
On Localization Uncertainty in an Autonomous Inspection
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Abstract— This paper presents a multi-goal path planning
framework based on a self-organizing map algorithm and a
model of the navigation describing evolution of the localization
error. The framework combines finding a sequence of goals’
visits with a goal-to-goal path planning considering localization
uncertainty. The approach is able to deal with local properties
of the environment such as expected visible landmarks usable
for the navigation. The local properties affect the performance
of the navigation, and therefore, the framework can take the
full advantage of the local information together with the global
sequence of the goals’ visits to find a path improving the
autonomous navigation. Experimental results in real outdoor
and indoor environments indicate that the framework provides
paths that effectively decreases the localization uncertainty;
thus, increases the reliability of the autonomous goals’ visits.

I. INTRODUCTION

This paper concerns a problem of finding a reliable path
for an autonomous mobile robot in the inspection task, i.e.,
a problem of finding a path to visit a set of goals. Having
a model of the robot’s workspace the required mission
objective is to maximize the frequency of the goals’ visits,
which leads to minimize the inspection path length. However,
due to a localization uncertainty, the path length is not
the only criterion, and a precision of navigation is also
considered during the path planning. The proposed approach
follows the basic idea of the planning approaches considering
robot position uncertainty that is to design a sequence of
robot’s actions to fulfill the desired mission objective while
minimizing the position uncertainty. Let us briefly review
previous approaches in this field.

The motion planning problem with uncertainty has been
addressed using the “Sensory Uncertainty Field” notion
in [1]. The approach provides estimation of possible errors
in robot position computed by the localization function for
every possible robot configuration. Then, a combination of
the expected error with the path length is minimized during
the path planning. In [2], authors formulate a problem of
bearing-only target localization as an optimization problem
of finding an optimal observer trajectory. Their approach is
based on the Fisher information matrix (FIM) representing
information contained in a sequence of measurements.

Authors of [3] proposed a path planning algorithm that
finds a safe path in an uncertain-configuration space using a
localization function based on the Kalman filter technique
(EKF). Safe paths are also studied in [4], where authors
address the problem of computationally intractable stochastic
control problem as a path planning problem in a Bayesian
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framework using extended planning space that is created as a
Cartesian product of robot poses and covariances. A safe path
is determined by a state space searching algorithm, which
finds a path as a sequence of state transitions using FIM.
Although the approach is well formalized, the authors noted
it is computationally demanding if states in the open list
cannot be easy discarded due to a dominated state, i.e., the
case in which states are a totally ordered set, and therefore,
all relations have to be evaluated.

High computational requirements are also the case
of the general framework for planning with uncertainty
based on the partially observable Markov decision process
(POMDP) [5]. On the other hand, sampling based techniques
based on an extension of the configuration space by an
“uncertainty dimension” seem to provide computationally
feasible solution [6]. However, the key issue is an efficient
determination of the collision probability with position un-
certainty [7].

An alternative to the belief space planning approach
has been presented in [8], where Belief Roadmap (BRM)
approach is proposed. The BRM is a variant of the Prob-
abilistic Roadmap algorithm for linear Gaussian systems,
where nodes of the graph built have associated information
about belief estimation. Thus, the roadmap allows to plan a
trajectory regarding its length and uncertainty along it.

The aforementioned planning approaches consider uncer-
tainty in sensors’ measurements or in a robot position estima-
tion using a regular localization function, e.g., based on the
update step of the EKF. In the proposed approach, we rather
consider a model of the localization uncertainty evolution
based on a mathematical formulation of the navigational
method [10]. The main advantage of the proposed approach
is an efficient determination of the robot position uncertainty
along a path consisting of a sequence of straight line seg-
ments. The basic formula describing the position uncertainty
is a simple matrix equation that allows us to consider the
path planning problem as an instance of the multi-goal
path planning problem (MTP). The MTP is formulated as
the well-know Traveling Salesman Problem (TSP) [11], [9],
which is known to be NP-hard. The TSP stands to find a best
sequence of goals visits; however, an order of goals’ visits
affects the precision of the goals’ visits. Thus, we propose
a planning framework for the MTP with the localization
uncertainty. Although the graph based TSP solver can be
eventually used with the BRM, the framework proposed does
not require explicit construction of a graph before solving the
TSP; thus, a solution found does not depend on sampling
strategy as PRM based approaches.

We introduced the initial idea of the framework in [12],



where the Parrot AR.Drone has been utilized in the verifica-
tion of the main principle of the proposed MTP solver. The
real experimental results show that the proposed planning
improves the success rate of the goals’ visits from 82.5 %
to 95 %. However, this initial work is rather limited, and
therefore, in this paper, we extend the framework to deal
with environments with obstacles. Moreover, we generalize
the model of the autonomous navigation to consider local
properties of the environment and develop local models of
visible landmarks used for the navigation. The generalized
framework and its experimental verification in real outdoor
environment are the main contribution of this paper.

The paper is organized as follows. The problem addressed
is specified in the next section. In Section III, the main
idea of the localization uncertainty decreasing is presented.
The proposed MTP framework is described in Section IV.
The experimental results are presented in Section V, and
concluding remarks are dedicated to Section VI.

II. PROBLEM STATEMENT

The problem addressed is an instance of the inspection
path planning for a mobile robot operating in a planar
environment. The map of the environment is a priori known,
and it is represented as a polygon with holes W . Obstacles
of W are enlarged to respect dimensions of the robot and
the required clearance. It is assumed the robot has differential
drive; thus, a point robot model is considered in W . A set
of n goals G = {g1, . . . , gn} representing areas of interest
to be visited is given, and each goal g ∈ G is reachable by
the mobile robot, g ∈ W . The considered multi-goal path
planning problem is as follows: Find a closed shortest path
in W visiting all goals of G while the localization error of
the robot at the goals is minimized. Without loss of generality
the starting point is assumed to be gn ∈ G.

The problem addressed is a variant of the well-known
Traveling Salesman Problem (TSP), in which not only the
path length is considered, but also the localization error is
taken into account. As two criteria are minimized, it is clear
that only Pareto optimality can be achieved. The problem is
how the length of the path and the localization uncertainty
at the goals relate, and what improvements can be achieved.

A. Models of the Localization Uncertainty

An efficient and informative heuristic function is needed to
incorporate the localization uncertainty into the path planning
algorithm. We assume that the mobile robot performing the
inspection is navigated by the method presented in [10],
where a proof of stability of the method and its experimental
validation can be found. The method uses a map of salient
objects of the environment, and matches the current seen
objects to steer the robot in the desired direction. Assuming
distance and heading estimations are independent and not
correlated (e.g., using odometry for distance measurement
and vision based heading estimation), the position uncer-
tainty can be expressed in terms of covariance matrices [10].
For a robot navigated along a straight line segment (with the
length si) from the position ai, the covariance matrix Ai+1

at the end of the segment i (position ai+1) can be computed
using the formula1:
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]
,

m(ai, ai+1,M) represents a model of visible landmarks
used for the navigation, R is the rotation matrix, and η, τ
represent precision of the odometry and the heading sensor,
respectively.

1) Global model of visible landmarks: For homoge-
neously distributed landmarks the model can be characterized
using a single parameter ρ representing an “average” distance
of the landmarks ahead of the robot. In this case, the function
m can be expressed as [10]:

m(ai, ai+1,M) = e−
si
ρ . (2)

2) Local model of visible landmarks: Alternatively a map
of the landmarks M can be utilized to compute expected
distance of the closest landmark to the robot traveling from
the position ai towards the position ai+1. Let the distance
of such a landmark be d. Then, the model can have a form:

m(ai, ai+1,M) =
d

si + d
, (3)

which describes position of the robot moving towards a
particular landmark. A particular value of d can be computed
using various approaches depending on the representation of
M, e.g., point or polygonal map of landmarks. An expected
benefit of the local model is a more precise estimation of
the localization uncertainty; however, it is clear that it can
be more computationally demanding than the global model.

B. Solution Quality Metrics

A natural quality metric of the inspection path visiting
the given goals is a length of the path L. However, a
robot can miss the goal due to imprecise navigation. Hence,
an additional quality metric can be the maximal expected
localization uncertainty at the goals. Using the navigational
method [10], the uncertainty can be described by Eq. 1, and
the expected position error at a goal g can be computed using
the maximal eigenvalue of the matrix Ag . Thus, the maximal
localization error is

Emax = maxg∈G

√
(||Ag||2). (4)

Beside the quality metrics L and Emax of an inspection
path found, the real performance of the autonomous inspec-
tion can be measured by real distances of the robot to the
goals, when the robot announces that it reaches the particular
goal. The real distances are examined in the experimental
evaluation of the proposed planning method in Section V.

1Here, it is worth to mention that si in Si is not in power of two, which
is accidentally presented in [10].



III. PRINCIPLE OF UNCERTAINTY DECREASING

A principle of the uncertainty decreasing utilized in the
proposed multi-goal path planning is based on a geometrical
interpretation of Eq. 1. The idea is as follows. Assume a
robot moving from a goal g1 to a goal g2 along a straight
line segment. The error in the longitudinal direction caused
by the odometry is increased, while the error in the lateral
direction is decreased due to heading corrections, see Fig. 1a
where the corresponding covariance matrices A1 and A2 are
visualized as ellipses [13]. In Fig. 1b, it is shown how the
error can be decreased by an auxiliary navigation waypoint
placed at a selected perimeter around g2.
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Fig. 1: A principle of the localization uncertainty decreasing.

This principle motivates us to consider visitation of an
auxiliary navigation waypoint prior each goal visit. The
auxiliary waypoint should be placed at a location that will
suppress the error in a direction corresponding to the eigen-
vector of the maximal eigenvalue of the matrix Ai. However,
due to non-linearity of Eq. 1, such a location is not easy to
compute. Moreover, the location can be unreachable due to
obstacles. Therefore, eventual auxiliary waypoints are spread
around each goal, and an appropriate waypoint is determined
during the multi-goal path planning.

IV. MULTI-GOAL PATH PLANNING WITH LOCALIZATION
UNCERTAINTY

Herein, we extend the approach [12] to problems with
obstacles using the algorithm [14]. The planning algorithm
proposed is a type of unsupervised learning procedure that is
a two-layered competitive learning network. An input vector
i represents coordinates (gi1, gi2) of the goal gi, and m
output units form the output layer where neurons’ weights
(νj1, νj2) of the node νj are points inW . The output units are
organized into a unidimensional structure that prescribes a
sequence of nodes representing a path inW in which the first
node ν1 and the last node νm denote the orientation of the
path. For each goal g a set of auxiliary navigation waypoints
is created, e.g., using a perimeter with radius dp like in [12],
but in this case only points inside W are associated to the
goal, Pg = {pg,i|pg,i ∈ W}.

During the learning, the goals are presented to the network
in a random order, and for each goal a winning neuron
is found using the length of approximate shortest path
in W [14]. To ensure a path will be closed at the desired
final goal gn, the end nodes (ν1 and νm) are adapted to

gn without competition. The node ν1 and its neighbouring
nodes νj (for j > 1) are adapted by a regular adaptation to
gn, while νm and its neighbouring nodes are adapted by the
double adaptation rule, called dadapt.

The dadapt rule adapts nodes to the presented goal and
a particular auxiliary navigation waypoint. Each node has
associated the localization uncertainty represented by the
covariance matrix Aν . The matrix Aνi is computed from
Aνi−1 by Eq. 1, where a path among obstacles between
two nodes is considered, i.e., the path between the nodes
is a sequence of straight line segments; thus, each segment
of the path is considered using Eq. 1. The matrix Aν1 is
computed from the approximate path from gn to the node
because ν1 can be far from gn during the adaptation. The
initial uncertainty for gn is set to zero. For a winner node
ν? of the goal g, the dadapt rule is performed as follows.
The backward neighbouring nodes of ν? are adapted to the
perimeter point pg,?, while ν? and its forward neighbouring
nodes are adapted to g. A point pg,? is selected from the
set Pg to minimize the dominant eigenvalue of Ag . Because
the adaptation changes positions of the nodes, the covariance
matrices are recomputed prior each selection of the perimeter
point.

An example of the network evolution is shown in Fig. 2.
In all presented figures in this paper, the error ellipses are
four times enlarged to show the effect of the uncertainty
decreasing.

(a) perimeter points (b) step 3 (c) step 10

(d) step 22 (e) step 45 (f) step 64

Fig. 2: An example of the path evolution, the green disks
represent goals, blue disks are nodes associated to the
auxiliary navigation waypoints, the error ellipses are drawn
for the winner nodes. The starting point (gn) is shown as the
brown disk.

The advantage of the propose algorithm is the ability
to deal with obstacles while minimizing the both quality
metrics. The obstacles cause that a path between two goals
consists of several segments, which can eventually increase
the precision of the navigation. However, the real benefit
is not clear, and therefore, the performance of the real au-
tonomous navigation using the proposed planning algorithm



is compared with a simple solution of the TSP (without
localization uncertainty) in the experimental part of this
paper.

A. Placement of Auxiliary Waypoints

In [12], we place auxiliary waypoints at a selected perime-
ter and an influence of perimeter radius to the solution quality
has been shown. Also in the presence of obstacles, the radius
affects the solution quality. Although an appropriate radius
can be found experimentally (i.e., solving the problem indi-
vidually for selected perimeters several times), the flexibility
of the underlying self-organizing map algorithm allows to
consider a general set of waypoints at various perimeters.

B. Local Models of Visible Landmarks

Eq. 3 pre-scribes how visible landmarks affect the localiza-
tion uncertainty. A practical implementation of the formula
can be based on a polygonal map of the visible landmarks or
point landmarks can be directly used. In the first case, visible
objects form obstacles and the distance d to the closest
visible landmark can be found using an intersection of the
supporting line of the path’s segment with a segment forming
the polygonal representation of the landmarks Mpolyg. An
example of the superimposed landmark map is shown in
Fig. 3, the map has been created from the ortophotomap
shown in Fig. 4. Thus, the obstacles in this landmark map
represent objects, where eventual landmarks can be seen.

Fig. 3: An example of the polygonal map representing
landmarks; the blue polygon is a boundary polygon of the
surrounding area and the green polygons represents visible
objects within the experimental site, e.g., trees.

Alternatively, landmarks can be represented by a set of
points. In this case, it is necessary to consider a field of view
(FoV) of the forward looking camera used for the navigation
because a point landmark will not likely be placed exactly at
the supporting line. An example of such a model is visualized
in Fig. 6.

Similarly, the FoV can be considered also forMpolyg. As-
sume a path segment (ai, ai+1), then the expected landmark
is found as an intersection point p of a half-line started at
ai+1 with a segment of Mpolyg. Such a point p must also
be within the FoV defined by the segment (ai, ai+1), which
provides a rough approximation of the expected landmark.
The distance d in (3) is computed as d = ||(ai, p)||.
Moreover, this model allows additional visibility constraints,
e.g., distance constraints regarding a texture of the objects.

It may happened that an expected landmark is not found
by the proposed models due to local properties of the
environment model M around the position ai. In such a
case, the function m has value 1, which corresponds to a
landmark placed at infinity, regarding (2).

C. Computational requirements

The complexity of the proposed planning algorithm is
proportional to the square of the number of goals multiplied
by a number of navigational waypoints associated to one
goal. The solutions presented in this paper are typically found
in tens of milliseconds for waypoints on a single perimeter
and in hundreds of milliseconds for several perimeters using
C++ implementation and 3 GHz single core workstation.

V. EXPERIMENTS

The idea of the uncertainty decreasing presented in Sec-
tion III has been examined in real experiments with two types
of robots, see Fig. 4b and Fig. 4d. All robots have been
navigated using the method [10]. First, the benefit of the
proposed planning method in real environment with obstacles
(a city park) has been examined. Then, the effect of the local
models has been examined in a simple scenario using four
goals.

In all experiments, the parameters of the navigational
model have been estimated for the particular robot and envi-
ronment. Two paths visiting the given set of goals are used
in each experimental scenario. The first path is a solution of
the TSP without localization uncertainty denoted as simple.
The second path is found using the proposed algorithm that
is denoted as dadapt. For each method, the robot is taught
the found path first. Then, the robot is requested to traverse
the path several times while its position to the particular
goal has been measured whensoever the robot announced
it reached the goal. Supplementary materials describing the
experiments can be found in [15].

A. Scenario 1 - Autonomous Navigation in a City Park

The P3AT mobile robot has been used to verify the
proposed method in a real outdoor experiment in which five
goals have been placed within the Charles Square location,
see Fig. 4. For each algorithm variant twenty solutions have
been found for parameters ρ=15, τ=0.001, ε=0.05, dp=5 m,
and a polygonal map created on top of the park orthophoto-
map. Impassable terrain has been marked as obstacles, which
have been enlarged by a small distance to reflect the robot’s
dimensions and its possible localization error. The best found
paths (regarding Emax) are depicted in Fig. 5. After the
planning, the robot position at the goals’ locations has been
marked on the ground by a chalk during the path learning.
Then, the robot has been requested to traverse the path
autonomously for five times. Average robot distances to the
goals are presented in Table I. The sample variances of the
distances are 0.37 m and 0.32 m for the simple and dadapt
methods respectively.

In this experimental scenario, the robot autonomously
traveled about two kilometers. Although the path is found



(a) a map of the Charles Square park in Prague,
the goals are represented by small yellow disks

(b) the P3AT mobile robot during experiment

(c) indoor testing site

(d) MMP-5 platform

Fig. 4: The outdoor and indoor experimental sites.

(a) simple, L=184 m, Eavg=0.57,
Emax=0.63

(b) dadapt, L=202 m, Eavg=0.35,
Emax=0.37

Fig. 5: Best solutions found for the Charles Square scenario,
dp=5 m, and the global landmarks model.

TABLE I: Real P3AT distances to the goals

Planning method Average distances to the goals [m]
g1 g2 g3 g4 g5 overall

simple 0.71 0.92 0.94 0.97 0.93 0.89
dadapt 0.33 0.61 0.71 0.55 0.70 0.58

regarding the dimensions of the robot (using the Minkowski
sum), the robot leaved the pathway occasionally due to
imprecise localization. These errors do not cause a collision
with obstacles, as far landmarks are used for the navigation,
and a grass terrain is mostly around the pathways. The robot
has been manually moved to the pathway only once and
just its lateral position has been changed, i.e., the navigation
has been paused, the robot has been moved, and requested
to continue the navigation without any additional settings.
In this particular case, the robot has been completely on
the grass, in other cases at least one wheel remains on the
pathway.

B. Scenario 2 - Small Low-Cost Wheeled Mobile Robot

The second experiment has been performed in an indoor
environment without obstacles with a MMP5 platform shown
in Fig. 4d. A single camera is used for the navigation with
the on-board processing using the NVidia ION platform.
The identified parameters of the navigational model are ρ=7,
η=0.05, and τ=0.01 meters. The goals form a rectangle
with 3.750 × 4.375 m and the proposed dadapt method
provides the same best paths regarding the lowest Emax over
several runs and selected perimeters regardless models of
landmarks described in Section IV. However, the expected
values of Emax are different for different landmarks models,
and generally the local models provide lower values than
the global model. The best found path is visualized in
Fig. 6. Real average distances of the robot positions from
the goals computed over 10 runs of autonomous navigation
are presented in Table II.

Fig. 6: The best path found using point based local model
of landmarks. The blue disks represent landmarks.

TABLE II: Real MM5 distances to the goals

Planning method Average distance to the goal [cm]
g1 g2 g3 g4 overall

simple 12.9 14.3 20.4 18.7 16.6
dadapt 9.7 12.6 12.8 16.2 12.8



The expected ratio of the localization uncertainty decrease
is about 0.7 using Emax for the paths found by the single
and dadapt methods, while the achieved ratio is 0.8. The
real average localization errors are 24.8 cm and 20.2 cm for
the single and dadapt paths, respectively, and the maximal
errors over all goals and runs are 34 cm and 27 cm, respec-
tively. The cost of the uncertainty decrease is a bit longer
path, which is approximately proportional to the uncertainty
decrease, i.e., the length ratio is about 1.3.

C. Discussion

Although the expected uncertainty decrease (ratio of the
Emax for the single and dadapt methods) differs from the
real achieved ratio, the experimental results confirms the
benefit of the planning method providing a path leading to
a more precise visitations of the goals (about 20 %). The
results show that even in the environment with obstacles,
the proposed planning is beneficial.

The differences between the expected and achieved results
are caused by several factors. First, all the parameters are
only estimated. In addition, the global model is only a rough
estimation providing average expected results, which in part
holds also for the local models. Besides, it’s clear that the
real robot path cannot be exactly the planned path, unless
precise (that means expensive and unpractical) navigation is
used for learning the path. Despite that the planned paths
provide real valuable guideline suggesting an order of the
goals visits and the navigation waypoints.

On the other hand, the proposed generalizations of the
planning method considering more auxiliary waypoints and
local models of the landmarks do not provide significant
benefit in a comparison with a single selected perimeter and
the global model. This is mainly due to considered scenarios,
which are rather simple. However, these generalizations
form fundamental extensions towards a planning framework
allowing to consider local properties of the environment
and specific sensing device used for the navigation. It is
expected that a proper local model will provide a more
precise estimation of Emax, which will be closer to the
really achieved error, as a more sophisticated model can
be proposed. For example in the current local model, the
expected visible landmark for a segment of the path is found
using the segment end. It is assumed that such a landmark
will be visible during the traversing the segment. The robot
is navigated towards the landmark, and therefore, its distance
to the landmark is decreasing. It is obvious that for a very
long segment, this approximation is only rough, and a more
sophisticated local models can be proposed, e.g., considering
the fact that, in reality, closer landmarks along the segment
are often used for the navigation. In addition, the eigenvalue
used for Emax is not exactly the distance measured in real
experiments.

VI. CONCLUSION

An extension of the multi-goal path planning with local-
ization uncertainty for environments with obstacles has been
presented. Moreover, generalization of our previous work to

deal with a local model of landmarks has been introduced.
The planning algorithm can use more navigational waypoints
at different perimeters allowing to automatically find the best
perimeter waypoint individually for each goal. The proposed
approaches have been experimentally verified in real outdoor
and indoor scenarios. Although the expected characteristics
of the navigation for the planned path differ from the real
performance, the benefit of the approaches to uncertainty
decrease is evident from the results. All together, the gener-
alized approach presented forms a suitable framework (with
low computational requirements) for a further research in
path planning with focus on surveillance tasks.

Our future aim is to improve the model of landmarks to
achieve closer expected and real performance characteristics
of the autonomous navigation to provide more realistic
expectations.
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