
Basic Evaluation Scenarios for Incrementally
Trained Classifiers

Rudolf Szadkowski[0000−0003−4075−116X], Jan Drchal[0000−0003−0466−275X], and
Jan Faigl[0000−0002−6193−0792]

Department of Computer Science, Faculty of Electrical Engineering
Czech Technical University in Prague

Technick 2, 166 27, Prague 6, Czech Republic
{szadkrud,drchajan,faiglj}@fel.cvut.cz,

WWW home page: https://comrob.fel.cvut.cz/

Abstract. Evaluation of incremental classification algorithms is a com-
plex task because there are many aspects to evaluate. Besides the aspects
such as accuracy and generalization that are usually evaluated in the
context of classification, we also need to assess how the algorithm han-
dles two main challenges of the incremental learning: the concept drift
and the catastrophic forgetting. However, only catastrophic forgetting
is evaluated by the current methodology, where the classifier is evalu-
ated in two scenarios for class addition and expansion. We generalize the
methodology by proposing two new scenarios of incremental learning for
class inclusion and separation that evaluate the handling of the concept
drift. We demonstrate the proposed methodology on the evaluation of
three different incremental classifiers, where we show that the proposed
methodology provides a more complete and finer evaluation.

Keywords: incremental learning, classification, catastrophic forgetting,
concept drift, methodology

1 Introduction

Evaluation of incremental learning algorithms is a complex task since there are
many possible evaluation scenarios. Each scenario can evaluate multiple aspects
of the incremental algorithm such as accuracy convergence, robustness against
catastrophic forgetting (CF), or concept drift (CD) handling. Testing multiple
aspects at once, however, does not usually help in the identification of the par-
ticular issues of the examined learning algorithm. Therefore, we need some basic
evaluating scenarios, each addressing a specific aspect of the incremental learning
algorithm, to tackle one issue at the time.

An incrementally trained classifier is a classifier that is being trained on con-
secutive tasks. Each task, the classifier is fed with labeled samples which cannot
be stored but must be integrated into the classifier during the training. Such
multiple training over the long period has two main challenges that are called
concept drift and the catastrophic forgetting [2]. The symptom of catastrophic

2 R. Szadkowski et al.

forgetting is a decrease of classifier performance, where the performance is mea-
sured on the previously trained tasks [4]. Such evaluation of the performance
decrease is used as a metric for many proposed incremental algorithms [3, 6, 9],
where authors introduce incremental class learning and data permutation sce-
narios [4].

In the incremental class learning scenario, the classifier is learning a different
class each task, while in the data permutation scenario, the classifier learns on
the same classes but with shuffled feature-vector components. Both scenarios ex-
amine how well is the classifier able to aggregate the new data without forgetting
the learned class distributions, but it does not examine the algorithm adaptabil-
ity to the concept drift. The concept drift is a consequence of a non-stationary
environment where the class distribution changes in time [10]. The distribution
change detection is still an open problem, and its solutions are dependent on the
type of the concept drift [1,13]. A scenario where the concept drift is evident has
to be designed to evaluate the concept drift handling on different incremental
algorithms. An example of such evident concept drift is when the previously
presented sample is presented again but with a different label [7,13]. The change
of label requires the classifier to un-train the old label on the sample, and then
train the new label. Such an operation should be tested during the evaluation of
an incremental algorithm.

The evaluation methodology for incrementally trained classifiers observed
from various papers [3, 6, 7, 12] can be generally divided into three steps:

1. Test the basic properties of the classifier (e.g., accuracy, generalization, how
fast it converges) within just one task.

2. Test the behavior of the classifier in the minimal incremental classification
problem, where we have two tasks during which we train the classifier on
given samples of two classes.

3. Test scalability by adding more classes and by increasing the number of
tasks.

The main contribution of this paper relates to the second step for which we in-
troduce basic evaluation scenarios. We show that there are 29 possible scenarios
that can be inferred from the basic presuppositions for the minimal incremental
classification problem. In the context of the incremental algorithm evaluation,
we filter symmetric and redundant scenarios to get four basic evaluation sce-
narios. We propose the following basic evaluation scenarios (depicted in Fig. 1):
class addition (ADD), expansion (EXP), inclusion (INC), and separation (SEP).
Scenarios ADD and EXP correspond to incremental class learning and data per-
mutation [4], respectively, which are used to evaluate how the algorithm handles
the catastrophic forgetting. The new scenarios INC and SEP introduce the label
change described in various concept drift cases [7,13]. The benefit of using these
basic scenarios is that they are easy to construct with existing datasets (e.g.,
MNIST [8]) and the classifier can be considered as a black box. Furthermore, by
evaluating the classifier with each basic scenario, we can analyze its properties
separately. The proposed evaluation is demonstrated on multiple incremental
classifiers.

Basic Evaluation Scenarios for Incrementally Trained Classifiers 3

𝑇1 𝑇2 result

𝐶1,0

𝐶0,2 𝐶0,2

𝐶1,0

(a) ADD

𝑇1 𝑇2 result

𝐶1,0

𝐶0,2 𝐶0,2

𝐶1,0

𝐶0,1 𝐶0,1

(b) EXP

𝑇1 𝑇2 result

𝐶1,0

𝐶0,2 𝐶0,2

𝐶1,0

𝐶2,1 𝐶2,1 𝐶2,1

(c) INC

𝑇1 𝑇2 result

𝐶1,0

𝐶1,2 𝐶1,2 𝐶1,2

𝐶1,0

𝐶0,2 𝐶0,2

(d) SEP

Fig. 1. Illustration of four basic evaluation scenarios for evaluation of the catastrophic
forgetting and concept drift handling. Each scenario has two consecutive tasks T1, T2

during which the classifier trains on the presented samples. The third right-most part
of each sub-figure depicts the target state of the classes after the classifier is trained
on T1 and T2. The blue and orange disks represent sample clusters labeled with the
first l1 and the second l2 label, respectively. (a) All scenarios extends the ADD scenario
which starts at T1 with training on the cluster of the samples labeled with l1 (blue)
and ends with training on the cluster labeled with l2 (orange). (b) In the EXP at T2,
we expand the class l1 with new samples. (c) In the INC, the samples labeled as l2 at
T1 are relabeled as l1 at T2. (d) In the SEP, a part of the class l1 is relabeled as l2 at
T2. Each disk contains the base set name defined in Sec. 2.

The rest of the paper is organized as follows. The formal definition and infer-
ence of scenarios are provided in Sec. 2. The evaluated incremental algorithms
are introduced in Sec. 3 and the evaluation results are reported in Sec. 4 with a
detailed discussion and interpretation of the evaluation results in Sec. 4.1. The
paper is concluded in Sec. 5.

2 Basic Scenarios of Incremental Classification

The incrementally trained classifier is being trained during consecutive tasks T1,
T2, T3, . . . , where for each consecutive task Ti, the classifier FTi is trained on
batch DTi = {(xj , lj)}1≤j≤m of m labeled samples. Samples x ∈ X are labeled
by one of n labels l ∈ L = {L1, . . . , Ln}. We are interested in the minimal
incremental classification problem where we have just two tasks T1, T2 and two
labels L1, L2. Having just two labels, during each task Ti, each sample x ∈ X
is in one of three states S = {S1, S2, S0}; the sample x is either

4 R. Szadkowski et al.

– S1: presented with the first label,
– S2: or the second label,
– S0: or not presented.

Having just two tasks, each sample x ∈ X has tuple of states (s, s′) ∈ S2, where
s and s′ are states of x during T1 and T2, respectively. Let a base set Cs,s′ ⊂ X
be a set of samples with the state tuple (s, s′). All nine base sets are pairwise
disjoint, and their union gives X (see Fig. 2).

𝐶0,0 𝐶0,1

𝐶1,1

𝐶1,0 𝐶2,0

𝐶2,1

𝐶2,2

𝐶0,2

𝐶1,2

Fig. 2. Illustration of possible intersections of labeled sets that are presented during
tasks T1 (dashed border) and task T2 (full line border). Sets labeled by the first and
second labels l1, l2 are distinguished by the blue and orange color, respectively. For
example, we can see that the base sets C1,1 and C2,2 are presented to the classifier at
T1 and T2 while the base sets C1,0 and C2,0 are presented only at T1. Note that this is
a scenario where all base sets are non-empty.

Each base set Cs,s′ is either empty or non-empty. The base sets C1,1, C1,2,
C2,1, and C2,2 are sets that contain samples that are sampled twice (in T1 and
then in T2). If samples are taken from a continuous probability distribution,
the base sets with samples presented twice are always empty (the probability of
sampling the same point twice is zero). However, in the context of the classifier
evaluation, we present to a classifier the same sample x with different labels l, l′

to examine whether the classifier can change its model in such a way, that after
the task T2, the classifier labels x as l′. Thus, in the evaluation scenarios, the
base sets C1,1, C1,2, C2,1, and C2,2 can be non-empty.

Let scenario be an assignment function r : S2 → {0, 1}, where r(s, s′) = 1
if Cs,s′ is non-empty else r(s, s′) = 0. There are 29 scenarios, which we prune
with the following constraints. First, we consider that labels are symmetric and
assume that the base set C0,0 is always non-empty. Second, in the context of the
incremental algorithm evaluation, we want to measure how well the classifier
can classify samples trained only in T1 despite changes in T2. The base set C1,0

(or C2,0) is a set of samples that are trained only in T1, and the base sets with
samples that change labels in T2 are C0,2, C0,1, C2,1, and C1,2. The combination

Basic Evaluation Scenarios for Incrementally Trained Classifiers 5

of non-empty C1,0 with each of the above mentioned four base sets gives us
four basic evaluation scenarios. Additionally, C0,2 is non-empty in all four basic
scenarios to ensure that after the task T2, there are always two classes to classify.
The basic evaluation scenarios are listed in Tab. 1 and illustrated in Fig. 1.

Table 1. Basic evaluation scenarios: class addition (ADD), expansion (EXP), inclusion
(INC), and separation (SEP). Each presented scenario evaluates certain feature of incre-
mental learning algorithm which handles catastrophic forgetting (CF) or concept drift
(CD).

Scenario Non-empty sets Tested feature Possible problem

ADD C1,0, C0,2 Adding a new class CF
EXP C1,0, C0,2, C0,1 Expanding a class CF
INC C1,0, C0,2, C2,1 Untraining a class CF, CD
SEP C1,0, C0,2, C1,2 Untraining part of a class CF, CD

Thus the evaluation of a binary classifier FTi : X → {1, 2} is the examination
of its performance for T1 and T2 in all basic scenarios, i.e.,

FT1(x) =

{
1 if x ∈ {C1,0 ∪ C1,1 ∪ C1,2}
2 if x ∈ {C2,0 ∪ C2,2 ∪ C2,1}

, (1)

FT2(x) =

{
1 if x ∈ {C1,0 ∪ C1,1 ∪ C2,1 ∪ C0,1}
2 if x ∈ {C2,0 ∪ C2,2 ∪ C1,2 ∪ C0,2}

. (2)

3 Incremental Classifiers

We introduce three incremental classifiers: ENS, ENSGEN, and ENSGENDEL, to
present the proposed evaluation using the minimal scenarios listed in Tab. 1.
The ENS is an ensemble of two multilayer perceptrons (MLPs), where each MLP
is trained to classify its respective class. Each MLP is trained independently
in the ADD scenario, and thus it should be robust to catastrophic forgetting.
The ENS is trained each task with Alg. 1 and the label prediction is made by
F (x) = arg maxl∈L fl(x).

The ENSGEN is an extension of ENS where we generate (replay) samples from
autoencoder. The technique where we generate samples to prevent catastrophic
forgetting is called the memory replay [11]. Many implementations of the mem-
ory replay (i.e., sample generation) use autoencoders, e.g., [14]. For each label
l ∈ {L1, L2}, we have an autoencoder that is composed of the encoder el : X → Z
and decoder dl : Z → X, where we call Z = [0, 1]N the latent space. The au-
toencoder dl ◦ el is trained on samples labeled with l (along with the classifier
fl), and during the next task, we let the autoencoder to generate samples that
resemble the samples from the previous task. The sample generation method

6 R. Szadkowski et al.

generate(d, f) is defined as

generate(d, f) := {d(z)|z ∈ sample uniformly(Z); f(d(z)) > 0.9}, (3)

where sample uniformly(Z) getsM random samples of the latent space, which
are first decoded by decoder d and then filtered by the classifier f . The update
method of the ENS can be used also for the ENSGEN for which Alg. 1 is modified
as follows. Line 4 and Line 5 of Alg. 1 are modified to

AL1
←Ao

L1
∪ generate(dL1

, fL1
), (4)

AL2
←Ao

L2
∪ generate(dL2

, fL2
). (5)

The condition in the minimization iterator (Line 7, Alg. 1) is changed to

∃x ∈ Al : ||x− dl(el(x))|| > θ, (6)

where we prioritize training of the autoencoder dl ◦ el over the classifier fl for
two reasons. First, preliminary experiments showed that the classifier fl is easier
to train. Second, if the autoencoder is not well trained, then the generate(d,
f) method returns a small amount of samples in (4) and (5). The optimization
of the autoencoder dl ◦ el is implemented by adding

J ′l ←
1

|Al|
∑
x∈Al

||x− dl(el(x))||, (7)

dl, el ←minimize(Jl, dl, el). (8)

after Line 9 of Alg. 1.
On the other hand, the ENSGEN classifier can fail to relabel some of the sam-

ples from task T1 in the INC and SEP scenarios. The samples that need to be
relabeled (C2,1 and C1,2) can be within the cluster of the generated samples
(see (4) and (5)). The cost functions of the autoencoder e ◦ d and classifier f
are both smooth (differentiable), thus by minimizing the cost function over the
set of samples Al (see Line 8, in Alg. 1 and (7)), we also minimize the cost in
the close neighborhood1 of samples Al. Therefore, if two sets of samples share
the close neighborhood but have conflicting minimization objectives (e.g., the
two sets have different labels), the minimization process will slow down. We
propose an extension of ENSGEN: the ENSGENDEL classifier, that “subtracts” the
close neighborhood of the new samples Ao

l′ from the generated samples of label l.
Hence, it cannot happen the classifier fl will be trained to label Ao

l′ as l. The
modification of ENSGEN is to replace Line 4 and Line 5 of Alg. 1 to

AL1
← Ao

L1
∪ {x ∈ generate(dL1

, fL1
)|∀a ∈ Ao

L2
: ||x− a|| > ε}, (9)

AL2
← Ao

L2
∪ {x ∈ generate(dL2

, fL2
)|∀a ∈ Ao

L1
: ||x− a|| > ε}, (10)

where ε is the minimum distance between the generated and new samples.

1 In a metric space X, a neighborhood of the point x is defined as a ball of the radius
r with x in the center: Bd(x, r) = {y|d(x,y) < r;y ∈ X}, where d is a metric
function. A close neighborhood is a neighborhood with a very small radius r.

Basic Evaluation Scenarios for Incrementally Trained Classifiers 7

Algorithm 1 Update method for ensemble classifier ENS. The algorithm can be
used as an update method for the ENSGEN or ENSGENDEL using the modifications
described in Sec. 3.

Variables During one task, the algorithm gets a dataset batch D =
{(x1, l1), (x2, l2), . . . }, where x ∈ X and l ∈ {L1, L2}. The dataset is used to train
two binary classifiers fL1 , fL2 , where fl : X → [0, 1]. Parameters M and θ are the
maximum epoch and threshold, respectively.

Result fL1 , fL2 : updated binary classifiers

1: function update(D, θ, fL1 , fL2)
2: ALo

1
← {x|l = L1; (x, l) ∈ D} . Separate samples by the label into two sets

3: ALo
2
← {x|l = L2; (x, l) ∈ D}

4: AL1 ← Ao
L1

. See Eqs. 4, 5 and Eqs. 9, 10
5: AL2 ← Ao

L2

6: for (l, l′) in {(L1, L2), (L2, L1)} do
7: for M times if ∃x ∈ Al : (1− fl(s)) > θ do

8: Jl ← − 1
|AL1

|+|AL2
|

(∑
x∈Al

ln(fl(x)) +
∑

x∈Al′

ln(1− fl(x))

)
9: fl ← minimize(Jl, fl)

10: end for
11: end for
12: end function

4 Results

In this section, we report how the proposed evaluation scenarios (see Sec. 2)
can improve the analysis of incremental classifiers that is demonstrated on the
classifiers described in Sec. 3. Moreover, to set a baseline, we also train a single
MLP classifier SNG with the layer sizes 728-500-500-2 with the softmax layer
and cross-entropy loss function. The ENS classifier has θ = 0.1, M = 1000, and
two binary MLPs, each has the layer sizes 728-500-250-125-1. The ENSGEN and
ENSGENDEL classifiers have θ = 7, M = 10, ε = 0.1, and two autoencoders,
each composed of encoder and decoder with the layer sizes 784-500-200-8 and
8-200-500-784, respectively. A rectifier is used as the activation function for all
hidden layers. The output layers of the encoder and MLP in ENS have a sigmoid
activation function. All neural networks are trained with Adam [5] with the
learning rate set to 0.0001. All the hyperparameters were found empirically.

Different scenarios are created by using the MNIST [8] dataset which has
roughly 7000 samples per MNIST class (zero, one,. . . , nine), where each MNIST
sample is a 28× 28 image of a digit. The dataset is divided into a training and
testing set with the ratio 6 to 1. We construct scenarios by assigning some of the
MNIST classes to the base sets Ci,j . Two assignment configurations are described
in Tab. 2: the 021 assignment which is made from easily distinguishable digits
(zeroes, twos, and ones), and the 197 assignment which contains digits that are
harder to distinguish (ones, nines, and sevens). The classifiers are trained on
scenarios created from the training set, and the evaluation is calculated on the

8 R. Szadkowski et al.

scenarios created from the testing set. The results are shown in Tab. 3 and
Tab. 4.

Table 2. Configurations of the assignment of the MNIST classes to base sets that are
used in the basic evaluation scenarios. The MNIST dataset has ten classes represented
by the number 0 to 9. Since base sets C0,1, C2,1, and C1,2 never appear together in the
same scenario, the same MNIST class can be assigned to them.

Assignment C1,0 C0,2 C0,1 C2,1 C1,2

021 0 2 1 1 1
197 1 9 7 7 7

Table 3. Accuracy of classifiers after being trained on both tasks. The classifier ac-
curacy is evaluated with respect to testing datasets for tasks T1 and T2 (see first and
third columns in Fig. 1). The column T2 shows the overall performance of the classifier,
where the higher accuracy is always better. The low values in the T1 column indicate
the catastrophic forgetting since the classifier performs worse on the previous task.
However, for the INC and SEP scenarios, values lower than one are expected because a
classifier needs to forget (relabel) some of the previously presented samples.

Assignment Classifier
ADD EXP INC SEP

T1 T2 T1 T2 T1 T2 T1 T2

021

SNG 0.00 0.51 0.00 0.68 0.01 0.68 0.00 0.68
ENS 0.69 0.84 0.00 0.68 0.00 0.68 0.22 0.48
ENSGEN 0.99 0.98 0.96 0.98 0.46 0.98 0.58 0.90
ENSGENDEL 0.99 0.98 0.95 0.97 0.45 0.98 0.47 0.98

197

SNG 0.00 0.47 0.07 0.62 0.54 0.97 0.00 0.64
ENS 1.00 0.88 0.99 0.99 0.91 0.69 0.99 0.53
ENSGEN 1.00 0.99 0.99 0.97 0.54 0.97 0.72 0.85
ENSGENDEL 1.00 0.99 0.99 0.97 0.54 0.97 0.70 0.87

4.1 Discussion

The overall accuracy of the classifiers can be compared from the results in Tab. 3,
where the regular evaluation on the ADD and EXP scenarios [3,6,7,12] is extended
with the proposed INC and SEP scenarios. In the 197 assignment of the INC

scenario, we can see that the ENS classifier is unable to relabel some of the
previously presented samples (the accuracy in the T1 column should be at most
roughly 0.5, but it is 0.91 in the case of the ENS classifier). Such a low performance

Basic Evaluation Scenarios for Incrementally Trained Classifiers 9

Table 4. The accuracy of each evaluated classifier calculated after the task T2 for each
respective base set Ci,j . The intuitive interpretation of the table values is as follows: the
C1,0 column represents the ratio of C1,0 that the classifier is able to “remember” after
T2, the C2,1 and C1,2 columns represent the ratio of the respective base set that the
classifier was able to relabel during T2, the C0,1 and C0,2 columns are just accuracies
evaluated on the respective base set.

Assignment Classifier
ADD EXP INC SEP

C1,0 C0,2 C1,0 C0,2 C0,1 C1,0 C0,2 C2,1 C1,0 C0,2 C1,2

021

SNG 0.00 1.00 0.01 0.99 0.99 0.01 0.99 0.98 0.00 1.00 1.00
ENS 0.70 0.98 0.00 0.99 0.99 0.00 0.99 1.00 0.03 0.78 0.60
ENSGEN 1.00 0.98 0.96 1.00 0.99 0.99 1.00 0.98 1.00 0.97 0.78
ENSGENDEL 1.00 0.98 0.99 0.99 0.98 0.98 0.99 0.99 1.00 0.98 0.98

197

SNG 0.00 1.00 0.07 0.97 0.91 1.00 0.96 0.95 0.00 1.00 1.00
ENS 1.00 0.76 1.00 0.99 0.98 0.99 0.98 0.09 1.00 0.55 0.00
ENSGEN 1.00 0.99 1.00 0.97 0.97 1.00 0.97 0.96 1.00 0.97 0.57
ENSGENDEL 1.00 0.99 0.99 0.99 0.96 0.99 0.98 0.94 1.00 0.98 0.63

at relabeling is most likely caused by the similarity of the digits used in the 197
assignment (ones, nines, and sevens) because in the 021 assignment, the ENS

classifier can relabel the previously presented samples (the ENS has 0 accuracy
in the T1 column of the INC scenario). With the SEP scenario, we can distinguish
the performance of the ENSGEN and ENSGENDEL classifiers, which have almost
identical results in all other scenarios. Thus we gain more information about the
evaluated classifiers by evaluation with the proposed scenarios SEP and INC.

The regular evaluation listed in Tab. 3 is good for a comparison of multiple
classifiers. However, for a finer analysis of the classifiers, we propose to evaluate
the accuracy on each base set, like it is shown in Tab. 4, where the column
C1,0 shows how well the classifier “remembers” the base set C1,0 after the task
T2. The accuracies in the column C1,0 show that the classifiers ENSGEN and
ENSGENDEL remember the previously learned samples almost perfectly. Other
interesting columns are C2,1 and C1,2, which show how well the classifier relabel
the previously trained samples. In assignment 021 of the SEP scenario, the ENSGEN
classifier has been able to relabel only 0.78 of samples, while ENSGENDEL has been
able to relabel almost all of them. Such explicit information is lost in the regular
overall evaluation (see Tab. 3) because the regular evaluation is evaluated over
multiple base sets.

The results in assignment 197 are worse than results in assignment 021 in
most of the cases. From this difference, we can draw a lesson that it is important
to try more assignments, as it is pointed out in [12] because each MNIST class
(or any other class of different dataset) has different qualities. The quantity is
another aspect to consider: in this paper, the base sets are of equal cardinality
(roughly). Scenarios with the base sets that have different cardinalities could
evaluate the classifier robustness against unbalanced data. Thus, it is good prac-
tice to use basic evaluation scenarios with multiple different assignments for a
thorough examination of the incremental classifier.

10 R. Szadkowski et al.

5 Conclusion

In this paper, we propose a generalization of the current methodology for incre-
mental classifier evaluation by proposing four basic evaluation scenarios: class
addition, expansion, inclusion, and separation. Three incremental classifiers are
presented to demonstrate the methodology within the proposed evaluation sce-
narios. Each classifier has been evaluated with the proposed methodology, and
we assess how well the classifier handles the catastrophic forgetting and the con-
cept drift issues. Moreover, the proposed generalization allows us to design a
finer evaluation that can test particular aspects of incremental learning; such
are remembering the previously trained samples or selective relabeling of the
previously learned samples. Such a detailed methodology for incremental learn-
ing evaluation should improve the development of incremental classifiers, and
therefore, researchers are encouraged to consider it in their developments.

Acknowledgments – This work was supported by the Czech Science Foun-
dation (GAČR) under research project No. 18-18858S.

References

1. Freund, Y., Mansour, Y.: Learning under persistent drift. In: Ben-David, S. (ed.)
Computational Learning Theory. pp. 109–118. Springer Berlin Heidelberg, Berlin,
Heidelberg (1997)

2. Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In:
European Symposium on Artificial Neural Networks (ESANN). pp. 357–368 (2016)

3. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An Empirical
Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks. arXiv
e-prints arXiv:1312.6211 (2013)

4. Kemker, R., Abitino, A., McClure, M., Kanan, C.: Measuring catastrophic forget-
ting in neural networks. CoRR abs/1708.02072 (2017)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2015)

6. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,
Clopath, C., Kumaran, D., Hadsell, R.: Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of Sciences 114(13), 3521–3526
(2017)

7. Lane, T., Brodley, C.E.: Approaches to online learning and concept drift for user
identification in computer security. In: Proceedings of the Fourth International
Conference on Knowledge Discovery and Data Mining. pp. 259–263. KDD’98,
AAAI Press (1998)

8. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010), http://yann.
lecun.com/exdb/mnist/, cited on 2019-29-01

9. Lee, S., Kim, J., Ha, J., Zhang, B.: Overcoming catastrophic forgetting by incre-
mental moment matching. CoRR abs/1703.08475 (2017)

10. Moreno-Torres, J.G., Raeder, T., Alaiz-Rodrguez, R., Chawla, N.V., Herrera, F.:
A unifying view on dataset shift in classification. Pattern Recognition 45(1), 521
– 530 (2012)

11. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: A review. Neural Networks 113, 54–71 (2019)

Basic Evaluation Scenarios for Incrementally Trained Classifiers 11

12. Pfülb, B., Gepperth, A., Abdullah, S., Kilian, A.: Catastrophic forgetting: Still
a problem for dnns. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L.,
Maglogiannis, I. (eds.) Artificial Neural Networks and Machine Learning – ICANN
2018. pp. 487–497. Springer International Publishing, Cham (2018)

13. Wang, K., Zhou, S., Fu, C.A., Yu, J.X.: Mining changes of classification by corre-
spondence tracing. In: Proceedings of the SIAM International Conference on Data
Mining. pp. 95–106. SIAM (2003)

14. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Zhang, Z., Fu, Y.: Incremental
classifier learning with generative adversarial networks. CoRR abs/1802.00853
(2018)

