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Abstract— Performance of exploration strategies strongly
depends on the process of determination of a next robot goal.
Current approaches define different utility functions how to
evaluate and select possible next goal candidates. One of the
mostly used evaluation criteria is the distance cost that prefers
candidates close to the current robot position. If this is the
only criterion, simply the nearest candidate is chosen as the
next goal. Although this criterion is simple to implement and
gives feasible results there are situations where the criterion
leads to wrong decisions. This paper presents the distance
cost that reflects traveling through all goal candidates. The
cost is determined as a solution of the Traveling Salesman
Problem using the Chained Lin-Kernighan heuristic. The cost
can be used as a stand-alone criterion as well as it can
be integrated into complex decision systems. Experimental
results for open-space and office-like experiments show that
the proposed approach outperforms the standard one in the
length of the traversed trajectory during the exploration while
the computational burden is not significantly increased.

I. INTRODUCTION

The exploration can be understood as a process of au-
tonomous navigation of a mobile robot in an unknown
environment in order to build a model of the environment. An
exploration algorithm can be defined as an iterative procedure
consisting of a selection of a new goal and a navigation
to this goal. Such an algorithm is terminated whenever the
defined condition (mission objective) is fulfilled. In this
paper, the mission objective is building of a complete map
of the environment. Besides, the usage of resources (e.g. the
exploration time, the length of the trajectory) is optimized.
In other words, the exploration strategy determines the next
robot goal in each exploration iteration (one exploration
step) with respect to the actual robot position, the current
knowledge of the environment, and a selected optimization
criterion.

Several exploration strategies have been proposed over last
decades. The strategies differ in the way how candidates for
the next goal are generated and in the criterion how the best
candidate is selected. Yamauchi [1] introduced a frontier-
based strategy that guides the robot to the nearest frontier, i.e.
the boundary between a free and an unexplored space. It has
been shown [2], [3] that this strategy produces reasonably
short trajectories for graph-like environments with upper
bound O(|V | log(|V |)), where |V | is the number of vertices
of the graph. The authors of [4] discussed two simple
heuristics improving Yamauchi’s approach. The first one
uses Voronoi diagrams to prefer exploration of the whole
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room in office-like environments before leaving it, while
the second one repetitively re-checks whether the currently
approached goal is still a frontier. When it is not, a new
goal is determined. A strategy selecting the leftest candidate
according to a robot position and orientation with a defined
distance to obstacles is described in [5].

Other works generate several candidates in a free space
(typically near to frontiers) and combine the distance cost
(the utility evaluating effort needed to reach the goal) with
other criteria. This concept has been introduced in [6] where
measure A(q) of an unexplored region of the environment,
which is potentially visible from the candidate q, is combined
with the distance cost L(q) to get the overall utility of q:

g(q) = A(q)e−λL(q),

where λ is a positive constant. A utility of the next action
as the weighted sum of the distance cost and expected
information gain computed as a change of entropy after
performing the action is presented in [7]. Another strategy
taking into account the distance cost and the information
gathered (based on the relative entropy) is introduced in [8]
together with solid mathematical foundations. The strategy
in [9] samples points near each candidate and filters samples
according to selected criteria. The candidate with the highest
number of samples that passed the filters is then chosen.
Moreover, the localization utility can be integrated into the
overall utility to prefer places traveling to them improves
information about the robot pose [10]. Criteria forming
the overall utility are not typically independent. General
approach that reflects dependency among the criteria based
on multi-criteria decision making is used in [11].

The aforementioned approaches evaluate the distance cost
simply as the length of the trajectory from the current robot
position to the next goal position. Such defined cost prefers
candidates close to the robot without considering subsequent
actions. In this paper, we present more sophisticated ap-
proach that is based on the observation that the robot should
pass (or go nearby) all the goal candidates and define the
distance cost for a candidate q as a minimal length of the
path starting at the current robot position, continuing to the
candidate q at first and then to all other candidates. We
show that the introduced cost can reduce the exploration time
significantly and leads to more feasible trajectories.

A similar approach is described in [12] where several
exploration steps ahead are also considered. The state space
of all possible paths consisting of several exploration steps is
searched for the best alternative using the branch and bound
algorithm. The branch and bound is a general technique
that greedily searches relatively large state spaces without
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(a) (b)

Fig. 1: Next goal selection by (a) the greedy approach, (b)
taking into account all goal candidates.

a priory information about the solved problem. It can be
therefore time consuming and the quality of found solutions
heavily depends on the defined depth of pruning.

In our approach, we define the distance cost as the Trav-
eling Salesman Problem (TSP). The problem formulation
is described in the next section. Fast evaluation of the
proposed distance cost is addressed by a heuristic algorithm
for the TSP that finds a feasible solution quickly. Thus, the
required computational time to solve the TSP is negligible in
comparison to other parts of the exploration as it is shown in
Section III presenting the experimental results. Finally, the
concluding remarks are presented in Section IV.

II. EXPLORATION WITH THE TSP DISTANCE COST

Let the robot be equipped with a distance sensor with
a fixed range (e.g. laser rangefinder) and the map the robot
builds during exploration be modeled as the occupancy grid.
The proposed exploration strategy is based on Yamauchi’s
frontier based approach. The key idea of the approach is to
detect frontier cells, i.e. the reachable free grid cells (the
cells representing free regions) that are adjacent with at
least one cell that has not been explored yet. The frontier
is a continuous set of frontier cells such that each frontier
cell is a member of exactly one frontier. Once all frontiers
are detected, the most appropriate frontier cell is selected
as a new robot goal according to the defined criteria. This
process is executed repeatedly at defined time steps until
there is a frontier cell reachable by the robot.

As mentioned above, the current approaches compute the
distance cost as the length of the path from the current robot
position to the next goal, which can lead to selection of
an inappropriate goal. An example of such a selection is
demonstrated in Fig. 1a). In the shown situation, the robot
moves down (the trajectory represented by the green curve)
and a new goal has to be determined. The greedy approach
selects the nearest frontier cell using the path showed as the
black straight-line segment. It is obvious that in this situation
a much better selection is to travel to the left first and then
continue as it is illustrated in Fig. 1b).

Unfortunately, the described situation is not rare, and
therefore the greedy approach produces superfluously long
trajectories, see Fig. 2. To avoid this behavior, we propose
a more informed approach to the distance cost using the TSP
distance cost and consisting of two steps.

(a) (b)

Fig. 2: Typical trajectories for the greedy approach.

At first, frontier cells are filtered to get a set of repre-
sentatives approximating the frontier cells such that each
frontier cell is detectable by the robot sensor from at least
one representative. This guaranties that all frontiers will be
explored (i.e. it will be detected whether frontier lies in a free
space or in any obstacle) after visiting all representatives. An
algorithm for selection of representatives based on k-means
is depicted in Algorithm 1.

Algorithm 1: Representatives selection for occupancy
grids

Input: Q = {Q1, Q2, . . . , Qn} - the set of frontiers
Input: D - the range of the used sensor (in grid cells)
Output: R = {r1, . . . , rm} - the set of representatives
R = {}
foreach QI do

Set an appropriate number of representatives:
N = 1 + |QI |

2D
Find N means using k-means clustering:

A = k-means(QI , N)
R = R∪A

Having the representatives, the second step is to decide in
which order they will be visited with respect to the minimal
length of the traveled trajectory. Let the robot position be
s0, the set of representatives S = {s1, . . . , sn}, and d(a, b)
denote the length of the path between cells a and b. The aim
is to find a permutation Π = {π1, . . . , πn} of I = {1, . . . , n}
such that d(s0, sπ1)+

∑n−1
i=1 l(sπi

, sπi+1
) is minimal over all

permutations of I. The representative sπ1
is then selected as

the next robot goal.
The problem to find the best permutation is similar to

the TSP that is known to be NP-hard [13]. While finding
an optimal solution of the TSP can be computationally
demanding, there are many approximate algorithms. One
of the most powerful ones is the Chained Lin-Kernighan
heuristic, which gives near-optimal results (up to 1% of
the optimum) in a reasonable time [14]. The TSP can be
defined on a graph G(V,E), where V is a set of vertices
and E are edges connecting the vertices and representing
the connection cost. The objective is to find a closed tour
with the minimal cost connecting all vertices in V .

A straightforward approach to formulate the permutation
problem as the TSP is to construct G(V,E), where V is the
set of representatives, and E is the set of the all shortest
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paths between the representatives. E can be computed by
n calls of Dijkstra’s algorithm on the adjacency graph of
cells in the occupancy grid. Note that the TSP is formulated
to find the best closed tour on the graph while a sequence
of representatives ending in an arbitrary representative is
requested for the distance cost. This discrepancy can be
addressed by adding a fictive vertex s∞ to V together with
edges to all other vertices in V , whereas d(s∞, s0) = 0 and
∀i ∈ {1, n} : d(s∞, si) = ω, and ω is a large number (i.e.
larger than the longest possible tour). This ensures that the
TSP solver finds a solution where s0 and s∞ are neighbors
in the tour. A solution of the permutation problem is found
as a part of the tour starting from the s0 and removing s∞
and both its adjacent edges.

Algorithm 2: Frontier based exploration with the TSP
distance cost.

repeat
Get the updated map built from sensor readings
Detect all frontiers from the actual map
Select representatives
Build the graph G(V,E)
Solve the TSP on G(V,E)
Set the neighbor of s0 other than s∞ as the next
goal

until accessible frontier found

If the TSP distance cost is the only criterion for the goal
selection it can be used as described above. An overview
of the exploration procedure with this cost is depicted in
Algorithm 2. In the case, the distance cost is combined
with other costs (localizability, information gain) like in [10]
[15], evaluation of the TSP distance cost is needed for each
representative. Therefore a solution of the TSP for each
representative sj has to be found in order to compute the
distance cost. The cost for sj is determined using the graph
Gj(Vj , Ej) that is constructed in the following way:

1) Vj = {s1, . . . , sn, s∞}, i.e. Vj does not contain s0.
2) d(s∞, sj) = 0 and ∀i ∈ {1, n} \ {j} : d(s∞, si) =∞.
3) Costs of all other edges represent shortest paths be-

tween adjacent vertices.
In other words, Gj is constructed similarly to the previous
case, however sj has the role of s0. The distance cost for sj
is simply computed as the sum of d(s0, sj) and the length
of the sequence created from the TSP result in the similar
way as in the previous case.

III. EXPERIMENTAL RESULTS
Performance of the proposed distance cost has been eval-

uated and compared to the standard greedy approach in two
types of environments in simulations using the Player/Stage
framework [16]. The first one is an open space represented
by the cave map, which has been scaled to 25×20 m. The
second one is an office-like environment represented by
a map of the Autonomy Lab (autolab) scaled to 35×35 m.
The environments are visualized in Fig. 3. Five positions
where the robot starts the exploration have been chosen for
each environment as shown in Fig. 3 and described in Tab. I.

(a) Cave (b) Autolab

Fig. 3: Testing environments. The numbers correspond to the
starting positions presented in Table I

All experiments were performed within the same compu-
tational environment: a workstation with the Intel R©Core2
Duo CPU E6850 at 3 Ghz, 4 GB RAM running Sabayon
5.2 operating system with the Linux kernel 2.6.35. The
algorithms have been implemented in C++ as client programs
for the Player/Stage in version 3.0 and compiled by the GCC
4.4.2 with -O2 optimization flag. Simulation of the Pioneer
2DX robot equipped with SICK LMS200 with 180◦ field
of view has been used as the robotic platform, while the
occupancy grid with cell size 0.1×0.1 m has been chosen to
represent the working environment. VFH+ algorithm [17]
implemented in the Player has been used to control the
robot motion and to avoid obstacles. The TSP solver used
is the Chained Lin-Kernighan heuristic from the Concorde
package [13].

TABLE I: Description of robot start positions in testing
environments. The positions are in meters, the orientation
of the robot is 0◦ for all positions.

Map 1 2 3 4 5

Cave [16, 8] [2, 16] [20, 16] [4, 4] [8, 8]
Autolab [12, 18] [2, 12] [22, 26] [28, 10] [4, 16]

The algorithm for the new goal selection (i.e. the body of
the loop in Algorithm 2) is run every 1000 ms. It means that
a new goal can be selected before the old one is reached.
Moreover, the sensor range has been limited to 2, 3, and 5
meters. For each experimental setup consisting of the map,
the starting robot position and the range, 30 runs have been
performed for both the greedy approach and the proposed
distance cost, which gives 1800 experiments in total. The
particular experiment run took from 4 minutes for the cave
map with 5 m range up to about 15 minutes for the autolab
map and 2 m sensor range.

The experimental results are depicted in Tab. II for the
cave map and in Tab. III for the autolab map. The solution
quality is measured as the ratio of avgTSP /avgGreedy ·
100%. Furthermore, the best found solutions of the proposed
algorithm are shown in Fig. 6 and Fig. 7. The results
show that the proposed TSP based approach outperforms the
greedy selection in all cases. Generally speaking, the best
improvement is achieved for smaller sensor ranges. The only
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exception is for the open space and high sensor range where
the trajectories generated by the TSP approach can be shorter
up to 72% comparing to the greedy approach. The greedy
approach is not able to explore the space systematically, it
leaves some places unexplored and they have to be visited
later, which is not the case of the TSP based approach.
Another interesting observation is that the standard deviation
for the TSP case is significantly smaller than for the greedy
approach. It is an expected result, because the TSP is more
robust to small local changes in representatives’ positions as
demonstrated in Fig 5.
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Fig. 4: The number of frontiers (upper) and the required
computational time for the particular parts of the algorithm
(bottom) during the exploration.

The required computational time of particular parts of
the exploration algorithm in the autolab map and 2 m
range is shown in Fig. 4. The blue curve, almost identical
to the x-axis, denotes the computational time of the TSP
solver. Regarding the times, the solution time of the TSP is
negligible to other parts of the exploration algorithm.

Fig. 5: If several goal candidates (the black disks) are in the
similar distance to the robot and another one is far enough,
small changes in goal candidates’ positions do not change
the shape of the TSP solution and thus the next goal will be
preserved.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we present a novel approach to determine
the distance cost in the exploration task. The key idea of
the proposed approach is to select an appropriate set of
goal candidates (representatives), which are expected to be
visited by the robot. Then, the near optimal tour connecting

all the representatives is found from which the next robot
goal is determined. Although the introduced evaluation of the
distance cost is primarily intended as a standalone criterion,
a variant of the cost to be used as one of many criteria in
complex systems has been presented as well.

A huge set of experiments has been performed in two dif-
ferent environments. These show that the presented method
provides better results then the widely used greedy approach.
The approach was presented for occupancy grids as the
working environment representation. However a modification
for a geometrical representation is straightforward.

B. Future Works

To the best of our knowledge there is no comprehensive
comparison of exploration strategies in literature. Some at-
tempts were made for example in [4], [11], [18], and [19].
Unfortunately, experiments in these papers are performed
in different environments, with different robots and sensors
and the number of experimental runs is relatively small.
Moreover, the description of the experimental setup is not
complete in many cases, which does not allow to repeat
and compare described experiments. Therefore a detailed
comparison of the current approaches (including the one
presented in this paper), which can be repeated and enhanced
by everyone, is one of our future goals.

The presented cost has been designed for a single-robot
exploration. The next natural step is to extend the cost
evaluation for the case of multiple robots that leads to solving
a variant of the TSP called the Multiple Traveling Salesman
Problem with MinMax criterion.

Finally, we would like to verify the results obtained in
a simulation by experiments performed with real robots in
the SyRoTek system [20].
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