M30×30

SOM3

Rall

c1 46.7 51.5 50.8 51.3 56.0 56.8 56.6
c2 76.4 82.3 79.7 78.9 83.1 83.8 83.1
c3 55.5 56.4 55.2 49.1 60.7 59.9 58.4

The achieved correctness ratios reported in Table 2 and Table 3 indicate
that all predictors provide competitive performance. Although a better perfor-
mance is indicated for the reference “ground-truth” model Mref than for the
compounded GP-based model Mtt

GP, explicit terrain types might not be avail-
able for deployment scenarios in a priory unknown environments. Therefore the
compounded model is suitable for the evaluation of learned models without la-
beled trails shown in Table 3, because it provides the best performance for the
labeled trails, see Table 2. The weighted average from three closest prototypes
MSOM3 provides noticeably better prediction thanMSOM. On the other hand,
increasing the size of the lattice does not improve the prediction correctness, and
thus small and less computationally demanding 10× 10 large SOM is sufficient.

The prediction correctness ratios vary for the individual traversal costs c1,
c2, and c3, and there is not a single best performing model among the performed
trials of the SOM. Therefore, we select the particular learned model M10×10

SOM3
with R(c1) = 64.7%, R(c2) = 79.3%, and R(c3) = 71.0% for further investiga-
tion of the unsupervised terrain types identification using SOM. Similarly, we
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(b) ReferenceMtt
GP (c)MGP (d)M10×10

SOM (e)M10×10
SOM3

Fig. 2. Predicted values of the velocity cost c2 for the labeled part of the testing
data G that are organized into separate (possibly) equally large grids according to the
particular terrain types from top to down as flat floor covered by black fabric, wooden
blocks covered by black fabric, wooden blocks, wooden blocks covered by artificial turf,
flat floor, wooden sloped surface, and flat floor covered by artificial turf. The absolute
values of the prediction c2 are colorized using the jet color palette (low values are in
the blue and high values are in the red).

selectM10×10
SOM with R(c1) = 47.5%, R(c2) = 75.4%, and R(c3) = 63.2% that is

used for detail examination of the predicted values, which is shown in Fig. 2 for
the expected velocity cost c2 on the testing grid G. Notice, that even though the
prediction is not perfect regardless of the GP or SOM method, for the motiva-
tional deployment in path planning to avoid hard to traverse regions, the main
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important property of the traversal cost prediction is distinguishability of the
hard to traverse areas, which seems satisfiable for all the predictions and it is
further detailed in the following section.

4.1 Predicted Traversal Cost in Path Planning Scenario

The possible impact of the traversal cost prediction to navigation of the robot in
the environment is related to the ability to avoid hard to traverse areas, which is
also related to the absolute values of the traversal cost and the computed distance
cost in the path planning. Regarding the reference costs shown in Table 1, the
most distinguishable is the required power cost c1 and since this paper focuses
on evaluation of the SOM in traversal cost learning and not on path planning,
we select c1 as the traversal cost weight to demonstrate the possible impact
of the prediction traversal cost to navigation of the robot. A path planning is
considered for a grid-like environment, where the motion cost from moving from
the cell ν1 to the neighboring cell ν1 is computed as

c(ν1, ν2) =
c1(ν1) + c1(ν2)

2
· ‖(ν1, ν2)‖ , (4)

where c1(ν1) and c1(ν2) is the predicted (or reference) required power cost c1 of
the grid cells ν1 and ν2, respectively, and ‖(ν1, ν2)‖ is the distance between the
cells considering 8-neighborhood. Having a grid map of the environment with the
traversal cost assessment, the optimal path from the initial location to the goal
location can be found by any graph search such as A* or Dijkstra’s algorithm.

Fig. 3. Testing grind map of the size 380×30 cells with two terrain types that are hard
to traverse: the flat ground covered by black fabric and wooden sloped surface (shown
in the red); that are accompanied by the wooden blocks and wooden blocks covered
by the black fabric (shown in the blue) that are all placed on the flat ground (shown
in the white here to highlight hard to traverse areas).

The robot avoids hard to traverse area if the total cost (using (4)) of travers-
ing the more difficult area is higher than the travel cost of avoiding the area. If
the hard to traverse area is small, it might be still optimal to traverse it rather
than avoid it. Therefore, an artificial scenario with several hard to traverse ar-
eas with the dimensions of the 200× 20 grid cells are placed in an environment
with a flat ground to form a zig-zag pattern, see Fig. 3. For the map shown in
Fig. 3, the optimal path from the grid cell (0, 10) to (379, 15) can be found using
the particular traversal cost prediction Cpred; however, the final cost path C is
determined as the cost over the grid map that is assessed using the reference
“ground-truth” modelMref. The assessment for the learned models is performed
based on shape and appearance features that are randomly selected from the
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Table 4. Average path costs found using traversal cost prediction of c1

Prediction Path Cost

model C σC ∆ [%] σ∆ [%]

Mtt
GP 4318.1 18.2 1.5 0.4

MGP 4259.2 5.7 0.2 0.1
M10×10

SOM3
4281.8 23.9 0.7 0.6

Mclustering - classification 4325.2 23.2 1.7 0.5
M10×10

SOM -classification 4494.7 9.2 5.7 0.2

∆ is the difference of the path cost from the reference path cost.

features of the trails with the corresponding terrain types, and 20 grids with
randomly chosen feature descriptors have been created. Thus, the path costs in
Table 4 are reported as the average values C, the standard deviations σC , and
also as the average percentage difference ∆ of the final path cost found using the
predicted traversal cost from the cost of the optimal reference path found using
theMref traversal cost model with the standard deviation denoted σ∆. Selected
found path with the corresponding path costs are depicted in Fig. 4.

(a) Optimal path found with the “ground-truth” Mref, C = 4252.54

(b)Mtt
GP, Cpred = 4415.52, and C = 4289.13

(c)MGP, Cpred = 4238.54, and C = 4252.54

(d)M10×10
SOM3

, Cpred = 4349.1, and C = 4252.54

Fig. 4. Selected best found optimal paths using different traversal cost model of the cost
c1 (required power) with the predicted cost Cpred and the final path cost C computed
using the reference traversal costs.

Both MGP and SOM-based traversal cost predictions are capable of deter-
mining the same solution as the optimal reference path usingMref with a lower
standard deviation of the GP-based model. The compoundMtt

GP is not able to
provide the same solution as the reference modelMref in any of the twenty gen-
erated grid maps. The maps are randomly created, and also particular features
vary in real observations. Therefore, the single reported case does not necessarily
mean the compounded model is not a suitable predictor of the traversal costs,
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especially when the overall difference of the path cost is about 1.5% of the refer-
ence optimal path costs for the modelMref. Notice, the last two rows in Table 4
is for the predictions using classification based on the identified terrains, which
is described in the following section.

4.2 Terrain Types Identification

Unsupervised clustering has been firstly performed for the feature descriptors
of the trail Tall to compute the terrain type ratio (3) and study differences
between the human labeled terrain types and identified types from the data.
Even though the trail is composed of seven terrain types, the smallest cluster
separation measure [3] is achieved for six clusters. The corresponding distribution
of the labeled terrain types among these clusters is depicted in Table 5.

Table 5. Terrain type ratios of the clustered feature descriptors of Tall

Cluster
flat floor wooden blocks wooden wooden blocks flat wooden flat floor
covered by covered by blocks covered by floor sloped covered by
black fabric black fabric artif. turf surface artif. turf

1 1.5 21.5 2.2 0.2 14.0 0.2 0.3
2 0 0 18.7 0 0 1.9 0
3 0 0 0 6.5 0 0 12.2
4 16.4 0 0 0 0 0.2 0.5
5 0 0 0 0 0 3.5 0
6 0 0 0 0 0 0.2 0

The largest cluster includes almost 40% of the features, and the results in-
dicate that wooden blocks covered by black fabric might be considered similar to
the flat floor, which is not expected behavior. The wooden blocks terrain type
is identifiable in the second cluster. The third cluster indicates that probably
the appearance features are significant for the artificial turf, which is green. The
flat floor covered by the black fabric is dominant in the fourth cluster. Finally,
two additional clusters cover the wooden sloped surface. The means of the de-
termined clusters can be utilized for the classification with the prediction of
the traversal cost determined as the means of the particular cluster traversal
cost. However, regarding the results for suchMclustering in Table 4, the terrain
distinguishability is lower than for the traversal cost regression.

The terrain type ratios of clustered learned prototypes from the 10×10 large
SOM are depicted in Table 6 and corresponding U-matrix is visualized in Fig. 5.
In this case, the smallest separation measure is for eight clusters, and we can
read from the results that black fabric is dominant for the first cluster while
the artificial turf is dominant for the second cluster. The wooden blocks might
be considered similar to the wooden sloped surface. Similarly to Table 5, the
wooden sloped surface can be found in several clusters.

Having clustered SOM prototypes, individual costs per each cluster can be
computed as the average cost value among the cluster, that can be then utilized
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Table 6. Terrain type ratios of the clustered prototypes of the learnedM10×10
SOM

Cluster
flat floor wooden blocks wooden wooden blocks flat wooden flat floor
covered by covered by blocks covered by floor sloped covered by
black fabric black fabric artif. turf surface artif. turf

1 17 15 2 0 6 0 2
2 0 0 0 6 0 0 12
3 0 0 13 0 0 5 0
4 0 0 0 3 0 0 6
5 0 0 0 0 0 6 0
6 0 0 0 2 0 1 0
7 0 0 0 0 0 2 0
8 0 0 0 0 0 2 0

Fig. 5. Visualization of the clustered learned SOM on top of the U-matrix. The indi-
vidual clusters are shown as small color crosses at the centers of cells corresponding to
the prototypes of the SOM lattice.

for traversal cost assessment based on classification of the feature descriptor dsa
according to the closest prototype of the learned SOM. Regarding the overview of
the path cost in Table 4, such a traversal cost prediction is noticeably worse than
the SOM-based regression. However, terrain type identification can be suitable in
the scenario where the “ground-truth” reference traversal costs are not available
because of missing explicit terrain type labels.

4.3 Discussion

The reported results support the feasibility of using SOM for unsupervised learn-
ing of the traversal cost model and even relatively small lattice with the size



On Unsupervised Learning of Traversal Cost using Self-Organizing Maps 13

10× 10 provides competitive results to significantly more demanding GP. More-
over, SOM also provides a straightforward prediction of multi-dimensional cost
indicators. Although only a relatively simple evaluation of the traversal cost
prediction in path planning has been performed, the results support sufficient
distinguishability of the hard to traverse areas that can be achieved even for
predictors with relatively low correctness ratios. It is especially important in
the cases where the reference traversal costs are not explicitly available, e.g.,
because of a priory unknown environments in robotic exploration missions [12].
SOM-based unsupervised learning can be considered as a suitable technique for
traversal cost learning, and we further plan to consider on-line variants of SOM
such as [14] to follow the motivational deployments with incremental learning.

Moreover, based on the reported results, we can observe that the robot can
perceive the terrain differently than the natural labels derived from the particular
terrains the robot traversed. It is also because the proprioceptive sensing can be
similar for two terrains that can appear differently, e.g., like wooden blocks and
a wooden sloped surface which are different mainly in shape features but look
similar in ab channels of the Lab color space. Hence, we can speculate that the
human labels for the terrain types might be misleading, albeit they seem to
be a natural choice, which is used for learning the reference model Mref and
also the compounded GP-based model Mtt

GP. The most important part of the
“ground-truth” is the fact that in the motivational deployment of the robot in
a priory unknown environment, the explicit labels are not available, and the
robot has to rely solely on unsupervised learning, where the most important
quality measure is a sufficient distinguishability of the hard to traverse areas
regarding the particular cost. The presented results indicate that a combination
of several traversal costs is probably necessary, as considering a single cost might
now provide sufficient distinguishability. The evaluation of the traversal cost
predictors in such setups is considered as a subject of our future work.

5 Conclusion

In this paper, we report on unsupervised learning of robot traversal cost pre-
dictors. The results support that SOM can provide competitive predictions to
the GP-based model, but it is less computationally demanding. Moreover, the
unsupervised terrain types identification provides a different view on the natural
human labels of the terrains, and it seems to be suitable to focus on how the
terrain types are perceived by the robot rather than human labeling, which is
particularly important in the deployments without known terrain types. Besides,
the results further support that prediction based on the weighted average from
the closest prototypes improves the predicted values concerning the reference
model. However, there is still an open question of how the predictors for incre-
mental and unsupervised learning should be evaluated because of the stochastic
nature of the cost variables and also the exteroceptive features. Therefore, we
plan to investigate the alternative feature descriptors and further ways how to
create the reference model in addition to improving the predictors.
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