
Speeding Up Coverage Queries in 3D Multi-Goal Path Planning

Petr Janoušek, Jan Faigl

Abstract— In this paper, we present a supporting structure
for speeding up visibility queries needed for a 3D multi-goal
path planning arising from a robotic coverage problem where
goals are sensing locations from which an object of interest
can be covered. Although such coverage problems can be
addressed by a decomposed approach where sensing locations
are determined prior finding the sequence of their visits, the
proposed approach is motivated by a solution of the problem in
which sensing locations are simultaneously determined together
with evaluation of the path connecting them in order to provide
a cost effective inspection path. The proposed structure divides
the space into elements that support determination of suitable
sensing locations to cover the objects during solution of the
multi-goal path planning.

I. INTRODUCTION

A wide range of practical robotic applications can be
formulated as the multi-goal path planning problem, which
stands to determine the cost effective path visiting a set of
goal locations. Then, the robot is requested to travel along
the found path and perform its operation at the goals [1].
However, planning problems originated from inspection or
surveillance missions also include a problem of determining
the goal locations. Thus, the problem is to determine the most
suitable locations according to the mission objective while
the path connecting them will be feasible and cost effective.

In inspection or surveillance missions, the goals are lo-
cations from which an object of interest is measured using
the sensoric system, which has usually limited range, and
therefore, the mission task can be formulated as a variant
of the robotic coverage problem. An applicable approach to
address the coverage problem is to decompose the problem
into an independent determination of the sensing locations
and the consecutive multi-goal path planning [2], [3] that
connects the locations providing the required coverage. For
view planning applications where it is necessary to consider
both the motion and sensing costs [4], the sensing locations
should be selected simultaneously with the path planning,
otherwise a poor solution would be found [5].

However, even an independent determination of the mini-
mal number of sensing locations is computationally demand-
ing [6], as the problem can be formulated as a variant of
the art gallery problem that is NP-hard for polygonal maps.
The sequencing part of the problem is a variant of the
traveling salesman problem (TSP), which is also NP-hard.
Thus, considering all possible sensing locations in the se-
quencing part of the planning is computationally intractable
and regular branch-and-bound or state space search methods

Jan Faigl is with dept. of Computer Science and Engineering, Czech
Technical University in Prague, Technická 2, 166 27 Prague, Czech Republic
faiglj@fel.cvut.cz

are not applicable because of very large search space. There-
fore, approximate algorithms are preferred and sampling
based methods are utilized to determine possible sensing
locations considering particular visibility constraints [7], [8]
for which a connecting path can be found using efficient
heuristics for the TSP, e.g., [9]. Here, it is worth to mention
that planning a path connecting two locations in a high-
dimensional configuration space is a challenging problem
itself [10], and therefore, also in this part of the problem,
sampling based approaches are usually considered for high-
dimensional configuration spaces together with lazy path
evaluation techniques [11].

In this paper, we aim to address the coverage planning
problem of determining a feasible and cost effective path
from which a given set of objects will be covered using
a camera with a limited visibility range, i.e., we do not
consider explicitly prescribed sensing locations. The problem
is a variant of the covering salesman problem [12] that can
be decomposed to the set cover problem and consecutive the
TSP [13], [14]. Contrary to such approaches, we rather aim
to simultaneously determine the suitable sensing locations
together with optimization of the path.

The proposed approach is motivated by the recent ap-
proximate algorithm for the watchman route problem (WRP)
based on the self-organizing neural network [15]. The main
idea of the algorithm is that a path is represented by a
neural network that evolves in the problem domain, where
it is adapted towards not covered parts of the environment
while the coverage from the path is maintained during the
evolution. This approach requires a lot of visibility queries
that can be computational expensive and to avoid this issue
a supporting structure based on a cover set built on top of
a triangular mesh is utilized in [15], which speeded up the
process significantly and make it computationally feasible.

The main contribution of this paper is to provide a
step further to extend the principles used in the algorithm
developed for the WRP in a plane to a more general 3D
environment, where visibility queries can be computationally
demanding [16], [17]. Therefore, in this paper, we propose
a simple algorithm to built a supporting structure providing
information what can be covered from a single point and
estimation of the space from which a particular object can
be covered. The approach is based on dividing the free
space into n elements and associating information about
possible coverage of the objects. In particular, the query
about possible coverage of objects from a particular element
has complexity O(1) and having an object to be covered,
the query about possible covering regions has complexity
O(k), where k is the size of the query output. It is worth

to mention that the aim of the proposed structure is not to
provide precise information about visibility according to all
visibility constraints, e.g., a limited field of view. It should
be rather considered as a supporting structure to restrict the
search space where suitable sensing locations can be found.

Although visibility queries are part of various 3D frame-
works and it is a fundamental problem in computer graphics,
there is not a similar structure (to the best of our knowledge)
and the frameworks are not directly applicable unless a kind
of ray-tracing technique is used, which seems to be too slow
for the proposed approach.

The proposed planning method is mostly similar to [14].
We also consider a general representation of the environ-
ment, where 3D objects are tessellated into a triangular
mesh, where particular triangles have to be covered from
the inspection path being found. Our approach mainly dif-
fers in the way how the sensing locations are determined.
In [14], the sensing is considered at discrete locations,
which are determined prior finding a path connecting the
needed locations. In our approach, we consider a larger space
(but still restricted) where sensing locations are determined
during solution of the sequencing part of the planning.
Thus, the proposed planning procedure can be considered
as a determination of the path guaranteeing coverage of all
goals. Then, the path can be further processed to determine
particular discrete sensing locations, a.k.a. solution of the
vision points problem. However, the determination of the
locations is inherently included in the utilized process of
neural network evolution. Hence, the sensing locations are
found simultaneously with the path.

The paper is organized as follows. The problem definition
providing an application context of the proposed speeding up
structure is presented in Section II together with an overview
of the proposed planning method. An algorithm to construct
the supporting structure is presented in Section III. In Sec-
tion IV, the proposed multi-goal path planning approach
with the supporting structure is described with a use case
of its application. Finally, concluding remarks are presented
in Section V.

II. PROBLEM DEFINITION

Our motivational problem is planning a surveillance mis-
sion for a micro aerial vehicle (MAV) operating in a com-
bined indoor/outdoor environment, where it is requested to
periodically take a snapshot of Objects of Interest (OoIs);
hence, the robot needs to avoid obstacles. It is worth to
remind that in this paper we are concern the structure
supporting the visibility (or coverage) queries. The aim of the
structure is to restrict the search space for determining sens-
ing locations that provide the requested coverage. Therefore,
we consider several assumptions and an abstract formulation
of the problem to make the description of the proposed
structure and planning approach more straightforward.

The considered problem is planning an inspection path
for a mobile robot equipped with a camera with the limited
visibility range ρ that is requested to see a given set of
OoIs. Here, as the first step of the proposed planning

TABLE I
USED SYMBOLS

Symbol Description
W the robot working space W ⊂ R3

C the configuration space of the robot
ρ the visibility distance range of the sensor (camera)
Wf ⊆ W free space of W
T a triangular mesh of obstacles of W , T = (V W ,TW)
M all parts of the objects’ surfaces to be covered M ⊆ TW
o the number of objects o = |M |
m an object to be covered m ∈M
Gprm a graph representing roadmap Gprm = (V prm,Eprm)
E a tetrahedral mesh of Wf

n the number of tetrahedra in the mesh n = |E|
ei a tetrahedron of E, ei ∈ E
se a surface (triangle) of the tetrahedron e
Cm a covering space of m with respect to ρ, Cm ⊆

Wf , Cm ⊆ E
C a union of all covering spaces C =

⋃
m∈M Cm

(e,m,T) visibility dependency of e with respect to m, where T are
surfaces of e ∈ E with respect to m ∈ M supporting
coverage of m from a point p ∈ e

Vd a set of all visibility dependencies for each ei ∈ E with
respect to m, Vd(m) = {(e1,m,T), . . . , (en,m,T)}

approach, we assume omnidirectional vision, e.g., realized
by camera heads attached to the robot. The operational
environmentW ⊂ R3 is represented by a set of vertices V W
connected to triangles TW representing obstacles. Without
lost of generality we assume the triangular mesh T =
(V W ,TW) of the obstacle surfaces is sufficiently dense.
Let Wf be the free space of W , Wf ⊂ W . Each triangle
considered in this paper is defined by a sequence of three
vertices defining the triangle (surface) normal that is oriented
towardsWf . All objects to be covered form a set M ⊆ TW ;
so, the objects are represented by a set of triangles.

We consider a mobile robot capable of moving in 3D
environment (e.g., MAV) and for its point-to-point motion
planning we consider the notion of the configuration space
C and the Probabilistic Road Map (PRM) planner [18].

For each object m ∈ M we define a covering space
Cm ⊆ Wf from which m can be seen using the sensor with
the distance range ρ. Cm is found by the algorithm proposed
in Section III. Although C can be a high dimensional
configuration space, we consider the visibility in 3D, and
therefore, we divide Wf into a set of tetrahedra considering
the triangular mesh T , e.g., using [19]. We assume that for
each tetrahedron the ratios of the lengths of tetrahedron’s
edges is as small as possible, which pragmatically means
the tetrahedral mesh is sufficiently dense and the centroid of
each tetrahedron is inside the tetrahedron. We consider the
tetrahedral mesh E as a set of tetrahedra e, where each e
consists of four triangles, without a formal introduction of
tetrahedral mesh vertices and triangles to make the text more
readable. The particular point of our interest are tetrahedra
incident with m ∈ M as such a tetrahedron is the initial
step for building Cm. An example of visualization of the
environment W and objects M is shown in Fig. 1.
C is linked with W using the centroids of the tetrahedra

E and vertices of the roadmap find by the PRM method. For
simplicity, we consider centroids as the initial configurations
for building the roadmap, instead of a random sampling C.

(a) environment and objects of interest – W , M (b) covering spaces – E

Fig. 1. Example of the environment representation, tetrahedralization of the freespace, objects of interest (red triangles) and their covering spaces. The
red triangles denote the particular objects (part of them) of interest.

Then, we discard all tetrahedra without connected centroids
with the roadmap; hence, for each tetrahedron, we have at
least one feasible configuration. In the rest of the paper, we
assume that all e ∈ E have at least one feasible configuration
and there exists a feasible path to other tetrahedra (their
associated configurations). The built roadmap forms a graph
Gprm = (V prm,Eprm), where each vertex v ∈ V prm is
associated to a configuration c ∈ Cfree, which projection to
R3 is the centroid of the particular e ∈ E.

The used notation is depicted in Table I. Having the above
defined preliminaries, the planning problem can be defined
as follows. Find the shortest closed inspection path I in the
graph Gprm, I = (v1, v2, . . . vk), v1 = vk, vi ∈ Gprm such
that all objects M will be seen from I by the sensor with the
visibility range ρ, i.e., for each m ∈M there exists vi ∈ I
such that vi ∈ Cm.

A. Planning Method Overview

The planning problem is basically a selection of con-
figurations from V prm that are in the covering spaces C
such that the path connecting them is the shortest one,
which is the problem addressed by the self-organizing map
(SOM) for the WRP [15] and later used for finding the path
connecting a set of convex goals in 2D [20]. Considering
such a selection technique is available, the planning approach
can be summarized in the following steps:

1) Tetrahedralization of the working environment (e.g.,
using [19]);

2) Generation of the motion planning roadmap (e.g., using
the PRM method [18]);

3) Construction of covering spaces Cm for each m ∈M ;
4) Determination of the inspection path using SOM;

The first two steps are straightforward. The construction of
the covering spaces is presented in the next section and a
brief description how the SOM technique can be utilized is
presented in Section IV.

III. CONSTRUCTION OF COVERING SPACES

The covering space Cm of the object m consists of a set of
tetrahedra and represents a part ofWf from which the whole
object m can be seen with respect to the limited visibility
range ρ. Thus, for each m we are looking for tetrahedra Cm
such that distance of vertices of each tetrahedron e ∈ Cm

from the vertices of m is less or equal to ρ. However, we
have to deal with obstacles, as for each point of Cm the
visibility of the whole m must be guaranteed. The proposed
construction algorithm for determining Cm is based on an
iterative procedure that inserts a new tetrahedron e to Cm
while the fundamental constraint of the visibility of m from
p ∈ e is preserved.

p
m m

e

es

p

e

N

(a)

es’

p’
mp

m

e

e

es

m

pN N’

(b)

Fig. 2. Examples of the visibility dependency of the tetrahedron e with
respect to m; (a) (e,m,T) = {se}; (b) (e,m,T) = {se, s′e}.

The visibility means that for any point p ∈ e the ray
connecting p with any point of m does not intersect an
obstacle. Hence, the key point for keeping the visibility of
m from e are surfaces of e that can be intersected by such
a ray. We denote such surfaces as T ⊂ e with respect to
m and define a notion of visibility dependency (e,m,T),
which assign T to e regarding m. For each m ∈ M and
tetrahedron e ∈ E we find the set of surfaces T by testing
if a vertex of m is on the opposite side of the plane defined
by se ∈ e than a point inside e. The test is performed as
a scalar product of the se normal and ray (pe, pm). The
principle is schematically depicted in Fig. 2. The complexity
of determination of all visibility dependencies is Θ(no),
where n is the number of tetrahedra (n = |E|) and o is
the number of objects o = |M |.

Having the visibility dependencies (e,m,T) for each
e ∈ E and m ∈M , the building of Cm is relatively straight-
forward as we basically consider each tetrahedron e and test
if the visibility constraint will be satisfied after insertion of
e into Cm. However, the tetrahedra can be inserted in an
arbitrary order, and therefore, we define a notion of transitive
dependency of e on other tetrahedra that must be inserted to

Algorithm 1: Construction of covering space Cm
Input: m – an object to be covered
Input: E,Vd(m) – tetrahedral mesh and all visiblity

dependencies with respect to m
Output: Cm – the covering space for the object m
eobj ← get e such that e ∈ E ∧ s ∈ e∧ incident(s,m);1

Cm ← {eobj};2

Efree ← E \ Cm;3

Eclose ← ∅;4

while ∃e ∈ Efree ∧ enbr ∈ Cm ∧ incident(e, enbr) do5

G(EG,H)← get dependency(m,Cm, (e,m,T));6

Cm ← add tetrahedra(Cm, G(EG,H));7

Cm in order to satisfy the visibility of m from e. So, during
the iterative insertion we construct an auxiliary graph G with
information about the transitive dependency. In addition, we
maintain two sets Eclose containing tetrahedra transitively
dependent on obstacle or closed tetrahedron and Efree with
all not yet processed tetrahedra. For the incremental construc-
tion of Cm we need a relation of neighbouring tetrahedra
(or incident triangles), and therefore, we define the Boolean
operator incident(e1, e2) that is true if e1 and e2 share the
same triangle (except its orientation) and false otherwise.
The construction procedure is depicted in Algorithm 1 and
the sub-procedures get dependency and add tetrahedra in
Algorithm 2 and Algorithm 3, respectively.

Algorithm 2: Construction of the dependency graph G
Input: m – an object to be covered
Input: e0 – tetrahedron being added to Cm
Input: E,Vd(m) – tetrahedral mesh and all visiblity

dependencies for ei ∈ E with respect to m
Output: G(EG,H) – the dependency graph for e0
Etmp ← {e|e ∈ E ∧ incident(e0, e)} ∪ {e0};1

H ← ∅;2

while Etmp ∩Efree 6= ∅ do3

ei ← get e such that e ∈ Etmp ∧ e ∈ Efree;4

Efree ← Efree \ {ei};5

T neigh ← {t|t ∈ (ei,m,T) ∧ incident(ei, t)};6

if T neigh ∩ TW 6= ∅ then7

EG ← EG ∪ {ei}// ei is incident with obstacle;8

Eclose ← Eclose ∪ {ei};9

else10

for eneigh ∈ {e|e ∈ E ∧ t ∈ T neigh ∧ t ∈ e} do11

Etmp ← Etmp ∪ (Efree ∩ {eneigh)};12

EG ← EG ∪ {eneigh};13

H ←H ∪{(ei, eneigh)}// add the relation;14

G← G(EG,H);15

In Algorithm 2, the auxiliary graph G = (EG,H) is
determined. G represents all tetrahedra on which e being
added to Cm is transitively dependent, i.e., each vertex of
G represents a tetrahedron and an oriented edge h ∈ H
between e1 and e2 indicates the transitive dependency of e1
on e2. The tetrahedron e0 can be added to Cm only if it is

not dependent on a tetrahedron that is in Eclose or it is not
incident with an obstacle. The procedure is repeated until
all transitively dependent tetrahedra are processed (Line 3).
Then, G is used for adding all tetrahedra that are not incident
with an obstacle or closed tetrahedron into Cm using the
procedure add tetrahedra, see Algorithm 3.

Algorithm 3: Adding tetrahedra to Cm
Input: m – an object to be covered
Input: G(EG,H) – the current dependency graph
Output: Cm – the covering space for the object m
Eact ← Eclose // test all close tetrahedra;1

while |Eact| > 0 do2

eact ← get a tetrahedron from Eact;3

Eclose ← Eclose ∪ {eact};4

Eact ← Eact \ {eact};5

Edep ← {e|e /∈ Eclose ∧ (e, eact) ∈H};6

Eact ← Eact ∪Edep;7

Cm ← Cm ∪ (EG \Eclose) // add non closed dep. tet.;8

A B

Obstacle

1

T3

T0

T

T

2

A B

Obstacle

T

T

T0

3

T2

1

Fig. 3. An example of the transitive dependency, triangles represent
surfaces’ of tetrahedra. The orange tetrahedra are tested for being added
to Cm, the green triangles are tetrahedra already in Cm, and gray triangles
are not yet processed tetrahedra. The red triangles are tetrahedra from, which
visibility to segment (AB) of m cannot be guaranteed. In the left figure, the
tetrahedra can be added to Cm while for the right case, T0 is transitively
dependent on T3 with respect to m and visibility of m from T0 cannot be
guaranteed because T3 is incident with an obstacle.

An example of the transitive dependency is shown in
Fig. 3 using triangles (2D slice of tetrahedron) for a clarity.
Although the proposed construction of the covering space
Cm is only approximation, the crucial point of Cm is that it
guarantees coverage of m within the limited sensor range ρ.

A. Computational Complexity and Queries

The computational complexity of Algorithm 2 is O(n) as
in the worst case all tetrahedra can be processed. It is also
the case of Algorithm 3 where up to O(n) elements can
be examined. Thus, the total complexity of the construction
algorithm is Θ(no).

Regarding a usage of the structure, it provides O(1)
queries for test if a point in a particular tetrahedron can cover
an object. For a general point, the complexity depends on the
finding the particular tetrahedron for the point, which can be
based on the kd-tree using centroids of the tetrahedra. Such a
query can be answered in the average complexity O(log n).

TABLE II
CONSTRUCTING TIMES FOR TETRAHEDRAL MESH COVERING SPACES

Parameter Scene 1 Scene 2 Scene 3 Scene 4

No. of triangles 1280 1280 2444 2444
No. of tetrahedra 2 538 10 852 27 071 113 505
Tetrahedral mesh [ms] 90 351 809 3 705
Covering spaces [ms] 33 46 271 746

However, the closest centroid does not guarantee the point
is inside the particular tetrahedron for a weakly constructed
tetrahedral mesh. Then, for such a case a local search
method can be applied. On the other hand, the proposed
planning approach considers configurations with associated
information about its tetrahedron; hence, it is not necessary to
perform the finding query and the information about covering
is available instantly.

We consider four scenes with different number of tetra-
hedra to provide an overview of the real computational
requirements using a computer with iCore7 3.4 GHz CPU.
Scene parameters and construction times are depicted in
Table II. In all cases, 10 covering spaces are constructed.

In addition, we consider 100 000 random queries in the
Scene 2, where the average query time to find a tetrahedron
for a random point is about 94 µs using an exhaustive search.

IV. MULTI-GOAL INSPECTION PLANNING

The planning algorithm for determining the inspection
path I is inspired by the self-organizing map (SOM) ap-
proach for the WRP [15], which is based on SOM adaptation
schema for the TSP [21]. However, rather than SOM for the
polygonal domain, we utilize a SOM variant for a graph
input [22] and use the roadmap Gprm as the graph.

The planning algorithm is basically an unsupervised learn-
ing procedure for two-layered competitive neural network.
An input vector is a vertex of Gprm representing an object
being covered. The output layer consists of k units represent-
ing neuron weights. The output units are organized into a uni-
dimensional structure N = (ν1, . . . , νk), which is called a
ring in the rest of this paper. Hence, the ring represents a path
evolving in the graph Gprm. The weights are coordinates in
C; however, restricted to the roadmap Gprm.

The learning process is an iterative procedure in which
objects m ∈ M are presented to the network in a random
order. For simplicity, we can assume that each object m
has associated a particular vertex vm ∈ V prm. First, a
winning neuron ν∗ with the shortest distance to vm is
determined in the competitive phase. Then, ν∗ together
with its neighbouring nodes are adapted towards vm. The
adaptation is terminated if each object has its winner neuron
in a sufficiently small distance. Using the graph input, the
learning process can be described as an evolution of a path
(ring) in the problem domain defined by the Gprm. The
adaptation of nodes can be interpreted as their movement
towards the presented goal along paths found in the Gprm,
e.g., using Dijkstra’s algorithm. The neurons’ weights repre-
sent the inspection path I and the order of object visits can
be retrieved by traversing the output layer (ring).

The procedure is relatively simple but its simplicity pro-
vides a great flexibility to address variant of inspection
planning. First, we introduce usage of the covering space
Cm. The modification of the standard TSP algorithm is
straightforward. In the competitive phase, we consider Cm
to select not only the winning neuron ν∗ but also a new
goal towards which the winner will be updated; thus, the
competitive rule is as follows

(ν∗, p)← argminν∈N ,e∈Cm
(distance(ν, centroid(e)),

where p is a point of the particular e, e.g., the centroid
of e. Then, ν∗ and its neighbouring neurons are adapted
towards p instead of vm. The idea is that instead of direct
planning to visit the object, we rather prefer to find some
point from which the object will be covered. Here, we
employ the constructed covering space Cm, which allows the
proposed straightforward extension without any performance
lost related to compute the coverage.

Notice, it is not necessary to consider all tetrahedra in Cm
for evaluation of the best possible goal p. We can sample only
few of them or we can use other techniques. The advantage
of Cm is that it provides explicit representation of possible
goal candidates from which the object can be covered.

A. Use Case

The feasibility of the proposed planning approach based
on the covering spaces Cm has been verified in a city like
environment represented by 2 444 triangles, see Fig. 1. We
consider restricted visibility range ρ=2. The objects to be
covered are 10 triangles representing 7 physical objects of
interest. One object is represented by 3 incident triangles that
is located at the bottom right part of the environment. Two
underlying graphs with 27 071 and 113 505 nodes (for two
tetrahedral meshes) are used to provide an overview of real
computational requirements.

TABLE III
COMPUTATIONAL TIMES OF PARTICULAR PLANNING PARTS

Tet. PRM Covering SOM SOM SOM
mesh spaces epoch=20 epoch=40 epoch=60

0.8 s 0.7 s 210 ms 0.6 min 1.1 min 1.4 min
3.7 s 2.8 s 352 ms 3.3 min 6.5 min 8.4 min

Particular required computationally times of each part of
the proposed planning method are depicted in Table III for
a single core CPU running at 3.4 GHz. The final solution
has been found after 60 learning epoch of the SOM learning
procedure. However, SOM provides a solution at the end of
each epoch and for example after 40 epochs the path length
was 38.6 while the final solution after 60 epoch has length
27.3. In the case of a finer tetrahedral mesh (with 113 505
tetrahedra) the lengths are 35.2 and 26.3, respectively. An
example of found solution is visualized in Fig. 4.

During the learning, particular distances and paths be-
tween nodes are computed on demand and saved for a
latter usage, therefore, the complete distance matrix is not

Fig. 4. An example of found solution in the city-like scenario.

computed. The memory footprint is about 1 GB and 10 GB,
respectively, which is significantly lower than a required
storage for the complete distance matrix. It should be noted
that herein presented results are part of the feasibility study
of the proposed covering space structure and the planning
method, and we consider the distance matrix for simplicity.

V. CONCLUSION

In this paper, we present an algorithm for construction
supporting structures to avoid computing covering queries
in the proposed 3D inspection planning and demonstrate
how it can be utilized in multi-goal inspection planning.
The structure can be considered as an enabling technique
for applying self-organizing map (SOM) based planning
principles in 3D environments. SOM provides interesting
results for inspection planning in planar environments where
they are able to solve multi-goal path planning problems with
point or polygonal goals [20] and even problems without
explicitly prescribed goals [15].

The proposed structure of covering spaces is our early
results towards applying self-organizing principles in a high-
dimensional space. Although the current problem formula-
tion assume an omnidirectional vision, the proposed prin-
ciples provide a different mechanism of searching the state
space than regular branch and bound algorithms or decom-
posed approaches. It allows a simultaneous determination
of suitable goal locations during solving the sequencing
part of the multi-goal path planning. Therefore, additional
constraints can be considered during the self adaptation of
the used neural network, e.g., a coverage from the ring can
be computed according to the robot’s orientation. Hence, we
expect the proposed framework will allow to consider not
only sensor with a limited field of view, but additional motion
constraints of the robot. In addition, it is not necessary to
precompute roadmap using centroids of all tetrahedra. Lazy
motion planning such as [14] can be combined with the

covering spaces. Such further developments are subject of
our current work.

ACKNOWLEDGMENTS

The work of J. Faigl was supported by the Czech Science
Foundation (GAČR) under research project No. 13-18316P.

REFERENCES

[1] S. N. Spitz and A. A. G. Requicha, “Multiple-Goals Path Planning
for Coordinate Measuring Machines,” in Proc. of IEEE Int. Conf. on
Robotics and Automation (ICRA), 2000, pp. 2322–2327.

[2] F. Zhao, X. Xu, and S. Xie, “Computer-aided inspection planning-the
state of the art,” Computers in Industry, vol. 60, no. 7, pp. 453–466,
2009.

[3] T. Danner and L. E. Kavraki, “Randomized Planning for Short Inspec-
tion Paths,” in Proceedings of The IEEE International Conference on
Robotics and Automation (ICRA). San Fransisco, CA: IEEE Press,
April 2000, pp. 971–976.

[4] W. R. Scott, G. Roth, and J.-F. Rivest, “View planning for automated
three-dimensional object reconstruction and inspection,” ACM Com-
put. Surv., vol. 35, no. 1, pp. 64–96, 2003.

[5] P. Wang, “View planning with combined view and travel cost,” Ph.D.
dissertation, Simon Fraser University, 2007.

[6] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Near-optimal
sensor placements: maximizing information while minimizing commu-
nication cost,” in The Fifth International Conference on Information
Processing in Sensor Networks (IPSN), 2006, pp. 2–10.

[7] H. H. Gonzalez-Banos and J.-C. Latombe, “Navigation Strategies
for Exploring Indoor Environments,” The International Journal of
Robotics Research, vol. 21, no. 10-11, pp. 829–848, 2002.

[8] J. Faigl, M. Kulich, and L. Přeučil, “A sensor placement algorithm for
a mobile robot inspection planning,” Journal of Intelligent & Robotic
Systems, vol. 62, no. 3-4, pp. 329–353, 2011.

[9] K. Helsgaun, “An Effective Implementation of the Lin-Kernighan
Traveling Salesman Heuristic,” European Journal of Operational
Research, vol. 126, no. 1, 2000.

[10] S. M. Lavalle, Planning Algorithms. Cambridge University Press,
May 2006.

[11] M. Saha, T. Roughgarden, J.-C. Latombe, and G. Sánchez-Ante,
“Planning Tours of Robotic Arms among Partitioned Goals,” Int. J.
Rob. Res., vol. 25, no. 3, pp. 207–223, 2006.

[12] J. R. Current and D. A. Shilling, “The covering salesman problem,”
Transportation Science, vol. 23, no. 3, 1989.

[13] P. S. Blaer and P. K. Allen, “View planning and automated data
acquisition for three-dimensional modeling of complex sites,” J. Field
Robot., vol. 26, no. 1112, pp. 865–891, Nov. 2009.

[14] B. Englot and F. Hover, “Planning complex inspection tasks using
redundant roadmaps,” in 15th International Symposium of Robotics
Research (ISRR), Flagstaff, AZ, August 2011.

[15] J. Faigl, “Approximate Solution of the Multiple Watchman Routes
Problem with Restricted Visibility Range,” IEEE Transactions on
Neural Networks, vol. 21, no. 10, pp. 1668–1679, 2010.

[16] F. Durand, G. Drettakis, and C. Puech, “The 3D Visibility Complex,”
ACM Transactions on Graphics, vol. 21, no. 2, pp. 176–206, 2002.

[17] M. Nouri Bygi and F. Ghodsi, “3d visibility and partial visibility
complex,” in International Conference on Computational Science and
its Applications, (ICCSA), aug. 2007, pp. 208–207.

[18] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[19] H. Si, “Tetgen - a quality tetrahedral mesh generator and a
3d delaunay triangulator,” [cit. 09-05-2012]. [Online]. Available:
http://tetgen.berlios.de

[20] J. Faigl, V. Vonásek, and L. Přeučil, “Visiting convex regions in a
polygonal map,” Robotics and Autonomous Systems, 2012, (accepted,
paper in press), http://dx.doi.org/10.1016/j.robot.2012.08.013.

[21] S. Somhom, A. Modares, and T. Enkawa, “A self-organising model for
the travelling salesman problem,” Journal of the Operational Research
Society, pp. 919–928, 1997.

[22] T. Yamakawa, K. Horio, and M. Hoshino, “Self-Organizing Map with
Input Data Represented as Graph,” in Neural Information Processing.
Springer Berlin / Heidelberg, 2006, pp. 907–914.

