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Abstract— We introduce an extension of the Dubins Traveling
Salesman Problem with Neighborhoods into the 3D space in
which a fixed-wing aerial vehicle is requested to visit a set
of target regions while the vehicle motion constraints are
satisfied, i.e., the minimum turning radius and maximum climb
and dive angles. The primary challenge is to address both
the combinatorial optimization part of finding the sequence
of target visits and the continuous optimization part of the
final trajectory determination. Due to its high complexity, we
propose to address both parts of the problem separately by
a decoupled approach in which the sequence is determined
by a new distance function designed explicitly for the utilized
3D Dubins Airplane model. The final trajectory is then found
by a local optimization which improves the solution quality.
The proposed approach provides significantly better solutions
than using Euclidean distance in the sequencing part of the
problem. Moreover, the found solutions are of the competitive
quality to the sampling-based algorithm while its computational
requirements are about two orders of magnitude lower.

I. INTRODUCTION

In surveillance missions for a fixed-wing Unmanned
Aerial Vehicle (UAV), the vehicle is requested to visit a given
set of target locations to collect the required data. For the
curvature-constrained Dubins vehicle in 2D, the trajectory
planning problem can be formulated as the Dubins Traveling
Salesman Problem (DTSP) [1] which stands to find a shortest
closed-loop trajectory visiting all the given locations. A sub-
problem of the DTSP is to determine heading angles at the
target locations which is a continuous optimization problem
called the Dubins Touring Problem in [2]. Moreover, relaxed
target locations based on the sensor model are considered
in the DTSP with Neighborhoods (DTSPN) [3] which is
motivated by surveillance missions with a camera sensor [4]
or by data gathering in wireless networks [5].

In this paper, we extend the DTSPN into the three-
dimensional space that is called the 3D Dubins Travel-
ing Salesman Problem with Neighborhoods (3D-DTSPN).
The targets are represented by 3D regions, e.g., cylindrical
regions are shown in Fig. 1. Although the extension may
seem straightforward, new challenges arise from the motion
constraints that are the limited climb and dive angles. In
particular, we utilize the Dubins Airplane model [6] for
the trajectory generation between two configurations of the
vehicle. Thus, the 3D-DTSPN stands to find configurations
visiting the target regions such that the resulting trajectory
connecting the configurations is the shortest possible.
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Fig. 1. An instance of the 3D Dubins Traveling Problem with Neighbor-
hoods (3D-DTSPN). The cylinders stand for the target regions and the small
blue spheres represent the determined locations of visits to the targets.

A simple approach to address the 3D-DTSPN is to extend
the existing sampling-based methods for the DTSPN [4],
[7]. However, both the waypoint positions and heading
angles need to be sampled which makes the method quickly
computationally intractable for larger instances, because the
original problem is further transformed into a larger instance
of the TSP.

Therefore, we propose to address the introduced 3D-
DTSPN by a decoupled approach adopted from [1] in which
the sequence of visits to the targets is determined by the
Euclidean TSP. This approach is applicable even for the
3D-DTSPN; however, it does not consider the limited pitch
angle, and thus in some cases, additional spiral segments
need to be inserted to gain the required altitude, which
prolongs the solution. To address this drawback of the de-
coupled approach, we propose a modified distance function
that estimates the length of the 3D trajectory for the Du-
bins Airplane model more accurately. Finally, the trajectory
connecting the target regions is optimized using the Local
Iterative Optimization (LIO) algorithm [8] which can find a
local optimum for the given sequence of visits to the target
regions. Based on the numerical evaluation, the proposed
approach finds solutions with competitive solution quality to
the sampling-based approach, but with about two orders of
magnitude lower computational requirements.

The remainder of the paper is organized as follows.
Related work is summarized in the next section, and the 3D-
DTSPN is formally introduced in Section III. A sampling-
based approach together with the computing 3D trajectory
based on the Dubins Airplane model is described in Sec-
tion IV. The proposed decoupled approach is presented
in Section V and it is compared with the sampling-based
approach in Section VI. The final remarks are in Section VII.



II. RELATED WORK

Curvature-constrained path planning in 2D is studied since
1957 when L. E. Dubins addressed the shortest path planning
problem between two points with prescribed heading angles.
Such a path, further denoted as the Dubins maneuver, is one
of CSC or CCC types, where S is a straight line segment and
C is a circle segment with the minimum turning radius [9].
The CCC maneuver may exist only if the target locations are
closer than four times the radius [10]; otherwise, the distance
function is continuous and locally strictly convex [11].

The herein studied problem originates from the Dubins
Traveling Salesman Problem (DTSP) [1] which stands to
find a shortest curvature constrained path visiting the given
set of target locations. Since a closed-form solution of the
Dubins maneuver exists, the DTSP reduces to determine the
sequence of visits and heading angles. If the target locations
are allowed to be visited from their vicinity, the problem is
called the Dubins TSP with Neighborhoods (DTSPN) [3].
Both of the variants are known to be NP-hard [12].

Various approaches for the DTSP(N) have been proposed
that can be divided into four groups: decoupled, sampling-
based, evolutionary, and unsupervised learning based ap-
proaches. In decoupled approaches, the sequence of the visits
to the targets is determined based on the solution of the
Euclidean TSP, and the heading angles are determined by
various approaches, e.g., [1], [13], [14], [15] and the solution
can be further improved by a post-processing procedure, e.g.,
by the Local Iterative Optimization (LIO) [8]. Sampling-
based approaches [4], [16] tackle the DTSP(N) by sampling
possible visiting configurations which enables to transform
the problem into the Asymmetric TSP and solve it by existing
algorithms, such as Concorde [17] or LKH solver [18].
Evolutionary algorithms use various mutation and crossover
operators to improve the current population [19] and allow to
utilize a local optimization procedure [20]. Finally, principles
of unsupervised learning have been applied in [21], [22].

If the travel budget of the vehicle is limited, the problem
can be formulated as the Dubins Orienteering Problem
(DOP) without [23], [24] or with [25], [26] Neighborhoods.
Extension of the DOP into 3D [27] is based on similar ideas
as in this paper, i.e., the Dubins Airplane model [28].

In this paper, we extend the DTSP(N) into the three-
dimensional space which requires a more complex model
of the fixed-wing vehicle. A curvature-constrained trajectory
in 3D is studied in [29], where the authors proved that the
optimal solution could be CSC/CCC maneuver or helicoidal
arc, where S is a straight line, and C is a circular arc segment.
Such a strong theoretical result is in correspondence to the
Dubins maneuver in 2D which is a special case of the 3D
maneuver in the plane. However, two circle segments do
not always lie in the same plane which makes the trajectory
planning in 3D challenging. In [30], a path generation
algorithm based on 2D Dubins maneuvers is proposed to
satisfy the requested constraints. Further, a numerical method
based on 3D geometry [31] is claimed to provide the optimal
trajectory connecting two waypoints in about one second.

In the 3D, a fixed-wing vehicle is limited by the minimal
and maximal pitch angle. Thus, the Dubins Airplane model
is introduced [28] in which the vertical and horizontal
constraints are defined independently, and the pitch angle can
be changed abruptly. Although a sudden change of the pitch
angle evidently violates motion constraints, the model seems
to be a suitable approximation for fixed-wing vehicles with
a small pitch angle range. A trajectory generation for this
model is derived from the 2D Dubins maneuver generation.
In [6], the Dubins Airplane model is adjusted for a small
fixed-wing UAV. The trajectory generation procedure [6] is
utilized in this paper.

In the Dubins-Helix model [32], spiral (helix) segments
enable to have smaller radius projected to a horizontal plane
than the actual minimum turning radius of the vehicle, and
thus the model allows shorter trajectories than the Dubins
Airplane model. However, it performs sharp turn maneuvers
during altitude changes which push the vehicle to its limits.
Alternatively, the problem can be addressed by utilizing
parametric curves, e.g., quadratic Bézier curves [33], [34].

Although multiple approaches to 3D trajectory planning
involving fixed-wing UAV exist, the TSP-based planning
for the 3D Dubins Airplane model has not been addressed
before. Therefore, we propose to leverage on the idea of the
decoupled solution and utilize a decoupled approach for the
3D-DTSPN based on a novel distance function for finding a
sequence of visits to the 3D regions.

III. PROBLEM STATEMENT

The studied 3D Dubins Traveling Salesman Problem
with Neighborhoods (3D-DTSPN) stands to find a shortest
trajectory which visits the given set of target regions that sat-
isfies the motion constraints of the utilized Dubins Airplane
model [6], i.e., the minimum turning radius and the limited
pitch angle. A target region is considered to be successfully
visited if the found trajectory has an intersection with the
target region.

A. Dubins Airplane Model

A state q of the Dubins Airplane model is defined by its
position p = (x, y, z), p ∈ R3, heading angle θ, and pitch
angle ψ, i.e., q = (p, θ, ψ). The configuration space C =
R3 × S2 has five dimensions, and the motion of the vehicle
is constrained by:

1) minimal turning radius ρ,
2) limited pitch angle, i.e., ψ ∈ [ψmin, ψmax].

Hence, the Dubins airplane model is defined as:
ẋ
ẏ
ż

θ̇

 = v


cos θ · cosψ
sin θ · cosψ

sinψ
uθ · ρ−1

 , (1)

where v is a constant forward velocity of the aircraft and uθ
is the control input uθ ∈ [−1, 1].

Although the model does not fully describe a real airplane
dynamics, it seems to be a sufficient model for most fixed-
wing airplanes that cannot perform acrobatic maneuvers [6].



B. Problem Definition of the 3D-DTSPN

Having a set of target regions R = (R1, . . . , Rn) in 3D,
Ri ⊂ R3, the 3D-DTSPN stands to find a shortest closed-
loop trajectory for the Dubins airplane which visits all the
given regions. The trajectory is defined by a vector of visiting
states Q = (q1, . . . , qn) corresponding to the given regions
and the permutation Σ = (σ1, . . . , σn) of their visits, i.e.,
1 ≤ σi ≤ n. The method for generating 3D maneuvers
is expected to be deterministic, and thus the 3D-DTSPN is
defined as the optimization problem for the Dubins Airplane
model (1):

minimizeΣ,Q

subject to

n−1∑
i=1

L(qσi
, qσi+1

) + L(qσn
, qσ1

)

qi = (pi, θi, ψi), i = 1, . . . , n,

pi ∈ Ri, i = 1, . . . , n,

(2)

where L(qi, qj) is the length of the 3D Dubins maneuver
from qi to qj .

C. Dubins maneuver in 3D

The 3D trajectory generation procedure for the Dubins
Airplane model (1) is adopted from [6] which extends the
original work of [28] for fixed-wing UAVs. The trajectory
is generated based on the 2D Dubins maneuver where the
segments are then extended into 3D, see Fig. 2. If the altitude
difference is too high, an additional spiral segment is inserted
to gain the required altitude. Thus, the maneuvers are divided
into low/high/medium altitude cases.

(a) CCC maneuver (b) CSC maneuver

Fig. 2. An example of 3D trajectories for the Dubins Airplane model.

For the low altitude case, the length of the generated 2D
Dubins maneuver enables to gain the terminal altitude while
the pitch angle constraint is met. Therefore, the original
maneuver is directly extended into the 3D maneuver such
that the altitude changes proportionally along the maneuver.

For the high altitude case, the 2D maneuver length is
not sufficient to gain the required altitude. The original 2D
maneuver is modified by inserting additional spiral segments
at the start of the maneuver. The number of spiral segments
depends on the required altitude change [6].

The medium altitude case combines both previous cases.
The 2D length is not sufficient, but an additional spiral
segment would be too long. In this case, a third turning
segment is inserted to achieve the required prolongation. A
detailed description of the procedure is provided in [6].

IV. SAMPLING-BASED APPROACH TO THE 3D-DTSPN

The sampling-based approach adopted from [4] addresses
the continuous optimization part of the 3D-DTSPN by

sampling the waypoint locations and heading angles. The
configurations are selected from the four-dimensional space,
i.e., a 3D position in the target region together with the
corresponding heading angle. The pitch angle is not sampled,
since it may change instantly in the Dubins Airplane model.
Note that for each sample of the possible waypoint location,
additional sampling of the possible heading angle at the
waypoint is performed, and the number of samples is quickly
increasing.

After the sampling, all trajectories connecting every pos-
sible pair of the sampled configurations are determined in
O((nk)2) steps for n target regions and k samples per region.
Then, the problem is transformed to the strictly combinatorial
Generalized Asymmetric TSP (GATSP) where the requested
solution visits only a single sample per each region. Finally,
the GATSP is transformed to the Asymmetric TSP (ATSP)
using Noon-Bean transformation [35] and the ATSP can be
solved by, e.g., [17], [18].

There are two main disadvantages of the sampling-based
approach. First, the samples are selected from a high-
dimensional configuration space, and many samples are
necessary to find a solution of satisfiable quality, i.e., close
to the optimal solution. Secondly, the problem is transformed
to a relatively large instance of the Asymmetric TSP which
is known to be NP-hard. Although heuristic approaches such
as the LKH [18] exist, it is still computationally demanding,
and only a limited number of samples can be used.
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Fig. 3. An example of the Noon-Bean transformation where edges from
the optimal solution are in the red and the rest of the edges are in blue.

Once configurations are sampled and connecting trajec-
tories are computed, the 3D-DTSPN is transformed into
GATSP that is then transformed to the ATSP by the Noon-
Bean transformation [35]. In the ATSP, all samples are visited
but samples from the same set, i.e., corresponding to the
same target regions, are connected by a zero-length cycle
to preserve the solution of the GATSP. The edges between
different sets are redirected such that the final trajectory
remains feasible and a big constant M is added to the
edge value to prevent re-entering to the same set twice. An
example of the Noon-Bean transformation with three sets and
six samples is depicted in Fig. 3. The example also illustrates
how quickly the problem grows with each additional sample.

V. PROPOSED SOLUTION OF THE 3D-DTSPN
The proposed solution of the introduced 3D-DTSPN is

based on the decoupled approach adopted from [1] in which



a sequence of visits to the target regions is determined before
the trajectory generation. In contrast to the original work
based on Euclidean distance, we propose a modified distance
function that considers the constraints of the Dubins Airplane
model. The sequence is used to generate an initial solution
of the 3D-DTSPN which is further improved by an extended
version of the Local Iterative Optimization (LIO) method
adopted from [8]. The particular steps are described in the
following paragraphs.

A. Finding a Sequence of Visits to the Target Regions

The sequence of visits to the target regions is determined
concerning the distances between the centers of the target
regions. The existing approaches for the DTSP such as [1],
[13], [14], [15] utilize Euclidean distance to estimate the
final trajectory cost, but they do not consider the minimum
turning radius constraint. The problem is transformed to a
solution of the TSP that can be solved by existing solvers.

The very same approach with the Euclidean distance can
be used even for the 3D-DTSPN, but a sequence does not
reflect the motion constraint on the pitch angle, especially if
the target regions are close to each other while the altitude
differences are high. In such cases, additional spiral segments
are necessary to gain the terminal altitude, which prolongs
the final path. Therefore, we propose to replace the Euclidean
distance from the target locations ci to cj by the following
distance function d(ci, cj):

d(ci, cj) = max

(
‖ci − cj‖ ,

zcj − zci
sin(ψlim)

)
, (3)

where ci stands for the center of the i-th target region, zci
for its height, and ‖.‖ represents the Euclidean distance. The
angle ψlim differs based on the altitude change, i.e., ψlim =
ψmin for zci > zcj and ψlim = ψmax otherwise.

B. Finding a Solution and Local Optimization

Having the sequence of visits, the initial solution of the
3D-DTSPN is created by choosing a random vehicle con-
figuration qi described by its position pi and heading angle
θi for each target region Ri. The resulting trajectory has to
intersect the boundary of each target region. Therefore only
configurations on the boundary can be considered, which can
encode an arbitrary solution while providing a significant
simplification. The position is specified by two variables α
and β, see Fig. 4.

•ci
•pi

β

α •ci

•pi

β

α • ci
•pi

β
α

Fig. 4. The position pi of the waypoint on the boundary of the target
region is given by α and β which stands for the angle and relative height.

The 3D-DTSPN with the known sequence can be seen as
a continuous optimization problem of 3n variables, i.e., the
triplet (θ, α, β) for each visiting configuration. A solution to

such a problem can be quickly computationally intractable
with increasing number of the target regions n. Therefore,
we propose to utilize the LIO method [8] which splits
the problem into optimization sub-problems that are solved
independently. This process is iteratively repeated until the
solution stops improving. The full scheme of the proposed
approach for the 3D-DTSPN is depicted in Algorithm 1.

Algorithm 1: Proposed algorithm for 3D-DTSPN

Data: Regions R
Result: Solution represented by Q and Σ

1 Σ ← getInitialSequence(R)
2 Q ← getInitialSolution(R,Σ)
3 while terminal condition do
4 Q ← optimizeHeadings(Q,R,Σ)
5 Q ← optimizeAlpha(Q,R,Σ)
6 Q ← optimizeBeta(Q,R,Σ)
7 end
8 return Q,Σ

First, the algorithm determines the sequence Σ and gener-
ates the initial solution with random waypoints on the target
region boundaries; the LIO-based solver iteratively improves
the trajectory. The LIO procedure is divided into three sepa-
rate steps based on the optimized variable. Furthermore, all
these steps are repeated until the solution converges, i.e., the
improvement is not significant. Thus, in each iteration of the
local optimization, all three variables (θi, αi, βi) determining
the waypoint qi are updated. Finally, after a given number of
steps or when the solution is not improving, the algorithm
returns the final solution. Notice, the first solution is found
very quickly, and it is then improved in further iterations,
and thus the proposed algorithm has the any-time property
and can be eventually employed in real-time planning.

VI. RESULTS

The proposed approaches for the 3D-DTSPN have been
evaluated on randomly generated 3D scenarios with cylin-
drical target regions. The minimum turning radius ρ = 1 and
centers of the regions are uniformly distributed in the given
cubical bounding box and both the region radius and height
are randomly chosen from the interval [0, 2]. The vertical
size of the bounding box is fixed to 10, and its horizontal
size bh depends on the number of targets together with the
average region density ω by the following equation:

bh =

√
n

ω
. (4)

The pitch angle of the vehicle is limited to be in the interval
ψ ∈ [−15◦, 20◦] to reflect the behavior of the real fixed-
wing vehicles which typically have an asymmetric interval
for the pitch angle. An example of the evaluated 3D-DTSPN
instance with 20 cylindrical target regions is depicted in
Fig. 5. Notice the found target sequence differs from the
one that would be found as a solution of the Euclidean TSP.

The proposed decoupled algorithm is denoted
Proposed+LIO in which the distance function is



(a) 2D projection (b) 3D projection

Fig. 5. An example instance of the 3D-DTSPN with n = 20 target regions
and target density ω = 0.03.

specially designed for the Dubins Airplane model (1),
and the generated TSP is solved by the heuristic LKH
solver [18]. The final trajectory is optimized by LIO with the
maximum of 10 iterations of the main loop in Algorithm 1.

The proposed decoupled algorithm is compared with two
other approaches. First, we consider finding the sequence of
visits as a solution of the Euclidean TSP to show benefits
of the proposed distance function (3) to the solution quality.
This approach is denoted ETSP+LIO. Besides, we also con-
sider the sampling-based approach described in Section IV
for which we use the same LKH solver as for the sequencing
part of the decoupled approaches. The approach is denoted
Sampling with the suffix specifying the number of samples
on the boundary of each target region to show the effect of
the increasing number of samples to the solution quality and
also the required computational time. All the algorithms have
been implemented in C++ and executed on a single core of
the Intel Core i5-7600K CPU running at 3.80 GHz.
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Fig. 6. The relative length of the solution over time for 20 target regions
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interval are computed from 10 random instances each with 10 trials.

In the first scenario, all three approaches are compared
in the solution of the 3D-DTSPN instances with n = 20
target regions. The average performance indicators from 10
trials on 10 randomly generated instances are depicted in
Fig. 6. The trajectory lengths are normalized separately for
each problem instance using the best-found solution from
all the trials and approaches, which allows to aggregate the
results and present them in a single plot. The results indicate
that the proposed decoupled method provides about 20%
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shorter solutions than both other approaches for the same
computational time. It is also about two orders of magnitude
faster than the sampling-based approach in finding solutions
with the similar quality. It can be noticed that for few cases
the ETSP+LIO may also provide good solutions; however,
in most cases, the proposed heuristic distance function (3)
provides significantly better results.

The approaches have been further evaluated on larger
problems with n ∈ {20, 60, 100} and the target regions den-
sity ω = 0.03. The average quality indicators are presented in
Fig. 7. The results show that the proposed approach can find
solutions with reasonable quality (regarding the solutions
found for a high number of samples) even for a high number
of target regions, e.g., in about 1 seconds for 100 regions.

The sampling-based algorithm quickly becomes computa-
tionally demanding for the increasing number of regions or
samples. Notice the logarithmic axis of the computational
time. It is a bit surprising that the relative solution length
increased for the sampling-based approach. Based on the
analysis, this behavior is caused by the Noon-Bean trans-
formation in which a relatively big constant is added to
the final length, which causes a numeric instability of the
ATSP solver. Such a problem is especially noticeable for 64
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samples in Fig. 6, where the constant M is very high because
of many nodes in the graph representation of the problem.

Finally, the approaches for the 3D-DTSPN have been
evaluated on instances with various targets densities. The
results are depicted in Fig. 8. According to the presented
results, the proposed decoupled approach with the distance
function (3) provides the superior results, especially in prob-
lems with a high density of the target regions. In contrast,
the decoupled approach with the Euclidean distance provides
solutions with similar quality only for the low densities
of the regions. The sampling-based algorithm struggles in
problem instances with high densities of the regions when
the number of samples is low, but this can be addressed by
using more samples at the cost of the significantly increased
computational requirements.

VII. CONCLUSION

An extension of the Dubins TSPN into the three-
dimensional space using the Dubins Airplane model is pro-
posed in this paper. The problem can be addressed by a
modification of existing sampling-based approach for the
DTSPN; however, the configuration space is of the dimension
five, and this approach suffers from its high computational
requirements even for small 3D instances. Therefore, the
decoupled approach is considered with the newly proposed
distance cost function to reflect different altitudes of the
target regions and the motion constraints of the utilized
Dubins Airplane model. Based on empirical evaluations,
the proposed approach provides solutions with about 20%
shorter paths in comparison to the sampling-based approach
for the same computational time. Besides, it is about two
orders of magnitude faster than the sampling-based approach
in finding solutions with the competitive solution quality.
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