
Low-latency Image Processing for Vision-based Navigation Systems

Petr Čı́žek Jan Faigl Diar Masri

Abstract— This paper concerns a problem of the latency
reduction in the vision-based mobile robot navigation, which
is considered as the crucial system property to determine a
control command based on visual data in practical deployments
of mobile robots. The problem is addressed by a processor
centric FPGA-based System-on-Chip design allowing power
and computationally efficient on-line image processing. The
proposed architecture is considered in an autonomous vision-
based navigation with a teach-and-repeat algorithm based on
detection and tracking of image salient points. The architecture
has been evaluated and compared with a CPU-based solution
on different platforms and the results indicate that the proposed
FPGA-based implementation outperforms pure CPU solutions
in the overall latency, speed, and power consumption.

Index Terms— latency, visual navigation, FPGA, system on
chip, image processing

I. INTRODUCTION

Image processing is an important part of the computer
vision that has a fundamental impact on the field of mobile
robotics because vision-based techniques are key compo-
nents to obtain information about the robot motion and
its surroundings. In particular, extractors of salient points
are popular image processing techniques that forms crucial
building blocks for implementing robotic navigation systems;
however, the feature extraction process is usually computa-
tionally very demanding.

A deployment of vision-based algorithms is a very daunt-
ing task on small and micro robotic platforms like micro
aerial vehicles [1] (MAVs), swarm robots [2] or crawling
platforms [3] because of limited dimensions, payload, and
battery capacity. Therefore, the computational deficiency of
these platforms can be addressed by more efficient algo-
rithms and software implementations. Besides, it can also
be addressed by a dedicated hardware solution.

Parallel capabilities of modern processors and graphics
cards allow to process several images simultaneously [4],
[5], which can increase the number of processed images per
second significantly. However, it does not necessarily mean
the processing results are provided in a shorter time, see
Fig. 1. The time to process an image depends on the image
processing pipeline, and therefore, a higher image processing
throughput does not guarantee a low-latency of the data
processing. The latency between the data acquisition and
the produced control command is crucial in many practical
robotic missions, especially in dynamic and confined spaces,
which impose imminent threats to the mobile robot.

Authors are with Dept. of Computer Science, Faculty of Electri-
cal Engineering, Czech Technical University in Prague, Czech Republic
{cizekpe6|faiglj|masridia}@fel.cvut.cz

The presented work has been supported by the Czech Science Foundation
(GAČR) under research project No. 15-09600Y.

0 ms 40 ms 80 ms 120 ms

120 ms

image
processing

image
processing

acqusition
image

25 Hz

Fig. 1. An example of image processing in two parallel threads. Images
are acquired every 40 ms (25 Hz) and the acquisition takes 10 ms. For 60
ms processing per image, two CPU cores can process 25 images per second.
However, the processed data (denoted as the red box) are available in 70 ms
from the image acquisition, which gives the effective frequency of 14 Hz.

In this paper, a processor centric Field-programmable
Gate Array (FPGA) based on the System-on-Chip (SoC)
design is considered for an efficient implementation of the
image processing pipeline for an extraction of image salient
points and their further processing in vision-based navigation
systems. A real-time low-latency performance is achieved
by a direct on-line processing of visual data from the sensor.
The proposed approach provides benefits of both: the general
purpose CPU; and a highly optimized FPGA architecture.

The main source of the achieved low-latency is in the
ability to process data not as a whole image (which is
typical for CPU based techniques), but in an incremental
way as individual pixels are read from the image sensor.
This system feature provides any-time capability of the
proposed architecture to vision-based navigation techniques.
In addition, the proposed architecture is of a low complexity
and it has a low power consumption which makes it well
suitable for computationally constrained robotic platforms.

The paper is organized as follows. Related work on FPGA-
based image processing in mobile robotics is presented in
Section II. A brief overview of the image processing pipeline
for vision-based navigation method and the considered teach-
and-repeat navigation algorithm [6] utilized for a practical
deployment of the proposed architecture are provided in
Section III. Latencies in the processing pipeline of the vision-
based navigation are discussed in Section IV. The proposed
architecture of the processor-centric FPGA SoC image pro-
cessing pipeline is described in Section V. Evaluation results
of the proposed architecture and its comparison with standard
CPU implementations are reported in Section VI. Concluding
remarks are in Section VII.

II. RELATED WORK

One way how to evaluate a performance of vision-based
algorithms is an evaluation of the processing speed in the

number of processed frames per second (fps). However, the
fps can be easily confused with the latency of the method,
which is a much harder to evaluate, but a more important in
real robot navigation tasks.

The most related work has been presented by the Com-
puter Vision and Geometry group with the ETH Zurich,
because the authors concern and evaluate the latencies in
their approaches. Latencies of data transmissions are thor-
oughly discussed and evaluated in [7] and [8], where a
synchronization of the data acquisition process from the
camera and the inertial unit (IMU) is crucial to achieve
a more precise motion control of MAVs using on-board
computer vision techniques.

In [9], the authors present a stereo image processing
module based on the FPGA and ARM Cortex A9 quad-core
CPU. The system is capable of the on-line calculation of
the dense disparity images with the resolution of 752×480
pixels at 60 fps while the latency of the disparity calculation
is reported to be only 2 ms. The module is extended in [10]
by a reactive based collision avoidance method for MAVs and
the authors report on an experimental evaluation in outdoor
environments. Four stereo pairs have been utilized in [11]
to build an omnidirectional collision avoidance system. The
reported overall latency of the system including the image
acquisition is 26.9 ms.

Notice, the further references report only on the processing
speed, albeit they discuss FPGA-based computational and
power efficiency improvements in a vision-based navigation.

A miniature module with a low-cost FPGA and MCU
for a visual navigation is presented in [12]. A reduced
PTAM algorithm [13] (mapping top of 200 features due
to memory limitations) is utilized for an estimation of the
visual odometry based on the on-line FPGA implementation
of the FAST [14] features detection and BRIEF [15] feature
description. The MCU performs the visual odometry calcu-
lation and the whole system operates on 160×120 images
at 30 fps. Compared to our approach, the method [12] uses
a complex memory access pattern for the feature response
function calculation.

In [16], the FPGA is utilized to synchronize data from
the IMU and FAST features detection from a camera stereo
pair for a robust inertial assisted real-time visual SLAM.
The reported processing throughput is about 20 fps for the
752×480 image. Similar results are reported in [17]. Both
approaches use the SoC design with FPGA-based feature
detection. The later approach presents the most similar
feature detection chain to our proposed approach; however,
without sufficient implementation details.

III. OVERVIEW OF THE VISION-BASED NAVIGATION

Vision-based navigation systems basically consist of four
main parts: image acquisition, feature detection, feature
description, and feature processing. Although a feature pro-
cessing depends on a particular localization method, almost
all vision-based localization techniques perform some variant
of the feature matching. Therefore, the image processing
pipeline can be considered as in Fig. 2.

Image acquisition

Feature detection

Feature description

Feature processing
Feature matching

Histogram construction

Histogram voting

Fig. 2. Image processing pipeline for the vision-based navigation

The image acquisition is usually made by camera drivers
that provide the image as a whole into a part of the system
memory, denoted as the frame buffer. Besides, standard
image processing libraries, e.g., OpenCV [18], are image-
based oriented and take the whole image to produce a
set of detected features or their descriptors. This is in a
direct contrast with the proposed on-line processing which
processes the image incrementally that requires a specific
implementation of the processing pipeline.

A. Teach-and-Repeat Navigation

The proposed low-latency architecture for image process-
ing has been considered with a practical deployment of
the teach-and-repeat autonomous navigation method [6]. The
method relies on the on-line detection and tracking of image
salient points that have been previously mapped. During the
repeat mode, the matched features are used to correct the
robot heading and steer the robot motion to autonomously
traverse the pre-learned path.

Fig. 3. Matched features from the current image with the previously learned
features in the teach-and-repeat navigation [6]. A corresponding navigation
histogram of the matched features is depicted on the right.

The method [6] considers a relative localization provided
by the odometry only locally for traversing short straight
line segments along which visual landmarks are utilized
to correct the robot heading. The heading corrections are
based on a modus of the horizontal displacements of the
tentative correspondences between previously mapped and
the currently perceived visual features, see Fig. 3. The modus
is found by a histogram voting, which is quick to compute.

Although the method has been originally proposed with
the SURF [19] feature detection and descriptor (also im-
plemented on the FPGA [20]), it has been found out [21]
that a better performance is achieved with the FAST [14]
feature detection and BRIEF descriptor [15]. Besides, the

combination of FAST detector and BRIEF descriptor is less
computationally demanding than SURF, which make them
a suitable choice for the evaluation in this study targeting
computationally deficient platforms.

IV. LATENCIES IN VISION-BASED NAVIGATION

The overall latency T of the vision-based navigation
algorithm is the time needed to produce the control command
based on the obtained visual data. The time T consists of
particular latencies in each block of the processing pipeline:

T ' Texp+Tacq+Tdet+Tdesc+Tmatch+Tvote+Tsys, (1)

where we can also distinguish latency caused by the exposure
time Texp and latencies related to the data handling by
operating system services Tsys. The individual latencies are
discussed in the following paragraphs.
Texp is the image exposure time that is determined by the
camera shutter, lens aperture, and scene luminance. Although
two types of shutter can be found in camera sensors (the
global and rolling shutter), the type does not affect Texp,
because the exposure always precedes the camera readout.
In the rest of this paper, Texp is not considered, because it
depends on the other factors than the image processing itself.
Tacq stands for the acquisition time, which is the time needed
for the transmission of the image data from the camera sensor
to the main memory. The data are transmitted pixelwise line-
by-line as the camera sensor readouts the image pixels.
Tdet is the required time for feature detection, which depends
on the computational complexity of the algorithm, size of the
image, and also available computational resources.
Tdesc refers to the time needed for the computation of the
feature descriptor for each detected feature. A descriptor usu-
ally describes a local image neighbourhood of the detected
feature and thus, its construction requires many memory read
operations, which can be computationally demanding.
Tmatch is the time needed for establishing pairwise tenta-
tive correspondences between the currently detected features
and the pre-learned ones. It is based on a comparison of
the feature descriptors to determine whether the features
correspond to the same salient object already detected in
the environment. In the utilized navigation method [6], a
histogram of the horizontal displacements of the detected
features is constructed during the matching phase.
Tvote is the time needed to find the principal bin in the his-
togram and determine the control command for the robot [6].
Tsys is a latency induced by the operating system, which
is caused by, e.g., data transmissions, scheduling, etc. It is
extremely volatile and thus hard to assess.

Regarding latencies and parallel computation of individual
tasks of the image processing pipeline, three CPU-based
ways how to organize the computation can be identified, see
Fig. 4. The first is a single-threaded CPU implementation
where all the blocks are processed in a sequence, and
therefore, the update rate equals to the overall latency T .
For multi-core CPUs, individual parts of the algorithms can

Camera
shutter

1 2 3 4 5 6 7 8 9 10 11 12

CPU
single–thread

CPU
dual–core

data parallel.

CPU
dual-core

task parallel.

FPGA

Image acquisition Calculation Results ready

Fig. 4. Latency of image processing in CPU-based and FPGA systems for
the camera with a fixed frame rate.

be accelerated by parallel data processing that results in the
overall lower latency and higher update rate; or individual
tasks can be parallelized to increase the update rate but it
preserves the overall latency. On the other hand, the proposed
FPGA architecture performs feature detection directly on
the incoming data pixel stream and thus eliminates Tacq .
Moreover, detection is performed simultaneously with the
feature description and matching.

V. PROPOSED LOW LATENCY ARCHITECTURE

The main idea of the proposed latency reduction is based
on exploiting benefits of the FPGA-based coprocessor and
designing an efficient architecture for on-line processing of
incoming data from the camera sensor. The architecture
also exploits advances of the processor centric System-on-
Chip design to combine benefits of CPU and FPGA. While
a complete FPGA-based implementation of the navigation
algorithm [19] would be extremely complicated, time con-
suming, and resource greedy; we rather focused on individual
parts of the algorithm and derive which of them are suitable
for the FPGA acceleration.

The feature detection and feature description are two fun-
damental phases of the image processing pipeline regarding
the abilities of the FPGA. The detection is a more suitable
for the FPGA because it can benefit from the true parallelism
and it is usually calculated from a smaller area of the image
than the descriptor. In addition, all points in the image need
to be checked for the presence of interest point, while only
few of them are recognized as features that are selected for
the feature description. Therefore, it is beneficial to perform
a feature description after a feature point is detected.

The developed processor-centric architecture consists of
the FPGA feature detection, while at the same time, the
embedded processor of the architecture is used for the feature
description and further processing. The proposed architecture
forms a pipeline visualized in Fig. 5 that consists of the
following blocks: camera sync, preprocessor, response func-
tion calculation core, non-maxima suppression core, detector
interface, memory buffering core, and processor subsystem.
Particular blocks are detailed in the following paragraphs.

Camera
Camera

sync Preprocessor

Feature detector

Linebuffer
Response function

calculation Linebuffer
Non-maxima
suppression

Memory
buffer

Processor subsystem

Memory
controller

External
memory

Detector
interface

Processor
+BRAM,GPIO,...

Fig. 5. Proposed FPGA-based image processing architecture for vision-based navigation

The camera sensor is directly connected to the Camera
sync core in the FPGA fabric. The core takes the visual
data on its input and provides the video stream. While the
input interface of the core is a platform and implementation
dependent, the output interface shall implement the following
signals to achieve reusability of the other pipeline blocks for
different FPGA fabric:
pixel clk Master clock, signals are valid on the clock rising edge.
pixel data Parallel pixel data output.
pixel blank Binary signal – high indicates blanking image area.
x cnt, y cnt X and Y coordinates of right outputted pixel.
h sync Binary signal – horizontal synchronization pulse.

The proper function of the Camera sync core is essential
for the correct function of the feature detection pipeline. The
pixel clk needs to be continuous and each line of data
defined by the h sync signal needs to have precisely the
same number of pixels as other lines of the current image.
This greatly reduces the complexity of the following cores.

The Preprocessor core is responsible for performing low-
level pixel-wise image processing like a color conversion,
histogram equalization or rectification. It produces a stream
of visual data as the Camera sync; thus, it can be easily
replaced by another core or just omitted. Then, the visual
data split among the feature detection pipeline and memory
transmission for a later feature description.

The true parallelism of the FPGA is utilized for calculation
of the feature detector responses. The architecture is best
suitable for feature detectors relying on the convolution,
like [22], [19], or pixel-wise comparisons, like [14], [23],
which need an image window of the size n. The feature
detector works as follows.

First of all, n − 1 lines of the visual data are buffered
into the FPGA embedded memory resources as the first-in
first-out (FIFO) dual-port single-clock memories with the
write enable and read enable signals. The FIFOs
inputs and outputs are chained; so, the k-th FIFOs output
is connected to the k + 1-th FIFOs input. The same applies
for the write enable and read enable signals which
are controlled by a simple state machine triggered by the
h sync signal. When the h sync goes high, the read from
the k-th FIFO and write to the k + 1-th FIFO is enabled.
Aggregated outputs of all FIFOs and the input pixel provide
a simultaneous access to n vertically aligned pixels which
form the input to the Response function calculation core.

There are two principal ways of calculation of the feature
response function. Either the data from Linebuffer core are
buffered to shift registers to provide a simultaneous access to

the n× n window, or a separable convolution-like structure
can be utilized. It is up to the programmer to choose a suit-
able implementation for the given purpose, e.g., for smaller
windows, direct buffering is easier than for larger windows,
for which the FPGA fabric utilization would be extremely
high. It is also beneficial to use pipelining for the feature
response function calculation, which means a decomposition
of complex mathematical operations into individual substeps
calculated in individual ticks of the pixel clk.

For non-maxima suppression of feature responses, three
lines of values are buffered according to the same scheme
described above. The Non-maxima suppression core then
buffers 3×3 values in the shift registers and compares the
central value with the user defined threshold and its eight-
neighbourhood for the detection of the local maxima. The
detected features are then handed to the processor subsystem
through the Detector interface core.

The Detector interface core recalculates the feature co-
ordinates by subtracting the induced x and y pixel latencies
from the current x cnt and y cnt coordinates since the
latency induced by the processing pipeline is deterministic,
and stores the features until the CPU fetched them for the
further processing. The core acts as a memory-mapped slave
device and the CPU can either read the content of the core
in a busy loop waiting for a new feature, or more efficiently
generate an interrupt signal when a feature is detected.

The inner memory resources of the FPGA are limited
to store a particular part of the image necessary for the
feature description. Therefore, the Memory buffer is utilized
to share visual data with the Processor subsystem that
computes a feature descriptor whenever a new feature is
detected. Then, the feature descriptor is immediately matched
with the pre-learned map stored in the memory to efficiently
use resources of the embedded CPU. After that, the feature
together with its descriptor and matching results are fetched
to the following part of the navigation algorithm, which
directly produces the control command.

VI. EVALUATION

The proposed FPGA-based architecture for the vision-
based navigation algorithm [6] has been experimentally com-
pared with its pure CPU-based counterpart. The evaluation
consists of the focused examination of the individual parts of
the processing pipeline, see Fig. 2. The individual measured
latencies follow (1) and the image feature extraction consists
of the FAST [14] feature detector (FAST12) and BRIEF [15]
feature descriptor. In particular, the 256bit long version of the

Fig. 6. A view to the environments where images have been captured
during the evaluation: outdoor (left) and indoor (right).

BRIEF feature descriptor (BRIEF-32) has been used in the
evaluation. The following platforms have been considered
for the comparison of the overall processing latency:
Core i7 – Lenovo Thinkpad E431 notebook with 2.2 GHz

Intel Core i7 quad-core processor, 8GB RAM.
Core i5 – Samsung Q430-11 notebook with 1.7 GHz Intel

Core i5 quad-core processor, 4GB RAM.
ARM – Odroid U3 embedded computer with 1.7 GHz

ARM Cortex A9 quad-core microprocessor (Samsung
Exynos4412) and 2GB RAM.

FPGA-SPS (soft-processor system) – A low-cost develop-
ment board DE0-nano with the Altera Cyclone IV
EP4CE22 FPGA utilizing the bare-metal programmed
single-core NIOS IIe softcore processor clocked at
150 MHz.

FPGA-HPS (hard-processor system) – DE0-nano-SoC
development board with the Altera Cyclone V SE
5CSEMA4U23 FPGA utilizing dual-core 925 MHz
hard processor ARM Cortex-A9 running Yocto linux.

All the CPU-based implementations were run on Linux
Ubuntu 12.04 with the Robot Operating System (ROS)
Indigo and FAST and BRIEF-32 implementations from the
Open Computer Vision library [18] (OpenCV 2.4.9). In the
case of FPGAs, the embedded CPU has been utilized for
computing the BRIEF32 descriptors, feature matching and
histogram voting.

The Logitech HD Pro Webcam C920 has been used
with the CPU-based implementations, whereas the Aptina
MT9V034 camera sensor has been directly connected to the
FPGA fabric. Both the sensors have been set to the same
resolution 640×480 and 60 fps.

Two scenes considered in the evaluation are shown in
Fig. 6. The number of detected features has been fixed to
200 features per image and the map used for the matching
contains 200 pre-learned features.

It has to be noted that all the implementations provided
similar results, since the proposed FPGA architecture only
accelerates some of the most demanding computations in
the FPGA fabric and it does not induce modifications to the
original algorithm.

The evaluation results are summarized in Table I and
visualized in Fig. 7, where the image acquisition time Tacq

for the CPU-based platforms was measured using hardware
triggered clocks as follows. One probe of the trigger has been
connected directly to the camera sensor and the second probe

latency [ms]
0 10 20 30 40 50 60

FPGA-HPS

FPGA-SPS

ARM

Core i5

Core i7

Latency in CPU-based and FPGA-based systems

T
acq

T
det

T
desc

T
match

T
vote

T
sys

T
fpga

Fig. 7. Evaluation of latencies in CPU and FPGA-based systems

to the io pin of the CPU-based system triggered by software.
The measured Tacq is about 17.3 ms in average with the
peak values of 16.9 ms and 22.1 ms as the lower and upper
bounds, respectively. In other cases, all the reported times
are average values from approx. 2000 algorithm iterations.

Notice, the results for the FPGA show aggregated latency
measured for both the feature description and matching,
because these two computations are made directly in a
sequence before the next feature is fetched for processing
on the embedded CPU of the FPGA platform.

A. Discussion

The evaluation results clearly demonstrate a computational
efficiency of the FPGA. Although processing of CPU-based
implementations is competitive or even faster than for the
FPGA-based implementations, the FPGA outperforms the
pure CPU-based solution in the latency and power consump-
tion.

Regarding the FPGA, all the computations of the pro-
cessing pipeline are distributed between the FPGA fabric,
which performs the FAST feature detection, and the feature
description, matching and histogram voting carried out by
the embedded CPU. When using a more powerful FPGA
equipped with the hard-processor system it is possible to
finish all the calculation during a single image readout,
which, in conclusion, implies the lowest possible latency.

It is also worth mentioning that the proposed feature
detection pipeline can process up to 200 Megapixels of
image data per second, which roughly corresponds to the
1920×1080 image at 60 fps, because the processing speed
depends only on the rate of the pixel clk with which the
image data are fetched from the camera sensor. The whole
navigation pipeline is; however, in such a case limited by the
computational power of the embedded CPU.

The FAST feature detection and BRIEF description are
one of the least computationally demanding image feature
extraction techniques, the benefits of the usage of the FPGA
architecture are therefore not clearly visible. However, from
the experimental verification of the feature detection pipeline,
it is clear that the proposed architecture has a great potential
in accelerating computer vision algorithms for a real-time
performance.

In order to support this claim, we evaluated the same
design with the SURF feature detector [19] for which the
developed FPGA on-line architecture have been verified
in simulations but not yet deployed on a real hardware.

TABLE I
LATENCY EVALUATION RESULTS OF CPU-BASED AND FPGA IMPLEMENTATIONS.

Platform Core i7 Core i5 ARM FPGA-SPS FPGA-HPS

CPU Clock 2.2 GHz 1.7 GHz 1.7 GHz 150 MHz 925 MHz
FPGA usage - - - 26% / 22320‡ 22% / 40000‡

Latencies
Image acquisition Tacq 17.30 ms 17.30 ms 17.30 ms - -
Feature detection Tdet 0.58 ms 0.34 ms 3.48 ms - -

Feature description Tdesc 1.89 ms 1.33 ms 6.64 ms
24.13 ms∗ 14.33 ms∗

Feature matching Tmatch 4.58 ms 9.62 ms 13.30 ms

Histogram voting Tvote 0.12 ms 0.18 ms 0.41 ms 0.31 ms 0.16 ms
System latencies Tsys 5.63 ms 14.60 ms 12.10 ms - 2.00 ms

Overall latency T 30.10 ms 43.40 ms 53.20 ms 24.44 ms 16.49 ms
Processing speed T − Tacq 12.80 ms 26.10 ms 35.90 ms - -

Power consumption 13.16 W 19.66 W 8.13 W 1.82 W 5.60 W
Estimated cost ∼1600 $ ∼1000 $ 79 $ 79 $ 99 $
∗ Total time for Tdesc + Tmatch.
‡ Number of available logic elements.

For SURF as the detector, the feature detection on the
Core i7 takes 130.96 ms and on the ARM platform it takes
280.92 ms, while the same algorithm should exhibit an on-
line performance on the FPGA with the same maximum
throughput of 200 Megapixels per second.

VII. CONCLUSION

In this paper, we propose a processor-centric FPGA-
based architecture for a latency reduction in the vision-based
robotic navigation. The architecture has been experimentally
verified with a particular navigation algorithm; however,
its versatility and simplicity makes it well suitable for
a deployment in other visual navigation tasks relying on
detection and tracking of image salient points. The presented
experimental results demonstrate advantages of the proposed
FPGA-based solution over pure CPU-based implementations
in both considered performance indicators: 1) the overall
latency; and 2) the overall power consumption, which makes
proposed solution especially beneficial for computationally
constrained robotic platforms.

REFERENCES

[1] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP
Multiple Micro-UAV Testbed,” Robotics Automation Magazine, IEEE,
vol. 17, no. 3, pp. 56–65, 2010.

[2] F. Arvin, J. Murray, C. Zhang, S. Yue et al., “Colias: an autonomous
micro robot for swarm robotic applications,” International Journal of
Advanced Robotic Systems, vol. 11, no. 113, pp. 1–10, 2014.

[3] D. Belter, P. Skrzypczyński, K. Walas, and D. Wlodkowic, “Affordable
Multi-legged Robots for Research and STEM Education: A Case Study
of Design and Technological Aspects,” in Progress in Automation,
Robotics and Measuring Techniques, ser. Advances in Intelligent
Systems and Computing, 2015, vol. 351, pp. 23–34.

[4] C. G. Kim, J. G. Kim, and D. H. Lee, “Optimizing image processing
on multi-core CPUs with Intel parallel programming technologies,”
Multimedia Tools and Applications, vol. 68, no. 2, pp. 237–251, 2014.

[5] A. Asaduzzaman, A. Martinez, and A. Sepehri, “A time-efficient image
processing algorithm for multicore/manycore parallel computing,” in
SoutheastCon. IEEE, 2015, pp. 1–5.

[6] T. Krajnı́k, J. Faigl, M. Vonásek, V. Kulich, K. Košnar, and
L. Přeučil, “Simple yet Stable Bearing-only Navigation,” Journal of
Field Robotics, vol. 27, no. 5, pp. 511–533, 2010.

[7] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “PIXHAWK:
A system for autonomous flight using onboard computer vision,” in
ICRA, 2011, pp. 2992–2997.

[8] L. Meier, P. Tanskanen, L. Heng, G. Lee, F. Fraundorfer, and M. Polle-
feys, “PIXHAWK: A micro aerial vehicle design for autonomous flight
using onboard computer vision,” Autonomous Robots, vol. 33, no. 1-2,
pp. 21–39, 2012.

[9] D. Honegger, H. Oleynikova, and M. Pollefeys, “Real-time and Low
Latency Embedded Computer Vision Hardware Based on a Combina-
tion of FPGA and Mobile CPU,” in IROS, 2014.

[10] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive Avoidance
Using Embedded Stereo Vision for MAV Flight,” in ICRA, 2015, pp.
50–56.

[11] P. Gohl, D. Honegger, S. Omari, M. Achtelik, M. Pollefeys, and
R. Siegwart, “Omnidirectional Visual Obstacle Detection using Em-
bedded FPGA,” in IROS, 2015.

[12] R. Konomura and K. Hori, “Visual 3D self localization with 8 gram
circuit board for very compact and fully autonomous unmanned aerial
vehicles,” in ICRA, 2014, pp. 5215–5220.

[13] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small
AR Workspaces,” in Proceedings of 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, 2005, pp. 225–234.

[14] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in ECCV, 2006, pp. 430–443.

[15] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: binary robust
independent elementary features,” in ECCV, 2010, pp. 778–792.

[16] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. Furgale,
and R. Siegwart, “A synchronized visual-inertial sensor system with
FPGA pre-processing for accurate real-time SLAM,” in ICRA, 2014,
pp. 431–437.

[17] G. Zhou, J. Ye, W. Ren, T. Wang, and Z. Li, “On-board inertial-
assisted visual odometer on an embedded system,” in ICRA, 2014, pp.
2602–2608.

[18] Bradski, G. and Kaebler, A., Computer vision with the OpenCV
library. O’Reilly Media, 2008.

[19] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[20] T. Krajnı́k, J. Šváb, S. Pedre, P. Čı́žek, and L. Přeučil, “FPGA-
based module for SURF extraction,” Machine vision and applications,
vol. 25, no. 3, pp. 787–800, 2014.

[21] T. Krajnik, P. Cristoforis, M. Nitsche, K. Kusumam, and T. Duckett,
“Image features and seasons revisited,” in European Conference on
Mobile Robots (ECMR), 2015, pp. 1–7.

[22] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,”
in Proceedings of the Alvey Vision Conference. Alvey Vision Club,
1988, pp. 23.1–23.6.

[23] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An
efficient alternative to SIFT or SURF,” in ICCV, 2011, pp. 2564–2571.

