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Abstract— In this paper, we consider road following to
autonomously navigate a mobile robot through an environment
while keeping the robot on the specified road. Contrary to
existing approaches based on a forward looking camera, we
consider the problem for a technically blind walking robot with-
out any exteroceptive sensors. The only feedback considered is
an estimation of tactile information that is determined from the
robot servo drives. The proposed control law is based on an
on-line classification of the previously learned terrains which is
utilized to identify a situation when a robot starts to crawl off
the desired road terrain. The controller steers the robot to keep
its body and all its legs on the road while crawling forward with
a constant velocity. The experimental results support feasibility
of the proposed minimalistic approach and allows the robot to
autonomously navigate in an outdoor environment and follow
urban park pathways and avoid off-road parts.

Index Terms— terrain classification, crawling robot

I. INTRODUCTION

Road following can be considered as one of the first
desired tasks of mobile robots towards fully autonomous ve-
hicles. First results on this problem can be dated to 1985 [1]
and since that, many approaches have been proposed to keep
the forward moving robot on the road. The problem depends
on a definition of the road, since the road can be of various
types of surface a robot can traverse [2]. For vision-based
techniques, which can be considered as a vast majority of
the existing road following approaches, the road is usually
considered as a surface of different color or texture for which
reactive based approaches [3], adaptive techniques [4], and
on-line learning procedures [5] have been proposed.

Contrary to vision-based techniques, we consider a mini-
malistic approach for a technically blind mobile robot with-
out sensors. The proposed approach is based on the tactile
information provided by the robot actuators themselves. In
particular, we consider a hexapod walking robot, see Fig. 1,
equipped with intelligent servo drives that are able to provide
estimation of the current joint torque, which is the only feed-
back used in the proposed autonomous road following.

Similarly to vision-based techniques with pre–learned ter-
rain classes [6], [7], also the proposed approach relies on the
previously learned classes. In particular, an extension of [8]
to rough terrains [9] enabled by the adaptive motion gait [10]
is considered. On top of this combination, a new reactive-
based controller is designed to steer the robot position to be
on the road surface whenever the robot detects its left or
right legs start to crawl off the specified terrain.
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Fig. 1. Hexapod walking robot during autonomous road following

The combination of the proposed controller with the on-
line terrain classification based on servo drives feedback
only is considered as the main contribution of this paper.
The approach allows the robot to autonomously navigate on
pathways without any exteroceptive sensors. The proposed
system has been experimentally verified in a laboratory envi-
ronment and further validated in real outdoor environments,
where the robot was able to follow pathways in an urban
park without completely leaving the pathway. Even though
the proposed approach will unlikely be used as a standalone
solution, it provides a minimalistic approach that can be
accompanied by additional, e.g., vision-based, techniques to
improve its performance by complementary methods.

The paper is organized as follows. An overview of related
work is provided in the next section. The problem statement
with a brief description of the platform is in Section III. An
overview of the adaptive motion gait and an extension of the
on-line terrain classification for rough terrains are presented
in Section IV. The proposed road following controller is in
Section V. Experimental results are reported in Section VI.
Concluding remarks are in Section VII.

II. RELATED WORK

Although road following is widely studied approach in the
context of autonomous cars, there is not too much work on
road following with a blind robot, especially for multi-leg
crawling robots. Therefore, an overview of the most related
work on the terrain classification focused on proprioceptive
sensing and crawling robots is presented in this section.

In [7], authors discuss various sensor modalities in the
terrain classification and they reported the best performance
is provided by gyros. Besides, they also report that inertial
sensors allow to distinguish a terrain type if the terrain cause



distinct vibrations. Authors of [11] also report that a terrain
classification can be based on the vibrations. In both these
approaches, a wheel mobile robot has been utilized, albeit
vibration measurements are also considered with legged
robots without adaptive gaits [12].

For crawling robots, the important part of road following
(with blind robot) is the ability to traverse different uneven
terrains. Although several approaches for dealing with a
rough terrain have been proposed, e.g., see overview in [13],
the main point of our interest are approaches based on
proprioceptive sensors that do not rely on range measure-
ments provided by the robot exteroreceptors. Here, the key
to provide a stable gait is to detect the leg contact with the
terrain and avoid high torques at the joints.

An on-line force based foothold adaptation has been
utilized in [14] to provide a smooth contact of the leg
with the foothold. Authors of [15] propose to avoid usage
of direct force sensors by additional passive actuators that
are utilized for measuring the ground reaction force. The
authors consider hexapod robot with 18 controllable degrees
of freedom accompanied with passive actuators in each leg.
Then, the motion of each leg is driven by a force threshold-
based position controller with the ground reaction force
estimated from the passive actuator.

In a very similar way, even more minimalistic approach
has been proposed in [10], where instead of additional
sensors or actuators, the robot active actuators are directly
employed in robot motion and the torque for detection of the
leg contact point with the foothold is estimated.

Tactile sensors provide a feedback about the robot inter-
action with the terrain and thus, they have been used for
terrain classification. A single vibrating leg detached from
the robot body with force sensors attached at the leg tip
has been considered with the motor current at the knee joint
in [16]. A 6-DOF torque-force sensor was used in [17] for a
discriminant analysis between six types of terrain. However,
these approaches also utilize additional sensors, which do
not fit with our intention of the minimalistic approach.

A different and minimalistic approach that utilizes only
proprioceptive sensors built within the actuators was pro-
posed in [8]. The authors show that no additional sensors
are needed for successful terrain classification on flat terrains,
which was verified also on rough terrains by authors of [9].

From the reactive control perspective, energy consumption
depends on the terrain being traversed as well as on the gait
being used and can thus be used as a cue for changing control
strategy (switching the gait) [18]. The authors, however,
showed results only for simple non-challenging terrains and
used gaits designed for perfectly flat surfaces.

In this paper, we propose a combination of the terrain clas-
sification method [8] with the adaptive motion gait [10] to
address the road following for a blind hexapod walking robot.
Both these approaches are based solely on proprioceptive
sensing using only feedback from the robot active actuators.
The classification is utilized in the designed decision-making
strategy for steering the motion to keep the robot on the road
using only the information about the classified terrain.

III. PROBLEM STATEMENT

The addressed problem of the road following is considered
in the context of autonomous navigation of a blind hexapod
walking robot crawling on various surfaces. The robot does
not have any exteroceptors nor information about its heading.
The only feedback available are measurements provided by
the active robot actuators. The idea of the proposed approach
is to use the feedback to identify the terrain the robot is
currently traversing and thus, allow a terrain classification.
However, a reliable terrain classification using proprioceptive
sensors needs data from crawling on a new terrain. Therefore,
it is not expected the robot will stay entirely on the road.

Fig. 2. Possible behaviour of a blind robot after sensing an off-road terrain.
the blue dash-dotted trajectory denotes a simple reactive strategy for which
the robot keeps crawling an opposite direction than the off road. The red
dashed line shows a behaviour of the desired control strategy.

The utilized hexapod robot has six legs symmetrically
attached on the left and right sides of its body. Thus, the
robot can utilize the actuator feedback from left and right
legs which allows to identify the border of two terrains [9].
Therefore, we can distinguish four basic classes characteriz-
ing the robot state according to the road following:
• On road – the robot has legs on the desired road surface;
• Off road – the robot has legs off the road;
• Left off road – the left legs are off the road;
• Right off road – the right legs are off the road;
For brevity, the terrain classes are denoted as TC={On,

Off, Offleft, Offright}. Notice, multiple surfaces can be
represented by a single terrain class from TC , e.g. dirt or
grass can both represent Off class.

We consider a robot moving with a constant forward
velocity, and the problem is to design a control strategy based
on the terrain classes such that the robot will follow the
road. Since there is no other information about the heading
available, the proposed approach can utilize only the previous
estimation of the traversed terrain. Two possible strategies are
shown in Fig. 2. Without considering the information about
previously traversed terrains, the robot can be simply steered
to the opposite direction than the border was detected, as it
is shown by the blue dash-dotted curve in Fig. 2. However,
our goal is to achieve a behaviour of the robot that will look
like the red dashed curve in Fig. 2.

The proposed approach is based on the utilized adaptive
motion control [10] combined with the on-line terrain clas-
sification [8] that has been extended for crawling on rough



terrains [9]. An overview of these methods is presented in
the next section.

IV. HEXAPOD ROBOT, ADAPTIVE MOTION GAIT AND
ON-LINE TERRAIN CLASSIFICATION

The proposed road following method is considered with
a low-cost walking robot visualized in Fig. 1 that is based
on the PhantomX Hexapod Mark II platform. The robot
consists of six legs, each with three joints realized from
the Dynamixel AX-12A servos. Each servo drive contains
a built-in position controller and it communicates over the
half-duplex serial bus. Beside the position control itself, the
servos are able to measure the position error, current speed
and torque. This feature provides information about the leg
motion without a need of any additional sensors.
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Fig. 3. Simplified schema of body leveling. When a leg (right gray)
reaches a new foothold (orange), the body posture is adjusted by changing
the configuration of the legs (black) while keeping the same distances h
and d.

To allow the robot to traverse various terrains, the available
information about the servo position error is utilized in the
adaptive gait [10]. This gait is based on a regular tripod
gait with a modified phase of the leg motion towards the
ground in which the contact between the leg and terrain
surface is used to stop the motion and avoid high torque
values at the joints. The gait works as follows. First, the legs
are moving up and then forward. Then, the legs are moving
down towards the ground. During this phase, the position
error is read from the servos. The ground detection is based
on monitoring the magnitude of the position error and the
ground is detected for its predefined threshold. After all legs
stand on the footholds, the final phase is activated to level
the robot body to fit with the actual positions of the legs.
The body leveling is schematically visualized in Fig. 3.

The main advantage of the considered adaptive gait [10]
over a regular gait is its ability to traverse any terrain with
a constant speed. The robot can pass obstacles of size that
respects its physical capabilities. Besides, the motion of the
robot is much smoother with the adaptive gait when walking
on uneven terrains.

A. Terrain Classification with Adaptive Motion Gait

The position error is used also in the proposed on-line
terrain classification that is based on the approach proposed
by the authors of [8], which has been combined with the
adaptive motion gait [10] in [9]. Therefore, only a brief

overview of the terrain classification and used features are
provided in this section to make the paper more self-
contained.

In [8], small errors in the position control of all servo
drives of the front legs are measured in the time domain to
get interpolated samples at the frequency of 100 Hz. The
samples are then used to construct a feature vector for the
classification. Features are computed as statistics of the data
samples that correspond to a particular part of the gait cycle
that is divided into 16 equally wide segments. Respective
segments from the last three gait cycles are joined together
and basic statistics of all data samples that fall within are
computed yielding in 5 values (features) for each segment
(i.e., the minimum, maximum, mean, median, and standard
deviation). This is done for each servo which gives 480
gait-phases features, i.e., 2 (legs) × 3 (servos per leg) ×
5 (features) × 16 (segments).
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Fig. 4. Comparison of the leg trajectory using a regular default gait and
an adaptive gait

Beside these features, the authors of [8] also consider
additional features found in the frequency domain enabled
by a regular gait. However, the adaptive motion gait does
not provide a periodic behaviour, because the required time
to finish the full gait cycle depends on the terrain the robot is
crawling, see Fig. 4. Due to the variances of the gait phases,
which depends on the roughness of the terrain the robot is
traversing, we cannot rely on a uniform partitioning of the
gait phases into 16 segments for the feature extraction as
in [8]. On the other hand, we can utilize the gait phases of
the adaptive gait that consists of 4 phases per each leg triplet,
and the data from one gait cycle can be therefore divided into
8 segments according to the gait phases [9].

Having the feature vectors from several trials of the robot
crawling on different terrains, the Support Vector Machine
(SVM) algorithm is utilized to train the models of the terrain
classification. The models can be then utilized in on-line
terrain classification by feeding them with the current feature
vector. Notice, due to the way how the feature vector is
constructed, the robot needs to finish full gait cycle to make
a decision about the terrain it is crawling.

B. On-line Terrain Classification for Road Following

The problem of the road following has been firstly tackled
using a terrain classification separately for left and right legs



of the robot. In this setup, models were created for each robot
side. However, early results on this separate classification
with easily distinguishable terrains were not promising and
the attitude proved to be very unreliable. This classification
fails because the walking robot is one interconnected body
and any change of the terrain on one side affects also the
leg trajectory (and its measurement) on the other side.

Therefore, a more suitable approach is to consider feature
vectors from legs of both robot sides in a single terrain model
and a border between two terrains have to be trained by the
model as a regular terrain. This results in training of four
classes TC={On, Off, Offl, Offr}.

Regarding the influence of the gait and robot motion to
the terrain classification, it is worth mentioning that the
proposed approach is based on training of the classifier
using data from a straight walk of the robot. Although this
simplify acquisition of the training datasets, it may results
in a less accurate terrain classification during steering the
robot back to the road, especially at the border of two
terrains. An experimental validation of this training and
terrain classification is reported in Section VI.

V. PROPOSED ROAD FOLLOWING CONTROL STRATEGY

The proposed decision-making strategy is based only on
the information about the type of the terrain the robot is
traversing. Our goal is to control the robot in the way of the
red dashed curve depicted in Fig. 2.

The robot forward velocity is considered constant, and
therefore, the problem of road following is to determine the
robot angular velocity that will steer the robot to keep all its
legs on the road. Since we do not have any prediction of the
road curvature, we propose to estimate a relative direction
based on the last N environment observations provided by
the terrain classification. Hence, individual observations can
contribute to the estimation of the required steering direction
and we propose the control law as

θ̇ = kp

N∑
i=1

1

ηi
siwi, (1)

where θ̇ is the robot angular velocity directly applicable to
the gait controller, kp is the proportional control gain, η is an
aging factor, si is a sign of the steering weight wi. The aging
factor η is applied to incrementally decrease influence of the
previously detected terrains to the final steering action. The
steering weight wi and its sign si are determined according to
the current and previously classified terrains Ti, 1 ≤ i ≤ N ,
and they are determined as follows.

After each gait cycle, the robot determines a new terrain
type Ti ∈ TC . For a new terrain type Ti, the current steering
weight wi is set to one of three possible values:

wi(Ti) =


Woff if Ti is Off;
Wb if Ti is Offleft or Offright;
won(i) if Ti is On;

(2)

where constants Woff and Wb stand for the off road and
border weight, respectively. The weight Woff represents a

sharp turn, while the weight Wb represents a less aggressive
correction on the road border, therefore 0 ≤Wb ≤Woff .

The weight won(i) depends on the previously traversed
terrains and its determination follows the idea that once a
robot is on the road for a couple of full gait cycles, it
should keep its heading. On the other hand, if the robot
was previously off the road it should keep the turning radius
to return to the road. Finally, for the robot mostly on the
border, its direction should only slightly change. We propose
to determine won(i) as follows

won(i) =


Woff if noff ≥ Noff ;

Wb if nb ≥ Nb and noff < Noff ;

0 otherwise – keep the direction;
(3)

where noff and nb are the number of times the terrain has
been determined as Off and Offleft, Offright respec-
tively for 1 ≤ i ≤ N−1. The thresholds Noff and Nb denote
the numbers of terrain samples Ti for which the history of
the terrain classification is considered mostly off road and
mostly as border terrain, respectively.

Finally, for each weight its sign si ∈ {−1, 1} is deter-
mined based on the desired robot orientation. The positive
sign is for clockwise, while the negative sign stands for the
counter-clockwise direction. The sign is based on the current
terrain type Ti and the previously determined type Ti−1:

si =


−1 if Ti = Offleft – left side border;
1 if Ti = Offright – right side border;
−si−1 if Ti = On and Ti−1 6= On;

si−1 otherwise.

(4)

If a transition from the border or the off-road terrain to the
on road is captured, the sign is set to the opposite of the
previous one. Also regarding the rule (3), a new action then
acts against the previous one. This causes the robot to get
partially back to the road border to compensate the whole
maneuver. Once wi(Ti) and si are established, the control
action is computed using (1).

A. Limits of the Proposed Control Strategy
The proposed control strategy covers most of the situations

of crawling on various terrains during road following. The
only situation impossible to handle is a direct transition from
On to Off, where no information about the side is available.

Regarding the terrain classification, it is worth mentioning
that the SVM model is trained only from straight walks.
Therefore when an angular velocity exceed some limit, a
confusion of the terrain classification can occur. It is caused
by a different trajectory of the leg with respect to the one
during a straight walk used in terrain learning. Considering
this, the control action cannot be applied continuously. It is
necessary to alter between terrain classification and heading
correction for a single robot step. Each of these steps takes
exactly one gait cycle. However, for traversing the On terrain
and won = 0, only the terrain classification is performed in
a step that allows to use a more frequent information about
the terrain type in the classification and thus, the robot reacts
more promptly to changes of the terrain.



VI. EXPERIMENTAL RESULTS

Two different scenarios have been considered to evaluate
the proposed steering control to avoid off-road terrains and
following the road. At first, we considered easily distinguish-
able terrains that were artificially prepared in a laboratory.
After that, we have considered outdoor experiments in an
urban park where several trials have been performed. In both
scenarios, an experiment was considered as a successful if
the robot smoothly return back to the road after leaving it.

The SVM model for the terrain classification was trained
off-line from the previously collected data. However, during
the road following, the classification and steering action are
employed in on–line data processing. Only two front legs are
used for the classification, which is performed at the end of
the gait cycle utilizing data from the last three cycles.

All the algorithms have been implemented in C++ and
executed on the robot onboard ARM-based computer Odroid
U3 with 1.7GHz Quad-Core processor and 2GB of RAM.

Prior the evaluation, we experimentally tuned the param-
eters of the proposed control strategy. The used weights and
thresholds values of (1) and (3) are as follows: the length of
the terrain history N = 10, the proportional control gain has
been set to kp = 0.5, the aging factor to η = 2, the weights
to Woff = 1, Wb = 0.5, and Noff = 5, Nb = 4.

A. Laboratory Experiment

A verification of the on-line classification and control
strategy has been evaluated on the terrains that can be easily
recognized. Using surfaces easy to distinguish minimizes
the influence of the misclassified samples on the decision-
making strategy. Such conditions were provided by a wooden
board and pillows placed on the floor, see Fig. 5. The pillows
are very soft in contrast to the wood, and therefore, both
surfaces are easy to recognize.

Fig. 5. Indoor testing environment – wood and pillows. According to
TC classes, the surfaces were assigned as follows: On– wood, Offright–
wood–pillows, Offleft– pillows–wood, Off– pillows.

Repeated walks over all four learned terrain classes from
TC approved the expectation of easily distinguishable ter-
rains. The robot has been left to walk the border between
On and Off in both directions and the terrain classification
has been monitored. The accuracy of the terrain classification
in this case reached 100%, which validates a feasibility of the

TABLE I
CONFUSION MATRIX OF 2–FOLD CROSS-VALIDATION WITH OVERALL

ACCURACY 96.2%. CLASS NAMES ARE SHORTENED IN THE TABLE IN

THE FOLLOWING WAY: D – DIRT, A – ASPHALT, G – GRASS

Class G D – A D A – D A G – A A – G

G 99 0 0 0 0 0 0
D – A 0 116 7 3 0 1 0
D 0 9 62 0 0 0 0
A – D 0 4 1 82 0 0 1
A 0 0 0 0 112 0 0
G – A 0 0 0 0 0 117 0
A – G 0 0 0 2 0 0 122

proposed control strategy. It also allowed fine tuning of the
parameters prior the deployment in an outdoor environment.

B. Outdoor environment

The outdoor experiments have been conducted in an urban
park with asphalt pathways surrounded by a grass or a dirt.
An asphalt has been chosen to represent the On class and
a dirt and grass have been marked as the Off class. The
terrains are visualized in Fig. 6 with their assignment to TC .

The fidelity of the model trained in this manner has been
firstly evaluated by the two-fold cross validation. The overall
achieved accuracy is 96.2%. As it can be seen from the
confusion matrix in Table I, the most challenging terrain
for the classification is a dirt. Almost 86% of misclassified
samples was related to dirt. Regarding the assumptions
described in Section IV, the terrain classification can be
considered as more difficult since the transition from asphalt
to dirt was usually flat.

Other false predictions in the confusion matrix in Table I
belong to the same TC class, thus they are acceptable. Such
confusions arise from the similarity of the borders between
asphalt and other off-road terrains.

During the outdoor experiments, the robot has been driven
to the borders similar to those depicted in Fig. 6. Due to
significant differences between the terrains, like in Fig. 6a,
borders are easy to deal with. Also the borders between
asphalt and grass terrains (shown in Fig. 6b and Fig. 6c) are
classified reliably. The most challenging terrain to classify is
the dirt. During the experiments, we included basically two
types of the border asphalt–dirt. The first has been a strict
border with a small hump as shown in Fig. 6d and it has
been easy to deal with. The second type of the asphalt–dirt
border is shown in Fig. 6e. This border is flat, blurred and
there is a dirt spilled over the edge and the transition of the
robot between the terrains is much slower.

In addition, we also evaluated various angles how the robot
approached to the border for each type of the border. Due to
the length of the robot step and ability to classify the terrain
from the last three whole gait cycles, for angles larger than
approximately 45◦, the algorithm loses the information about
the side, where the off road was, because the border is passed
too fast, and a straight transition from the on road to the off
road is reported. Therefore, it is impossible for the robot to
return to the road in the way described in Section V.



(a) Border stone (b) Flat border with grass (c) Steeper border with grass (d) Strict border with dirt (e) Blurred border with dirt

Fig. 6. Borders of the terrains considered in the outdoor experiments. Assignment of the surfaces to TC classes was done as following: On – asphalt,
Offright– asphalt–grass and asphalt–dirt, Offleft– grass–asphalt and dirt–asphalt, Off– grass and dirt.

The reported results from the performed evaluation and
achieved results are further documented in the video attached
to the paper. The result from one of the experiment captured
in the accompanied video is shown in Fig. 7. The robot
approached the grass, Offleft class has been detected and
the control strategy pushed the robot back to the road. After
the asphalt (as the On class) has been detected again, the
robot aligned back approximately to the road direction.

Fig. 7. A trail of the robot path following an asphalt pathway. The traversed
trajectory is highlighted by the red line.

VII. CONCLUSION

In this paper, we propose a simple road following method
for a technically blind crawling robot. Contrary to a majority
of already existing methods we consider only proprioceptive
sensing; in fact, only the feedback provided by the active
servo drives is utilized. The proposed minimalistic approach
utilizes the feedback to detect a contact point of the leg with
the foothold and also for the terrain classification of the
previously learned terrains. The proposed decision-making
strategy computes the steering action from the history of the
classified terrains. The experimental results from the outdoor
environments support feasibility of the proposed approach
and the control strategy keeps the robot on the specified road
and also provides a rough estimation of the road direction
captured in the recorded history of the terrain types.

Even though the proposed method allows the blind crawl-
ing robot to autonomously navigate through an outdoor
environment while keeping on the road, the method can
be rather considered as a complementary approach to other
road following techniques to improve their robustness based
on the robot experience with negotiating particular terrains.

Therefore, further methods based on exteroceptive sensing
are subject of our future work.
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