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Abstract— In this paper, we consider existing asymptotically
optimal inspection planning algorithm in coverage path plan-
ning with realistic visibility constraints of standard cameras.
Although the existing approach is able to provide an optimal
solution with omnidirectional sensing and limited sensing range,
it is prohibitively computationally expensive for problems with
only few objects to be covered and limited field of view. Based on
the analysis of the utilized sampling-based strategy, we propose
a heuristic approach to decrease computational requirements
in problems with restricted viewing frustum, which is a more
realistic model of a digital camera. In addition, we also consider
a minimal distance and angle under which the object to be
covered is captured by the forward looking camera to make a
snapshot of the object with the required details.

I. INTRODUCTION

In mobile robotics, the inspection path planning can be
considered as a problem to determine a cost efficient path
along which a given vehicle covers (sees) all requested
objects of interest with its sensor system while considering
motion and sensing constraints of the vehicle. This problem
can also be found as the coverage path planning (CPP)
problem [1] in the literature. Strictly speaking, the CPP
differs from the inspection planning in the way how the
environment or objects of interest are covered. In the CPP, it
is usually requested to visit each point of the environment by
a tool to perform some task, e.g., clean a floor [2], while the
inspection planning, mostly range measurements taken by
cameras, sonars and laser scanners are considered. However,
both terms can represent the same class of problems.

Two fundamental approaches have been proposed for
inspection path planning. The first type of approaches are
decoupled methods in which the problem is decomposed
into two parts solved independently: the sensor placement
followed by motion planning [3]. Thus, particular sensing
locations to cover the objects of interest are determined
prior finding a cost efficient path connecting the locations.
In this way, a minimal number of locations can be found by
algorithms for solving the art gallery problem with sensing
constraints arising from robotic applications, e.g., limited
field of view or incident angle of the laser beam with the
surface of the scanned object [4]. Then, a cost efficient path is
determined using motion planning technique or the problem
is treated as the multi-goal path planning problem [5], which
leads to the traveling salesman problem (TSP) [6].
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Fig. 1. An example of found inspection path for a nonholonomic system to
inspect the object of interest (red parts of the obstacles with the size 5 cm)
under visibility constraints to have the object of interest captured with at
least 10 pixels in the image.

Although, the decoupled approach provides a feasible
solution of problems with a high number of potential sensing
locations, e.g., in coverage and surveillance missions [7], [8],
its main drawback is that sensing locations are determined
independently on the path and motion constraints of the
inspection vehicle. Thus, it may happen that the cost of a
particular path to connect two locations would be very high
or would not be feasible at all. Therefore, a direct approach
is a more suitable for non-holonomic robots.

A pure geometrical variant of the direct inspection plan-
ning can be formulated as the watchman route problem
(WRP) which stands to determine a shortest path from which
all points of the environment are covered. The WRP is known
to be NP-hard for the polygonal map with obstacles [9], and
therefore, approximate and heuristic algorithms have been
proposed [10], [11]. However, found solutions are formed
only from straight line segments and thus, these methods are
not suitable for non-holonomic vehicles.

Authors of [12] proposed randomized sampling-based mo-
tion planning to directly provide an inspection path in con-
figuration space of the vehicle with differential constraints.
Moreover, the authors exploit the property of the asymp-
totic optimality of the Rapidly-exploring Random Graph
(RRG) [13] algorithm and propose asymptotically optimal
Random Inspection Tree Algorithm (RITA) for inspection
planning with differential constraints. The authors reported
results for relatively simple problems with an omnidirectional
sensor with limited range for which solutions close to optimal
are found in tens of minutes and up to two hours.

In this paper, we consider RITA in inspection path plan-
ning with sensing constraints of the forward looking camera
with limited sensing range and field of view. Moreover, we
consider the minimal distance and angle under which the
object of interest is captured with sufficient details in the



image. Due to these sensing constraints, the area of v in
the (k, v)-inspectionProblem (see [12]) is smaller than for
an omnidirectional sensing. Thus, the problem may be a
more difficult to solve by randomized sampling-based ap-
proaches and finding a solution can be more computationally
demanding than the problem with omnidirectional sensing
considered by the original RITA [12]. Therefore, we propose
heuristics for improving the success rate to find a solution
within a given runtime limit. In addition, we experimentally
verified that found paths are feasible for a real mobile robot.
The considered contributions of the paper are as follows:
• Deployment of RITA in problems with realistic sensing

constraints of the forward looking camera;
• Improved performance of the roadmap expansion;
• Evaluation of RITA and the proposed modifications in

visual inspection problems;
• Practical verification of the planned path with a real

mobile robot in an open loop control.
The paper is organized as follows. The problem is formally

defined in Section II together with a brief overview of the
original RITA [12] to make this paper a more self-contained.
A camera model and the proposed model of the sensing
constraints are presented in Section III and the proposed
RITA modifications are in Section IV. Evaluation results
and experimental validation with a real robot are reported in
Section V. Concluding remarks are dedicated to Section VI.

II. PROBLEM STATEMENT

The proposed approach is directly based on the original
RITA [12], and therefore, we can consider the identical prob-
lem formulation. However, a 2D workspace is considered for
simplicity and better readability, albeit the proposed sampling
strategy is valid in 3D problems as for RITA.

The robot workspace W ⊂ R2 is represented as a set of
polygonal obstacles inside a simple boundary polygon. It is
assumed that models of the environment and robot are known
and they define the robot configuration space C. The robot
motion constraints can be described by q̇ = g(q, u), where
q ∈ C and u is the control input from a set of possible
inputs u ∈ U . The function g is a smooth function and for
simplicity we consider a car-like robot with q = (x, y, θ),
where x and y stand for a position of the robot in the world
and θ is its orientation, and the control u = (vf , ϕs) consists
of the forward velocity vf and the steering angle ϕs.

A rigid body of the robot A is defined in W and the
obstacle space Cobstacle ⊂ C is a set of all configurations
q for which the robot body A(q) at the configuration q is
in a collision with obstacles O, i.e., Cobstacles = {q|q ∈
C and A(q)∩O 6= ∅}. Then, the collision free part of C can
be defined as Cfree = C \ Cobstacles.

A continuous function σ : [0, 1] → R2 of the bounded
variation TV (σ) < ∞ is called a path, where TV (σ)
is the total variation TV (σ) = sup{0=τ0<τ1...<τn=s} =∑n
i=1 |σ(τi)−σ(τi−1)| [13]. In particular, we are interested

in a collision-free path, i.e., σ(τ) ⊂ Cfree for τ ∈ [0, 1].
Regarding the motion constraints, a trajectory γ can be

defined as the time-parametrized path induced by the control

function u : [0, T ] → U for the motion model q̇ = g(q, u).
Having a feasible control input u, a feasible trajectory can
be defined as γ : [0, T ]→ Cfree with respect to u.

Each particular object of interest Ii to be covered is
defined by a straight line segment of the length di and its
normal pointed at the half-plane from which it is requested
to see the object. Then, a set of all points of the object Ii to
be covered is denoted as S(Ii). We assume the value of di
is such that there always exists a non-empty set of configu-
rations A(S(Ii)) ⊆ Cfree from which Ii can be completely
covered from some configuration q, q ∈ A(S(Ii)).

In addition to feasibility of the path, we also request
that all objects of interest I = {I1, . . . , In} are visible
(inspected) from the trajectory according to the sensing
constraints. We denote the set of all points of the object
Ii that are inspected from q with respect to the sensing
constraints as VIi(q), detailed in Section III. For simplicity,
we assume that the whole object Ii can be covered from a
single configuration q and thus, the object Ii is covered from
a feasible trajectory γ if there exist at least one configuration
qx of the trajectory qx ∈ γ such that S(Ii) ⊆ VIi(qx),
i.e., there exists a time τx for which qx = γ(τx) and the
robot covers Ii from qx using its sensor system. We call a
feasible trajectory γ as an admissible trajectory if all objects
of interest are covered:

⋃n
i=1 S(Ii) ⊆

⋃T
τ=0 V (γ(τ)).

Based on the presented preliminaries, we can define the
inspection path planning problem. Having an initial configu-
ration qinit we aim to find the shortest trajectory γ∗ such that
the trajectory γ∗ is a collision-free, feasible, and admissible.
Let the length of a trajectory γ be L(γ), then we aim to
determine γ∗ = argminγ∈Γ L(γ), where Γ is a set of all
possible admissible trajectories. In particular, we aim to find
the control function u∗(t) that induces γ∗ [12].

A. Overview of RITA

The proposed approach is directly based on RITA that
has been introduced in [12], and therefore, only a brief
overview is presented here. RITA is schematically depicted
in Algorithm 1 and it works as follows. The algorithm starts
from some initial configuration qinit and iteratively expands
the roadmap represented as the graph (tree) G = (V,E),
where each node v ∈ V represents a particular configuration
of Cfree and each edge e ∈ E represents a feasible trajectory
between two configurations with the associated control u ∈
U . The roadmap is expanded by the ExpandTree procedure.
In original RITA, the procedure expands the tree from a
configuration that is randomly selected according to the
probability that is proportional to the inverse number of the
nodes within its neighbourhood:

1) Determine the number of nodes in the neighbourhood:
Dn(q),∀q ∈ V ;

2) Determine the probability to chose a node q:
Pn(q) ∝ 1/Dn(q),∀q ∈ V. (1)

After the node selection, a random control input u ∈ U
is applied and the procedure returns a new configuration qn,
its parent configuration qp, and a trajectory σ(qn, qp) for the
applied u. If σ(qn, qp) is collision free and qn improves the



Algorithm 1: RITA
Input: qinit – an initial configuration of the robot
Input: imax – the maximal number of iterations
Output: G = (V ,E) – the motion planning roadmap
Output: qbest – the best found solution
begin

Initialization: G← {V ← ∅,E ← ∅};
V ← qinit; bestCost←∞; qbest ← ∅; i← 0;
while i < imax do
〈qn, qp, σ(qn, qp), u〉 ← ExpandTree(G);
if isCollisionFree(σ(qn, qp)) then

cost← Cost(qp) + Cost(σ(qn, qp));
if cost < bestCost then

V ← V ∪ qn; E ← E ∪ (qp, qn)
vis← V isibility(qn) ∪ qp.vis
if qn.unseen = ∅ then

bestCost← cost
qbest ← qn

i← i+ 1

cost of the current solution, qn is added to the roadmap. In
addition, if a trajectory from qn provides a new admissible
solution with a lower cost, qn becomes qbest, from which the
final trajectory is determined using its parents.

III. CAMERA MODEL AND SENSING CONSTRAINTS

The studied problem is motivated by inspection missions
with a single forward looking camera utilized for capturing
images of objects of interest. From a pinhole camera model,
we can establish relation of the object height y and its
distance to the camera as d = (yd′)/y′, see Fig. 2. However,
an effective distance depends on the pixel resolution, sensor
size, and also on the size of the object to be covered.

Fig. 2. Pinhole camera model

Let the desired number of pixels the object has to occupy
in the image be Npix, then the maximal effective distance
dmax can be derived as

dmax =
d′ · y

Npix · psize
, (2)

where psize is the real size of the pixel. Similarly, the
minimal effective distance to capture the whole object of
the size y can be derived as:

dmin =
y

tan(α/2)
, (3)

where α/2 is the required field of view to capture the object
of size y that is centered to the optical axis. α depends on
the camera lens and for the focal length f and the size of
the object in the image sensor y′, it can be established as

α = 2 arctan

(
y′

2f

)
. (4)

In the rest of this paper, we consider 78.6◦ field of view and
the maximal view distance 2 m.

A. Sensing Constraints

A geometrical model of the part of Cfree from which
an object of interest can be covered is desirable for a
quick evaluation of the sensing constraints satisfaction during
inspection planning. However, its exact geometrical shape
is too complex to be used, because the robot yaw and its
distance to the object have to be considered.
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Fig. 3. Geometric relation of the camera coverage area (green and red)
and the area from which the object Ii (defined as the segment a–b) can
be covered (blue). Examples of the object (a–b segment) observability for
which the angle sensing constraints between the camera axis and object to
be covered: (b) are satisfied; (c) are not satisfied. The red outline of the
camera coverage area does not satisfy the angle constraint and the segment
a–b is not covered from that position.

Based on [14], we propose approximation of the area from
which an object of interest Ii ∈ I can be covered. The
geometric definition of the area is depicted in Fig. 3a. The
object Ii is represented as the straight line segment a–b with
the accompanied normal vector n. The area from which Ii
can be covered is defined by two circles ca and cb centered at
a and b, respectively, with the radius dmax. The intersection
point p of ca and cb (at the side of n) together with ae and be
form approximation of the geometrical shape of the covering
area, see the blue outline in Fig. 3a.

Although the proposed geometrical primitive is not a
precise shape of the area containing all configurations from
which Ii can be covered, it allows a fast evaluation to quickly
discard not promising configurations. Notice, regarding the
angle constraints to have sufficient details of the object in
the image, a configuration inside the area must be further
evaluated for the current robot yaw and distance to Ii.

B. Object Observability Test

The object Ii is considered to be covered if its snapshot in
the image provides sufficient details. The introduced geomet-
ric shape provides the first initial evaluation if a configuration
q can provide sufficient coverage of Ii. Then, additional tests
are incrementally performed to further evaluate coverage of
the object. The evaluation of the coverage of Ii can be
summarized as follows:
1) The initial test directly uses the geometric shape of the
camera coverage area, see Fig. 3a. This test is fast and it
filters a majority of false positive covering attempts.
2) The visibility distance constraint consists of dmax and
dmin, which is easy to check using Euclidean distance of
the camera position and the object end points a and b.



3) The orientation of the object to the camera has to provide
sufficient details of the captured object. An evaluation of this
constraint needs to consider the incident angle and thus, it
depends on the camera orientation and its distance to the
object. A situation with and without satisfied incident angle
is depicted in Fig. 3b and Fig. 3c, respectively.
4) The above tests do not cover the case when an obstacle
is in the field of view, which is the most computational
expensive test. However, the object of interest is considered
as a segment and its end points together with the camera
position form a triangle. Hence, the same collision detection
mechanism as in RITA can be utilized, e.g., using RAPID
library [15].

IV. IMPROVING RITA PERFORMANCE

Although the proposed sensing constraints can be directly
applied to the original RITA [12], the angle constraint
together with the restricted field of view significantly reduce
the number of admissible trajectories, e.g., see Fig. 4. More-

Fig. 4. An example of the object attached at the obstacle (red segment
at the yellow obstacle) with many feasible trajectories (in green, red, and
blue) while only two trajectories are admissible (in green). Notice, the upper
green trajectory is admissible only for a direction from right to left.

over, we found out that the most time consuming operation
of the original RITA is the tree expansion. In particular, the
determination of the probability to select the node for an
expansion (1), which consists of neighbor search and update
of the individual node probability to be selected.

(a) k=2 000 (b) k=50 000

Fig. 5. Example of roadmap evolution after k expansion steps of RITA

The computation of pselect is computationally demanding
because basically each node of the roadmap G = (V,E)
carries the information about its probability pselect. There-
fore, we have investigated how the roadmap and probabili-
ties evolve during the roadmap construction. We found out
that after 50 000 iterations almost all space is covered by
samples and we can suppose that differences in particular

probabilities pselect of the individual nodes are decreasing
with the increasing number of iterations, see Fig. 5. Hence,
we considered the maximal squared error ε2 of the individual
probabilities from the mean value of the actual probabilities
pselect of all nodes in the roadmap. An evolution of ε2 during
the roadmap construction is shown in Fig. 6.
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Fig. 6. An evolution of ε2 during the roadmap construction

The evolution indicates that the individual values of pselect
become similar and thus, it may not be necessary to com-
pute individual probabilities after each successful roadmap
expansion. Therefore, we propose a modified variant of RITA
with Constant Selection Probability called RITACSP in which
we compute ε2 at each predefined iteration, e.g., after each
5 000 iterations, and once its value converges to a constant
value, the probability pselect is considered as constant, i.e.,
the uniform distribution, for the rest of the expansions.

A. Prioritization of Covering Configurations

The proposed constant value of pselect does not need a
computationally intensive determination of the probability
values. However, it does not provide any mechanism to prefer
nodes from which the next expansions can cover further
objects. This motivated us to bias individual probabilities
to prefer selection of nodes covering the objects as

p̃pri = pselect(Covered(vi) + 1)2, (5)

where pselect is the value determined in RITACSP and
Covered(vi) is the number of objects covered along the
path from the root to the node vi. After the prioritization,
the probabilities are normalized, i.e., particular “slices” of
the roulette wheel used for the node selection are adjusted
appropriately. We call this modification as RITApri.

V. RESULTS

Performance of RITA and the proposed modifications has
been evaluated for a forward looking camera attached to
a vehicle with the minimal turning radius 0.5 m moving
with the constant (unit) forward velocity. Two 12×11 meters
large environments called squares and rectangles have been
considered with different numbers of objects I, see Fig. 7.

Each object is 5 cm long and it is requested it occupies
at least 10 pixels in the captured image. The objects labels
indicate which objects have to be covered in a particular
scenario, e.g., for the squares environment and 5 objects of
interest, the objects 1. to 5. are requested to be covered.



(a) environment squares (b) environment rectangles

Fig. 7. Environments with the objects of interest. Blue point represents
the initial robot configuration with the yaw equals to 90◦.

The main performance indicator is the success rate com-
puted as the ratio of the number of trials in which an
admissible solution has been found to the total number of the
performed trials for a particular scenario and the considered
value of imax. The reported computational time has been
obtained for a single core C++ implementation and Intel
Xeon X5660 running at 2.8 GHz with 48 GB RAM.
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Fig. 8. Success rate of finding an admissible path by RITA according to:
(a) the length of the time step; and (b) the number of objects of interest.

Prior a comparison of the original RITA and the proposed
modifications, we determine the most suitable time step for
the roadmap expansions, because it is a crucial parameter of
the sampling-based motion planning methods. In general, a
lower value causes the generated tree expands in more vari-
ous ways, but the expansion is slower than for higher values
which provide faster expansion but finding a path through
narrow passages can be more demanding. The environment
squares with 2–6 objects has been used with the time step
from the set {5, 7, 10, 12, 15, 20}, which gives 40 different
scenarios. For each scenario, 5 trials have been evaluated
with the maximal number of iterations set to imax=106. The
overall success rate for increasing time step is depicted in
Fig. 8a from which we selected the time step 15 to support
a high success rate of the original RITA approach. Besides,
the influence of increasing number of objects to be covered
to the success rate is depicted in Fig. 8b.

A. Performance Improvements

The computational time depends on the number of nodes
in the roadmap which increases with the number of per-
formed iterations. Therefore, the CPU time at the particular
iteration has been recorded for the squares map with 6
objects and all three variants of RITA, see Fig. 9. Based
on these results, RITACSP provides superior performance.
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Fig. 9. Required CPU time according to the number of performed
iterations for the original RITA and the proposed RITACSP and RITApri

modifications in the squares map and 6 objects of interest

RITApri is more demanding because of probability updates
(5), but it is still less demanding than original RITA.

Although the proposed modifications decrease the compu-
tational burden and thus they may generate a denser roadmap
within the same computational time as original RITA, the
most important aspect of the inspection planning is the ability
to find an admissible solution.

TABLE I
SUCCESS RATE – squares SCENARIOS

Number of objects Original RITA RITACSP
of interest Success rate [%] Success rate [%]

4 100% 100%
5 20% 80%
6 0% 0%

Results depicted in Fig. 8b indicate that the original
RITA needs a high number of iterations to find an ad-
missible inspection path for limited sensing capability of
the robot. Therefore, the maximal number of iterations has
been increased to imax=107 for the squares environment and
different number of objects of interest. The success rate from
10 trials is depicted in Table I, where RITACSP provides
better performance than original RITA. For 5 objects, RITA
needs about 3 hours to find an admissible solution after
approximately 2·106 iterations. Both approaches need almost
the same number of iterations to find a solution; however,
the proposed RITACSP is much faster. Examples of found
admissible inspection paths are in Fig. 10.

(a) k=73 137 (b) k=1 055 823 (c) k=1 634 645

Fig. 10. Example of the inspection path after k expansions in the rectangles
environment with three objects of interest and the proposed RITACSP
modification

Due to a poor performance of the original RITA, the



rectangles environment has been considered only with the
proposed modifications. The average number of the roadmap
nodes, the average length of the final found solution (denoted
as L), and the average required computational time (denoted
as TCPU) from 10 trials for 3 and 4 objects of interest are
listed in Table II. Notice, for RITACSP, the maximal number
of iterations has been set to 2·107; otherwise a solution for 4
objects is not found by RITACSP albeit solutions for 3 objects
of interest are found with a high success rate for imax=2·106.
For the greedy expansion of RITApri, it is sufficient to set
imax to 106 to find an admissible solution.

TABLE II
PERFORMANCE OF RITACSP AND RITAPRI IN rectangles SCENARIOS

Method Objects Success Number L [m]
TCPU

Rate [%] of Nodes [s]

RITACSP 3 100% 7 517 782 20.8 274
RITACSP 4 20% 11 114 477 30.2 326

RITApri 4 100% 220 525 29.0 944

The preference of covering nodes in RITApri provides
a roadmap with a significantly less number of nodes. A
higher computational time of RITApri indicates that many
expansions are not successful. On the other hand, RITACSP
has a lower success rate despite of a denser roadmap. The
proposed greedy preference of the roadmap nodes from
which objects are covered steers the expansions towards
coverage of the further objects and thus, RITApri is able to
provide admissible solutions in spare roadmaps. Although it
may result in stucking in a local minima without finding a
solution, the presented results (for the considered scenario)
indicate that the performance of RITA can be improved by
a more sophisticated pselect.

B. Use case – Experiment with a Real Robot
The proposed RITACSP has been also verified in real

deployment to further validate that found trajectories are
directly executable by a mobile robot. Because at the time of
writting this paper, a real car-like robot has not been available
for experimenting, we considered a hexapod walking robot
that has been restricted to the car-like kinematics using
a limited set of motion primitives [16]. Thus, the robot
was able to move only forward with a particular turning
radius according to the steering angle as a car-like vehicle.
Snapshots of the robot performing the planned inspection
path are depicted in Fig. 11.

VI. CONCLUSION

Asymptotically optimal inspection planning algorithm
called RITA has been investigated in problems with more
realistic sensing constraints of the forward looking camera.
Although RITA is a general approach to solve inspection
planning for vehicles with differential motion constraints, its
practical performance is poor because it is too computation-
ally demanding even in problems with few objects of interest.

The proposed modifications decrease the computational
burden while they also improve success rate of finding

Fig. 11. Hexapod walking robot considered with car-like kinematics
performing the planned inspection path in an open loop control. Circular
markers on the body of robot serve for the robot localization.

admissible solution for a limited number of roadmap ex-
pansions. On the other hand, the evaluated problems can be
still considered as relatively small, and therefore, additional
improvements have to be proposed to solve larger problems,
which is a subject of our future work.
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