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Abstract— This paper introduces the Close Enough Orien-
teering Problem (CEOP) for planning missions with multi-
rotor aerial vehicles considering their maximal velocity and
acceleration limits. The addressed problem stands to select the
most rewarding target locations and sequence to visit them
in the given limited travel budget. The reward is collected
within a non-zero range from a particular target location
that allows saving the travel cost, and thus collect more
rewards. Hence, we are searching for the fastest trajectories
to collect the most valuable rewards such that the motion
constraints are not violated, and the travel budget is satisfied.
We leverage on existing trajectory parametrization based on
Bézier curves recently deployed in surveillance planning using
unsupervised learning, and we propose to employ the learning
in a solution of the introduced multi-vehicle CEOP. Feasibility
of the proposed approach is supported by empirical evaluation
and experimental deployment using multi-rotor vehicles.

I. INTRODUCTION

Multi-rotor micro aerial vehicles (MAVs) are increasingly
applied in a variety of deployments, but the surveillance and
data collection missions, where the vehicles are requested
to collect data from the desired locations, can still be
considered as a dominant application task for drones [1].
For a (semi)autonomous mission execution, a cost-efficient
trajectory to visit the given set of locations can be determined
by routing optimization formulated as the Traveling Sales-
man Problem (TSP) [2]. However, the operational time of
MAVs is limited, e.g., by the capacity of their batteries, and
thus all the locations may not be visited within such limited
budget. Therefore, the mission planning can be formulated
as the Orienteering Problem (OP) [3] to determine valuable
locations that can be visited within the travel budget Tmax.

The travel cost can be saved by exploiting remote sensing
capabilities with non-zero sensing range or wireless data
transfer. Then, the problems become variants of the TSP and
OP with Neighborhoods, and for a continuous disk-shaped
neighborhood around each target location, the problem is
called the Close Enough TSP [4] and Close Enough OP [5],
respectively. These problems can be addressed by sampling
the neighborhoods to a discrete set of possible waypoints and
a solution of the created Generalized TSP, e.g., by [6], [7],
[8], and in the case of the OP as the Set OP [9], [10]. How-
ever, there is still one more challenge to be addressed when
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Fig. 1. Example of the found solution to the introduced multi-vehicle Close
Enough Orienteering Problem (CEOP) with Bézier curves for three vehicles
and its experimental verification. The planned trajectories are dotted, and
the real trajectories are the solid curves colored according to the altitude.

planning for MAVs that is related to requested curvature-
constrained trajectories to satisfy their motion constraints.

A possible solution can be based on the Dubins vehicle
model [11] for which the Dubins OP has been introduced
in [12]. However, Dubins vehicle does not fit the motion
constraints of MAVs that are not limited by a minimal turning
radius, but mostly by the maximal velocity and acceleration
limits. Therefore, we need a more suitable parametrization
of the requested multi-goal trajectory that allows determining
the velocity profile satisfying the motion limits such that the
trajectory realization by the MAVs fits Tmax. In this paper,
we propose to build on our previous work on unsupervised
learning algorithm called Growing Self-Organizing Array
(GSOA) [13] that has been deployed to the Close Enough
TSP with the suitable trajectory parametrization as a se-
quence of Bézier curves in [5] and extended for multi-vehicle
setups in [14]. Due to our relatively extensive previous work,
we consider the particular contributions presented in this
paper as follows.

• Generalization of the Close Enough OP to motion
constraints of the multi-rotor vehicles with trajectory
parametrization as a sequence of Bézier curves.

• Novel heuristic solution of the introduced multi-vehicle
Close Enough OP with Bézier curves.

• Report on the deployment of the proposed solution in
the field experiment with three real MAVs, see Fig. 1.

The paper is organized as follows. The addressed prob-
lem is formally introduced in Section II and the proposed
solution is presented in Section III. Evaluation results and
experimental field deployment are reported in Section IV.
Concluding remarks are in Section V.



II. PROBLEM STATEMENT

The Close Enough Orienteering Problem (CEOP) for
multi-rotor vehicles stands to determine the most valuable
trajectory to collect rewards from a given set of n objects of
interest. The objects are assumed to be placed at the locations
O = {o1, . . . ,on}, oi ∈ R3, each with the associated reward
ri ∈ R+

0 that can be retrieved by the vehicle if it passes the
location oi within the distance δi ≥ 0 such that the trajectory
satisfies the motion constraints of the vehicle. We search
for a subset of k objects Ok ⊆ O with the corresponding
waypoints Pk = {pσ1

, . . . ,pσk
}, pσi

∈ R3 such that for
each oσi

∈ Ok there is a waypoint pσi
within δσi

distance
from oσi

, i.e.,
∥∥(oσi

,pσi
)
∥∥ ≤ δσi

. Following the notation
introduced in [5], the requested trajectory consists of a se-
quence of Bézier curves Xσi , X = (Xσ1 , . . . ,Xσk−1

), with
the travel time estimation (TTE), denoted T (X ), satisfying
the vehicle maximal velocity and acceleration limits, i.e.,

T (X ) =
k−1∑
i=1

T (Xσi
) ≤ Tmax. (1)

The trajectory X is a smooth connection of k − 1 Bézier
curves connecting the sequence of waypoints Pk such that
each Xσi

starts at pσi
, terminates at pσi+1

, and T (X )
satisfies motion constraints of the vehicle.

For a team of m vehicles, we are searching for m
individual trajectories X v for v ∈ {1, . . . ,m}, such that each
trajectory X v starts at pvs , terminates at pvt , and collects
rewards of Ov ⊆ O; and each reward is collected by one
vehicle at maximum, i.e., Oi ∩ Oj = ∅ for any i 6= j,
1 ≤ i, j ≤ m, which can be defined as Problem 2.1.

Problem 2.1 (Multi-Vehicle CEOP):

maximizeXv for v∈{1,...,m} R =

m∑
v=1

kv∑
i=1

r(σvi )

s.t.
T (X v) ≤ Tmax

, (2)

where the budget Tmax represents the maximal flight time.
We further follow the notation of the regular OP, where it

is requested the vehicle starts and terminates at the specified
locations o1 and on, respectively, and thus σ1 = 1 and σk =
n, and δ1 = δn = 0, and also r1 = rn = 0. However,
we consider individual start and terminal locations for each
vehicle v as pvs and pvt , respectively, because of m vehicles.

A detail description of the considered multi-goal trajectory
parametrization using Bézier curves is presented in [5],
and therefore, only a brief overview of how the TTE is
determined is presented here. In particular, we rely on the
trajectory following using the Model Predictive Controller
(MPC) [15] that allows us to consider a simplified model
of the velocity profile with decoupled axes and separated
motion generation [16] with an independent limitation of the
vertical and horizontal movements. For the velocity profile
that satisfies vertical and horizontal limits of the accelerations
and velocities, the utilized MPC guarantees following the
planned trajectory. Hence, we need to determine the velocity

profile, and thus the TTE, for the maximal vertical speed
and corresponding maximal magnitude of the acceleration
in vertical and horizontal axes that are denoted vvert, avert,
vhoriz , and ahoriz in the rest of this paper.

Since the vertical and horizontal axes are separated, the
altitude differences (i.e., the changes of the curve along the
z-axis) are used for computing the vertical velocity profile. In
the horizontal axis, the tangent atan and radial acceleration
arad have to satisfy the horizontal acceleration limit ahoriz

a2tan + a2rad ≤ a2horiz. (3)

The radial acceleration is defined by the horizontal curvature
κhoriz as arad = v2κhoriz . The horizontal curvature also
defines the maximal horizontal velocity along the path

vpos = min
(
vhoriz,

√
ahoriz/κhoriz

)
(4)

and the maximal tangent acceleration

a2tan = a2horiz − v4posκ2horiz. (5)

See [5] for further details and procedure of the TTE deter-
mination for a sequence of Bézier curves.

III. PROPOSED SOLUTION OF THE MULTI-VEHICLE
CEOP WITH BÉZIER CURVES

The introduced multi-vehicle CEOP with Bézier curves
is addressed by the Growing Self-Organizing Array
(GSOA) [13], which is a heuristic procedure based on
unsupervised learning that combines a solution of the se-
quencing part with continuous optimization to determine
the waypoints. The GSOA is a growing array of M nodes
N = {ν1, . . . , νM} that encodes a sequence of visits to
the selected target locations. The learning is an iterative
procedure in which the array adapts to the target locations
and also grows for new target locations added to the solution.
The deployment of the GSOA [13] to a single vehicle
solution of the CEOP with Bézier curves is a modification
of the solution of the CEOP for Dubins vehicle [17], where
instead of Dubins maneuvers, Bézier curves are utilized
similarly as in [5] using the velocity profile and TTE.

In the herein addressed multi-vehicle CEOP, an individual
array of nodes N v is created for each vehicle 1 ≤ v ≤ m.
The arrays (vehicles) then compete to collect rewards from
the objects o ∈ O. Thus, all the arrays are conditionally
adapted to the particular o (if so) and the array adaptation
with the highest increase of the total sum of the rewards (2)
and shortest prolongation of T (X v) is kept and the local
changes to all other arrays are reverted to the state before
the examination of o. The adaptation of N v to the particular
o is a determination of the new node ν∗ as the closest point
po of the trajectory represented by N v to the location o and
movement of ν∗ and its neighbors towards o.

A trajectory of each vehicle is encoded by the array N v

where each node ν ∈ N v is associated to (i) a position in
the input space denoted ν ∈ R3; (ii) the particular object
ν.o ∈ O to be visited; and (iii) the waypoint ν.p ∈ R3

inside the δ-neighborhood of o, i.e., ‖(ν.o, ν.p)‖ ≤ δ(ν.o),



which allows collecting the reward of the object within δ-
radius from o. Besides, the trajectory is a sequence of Bézier
curves, and thus two consecutive nodes νi and νi+1 of N v

define each particular Bézier curve where the waypoints νi.p
and νi+1.p are the curve endpoints. Hence, two additional
control points defining the departure and terminal tangents
are associated to νi and νi+1 that are used for determining
the TTE similarly to the solution of the TSP with Bézier
curves presented in [5]. On the other hand, in the solution
of the OP, each trajectory has to satisfy Tmax, and therefore,
the adaptation of N v to o is conditioned to increase the sum
of the collected rewards R while satisfying Tmax.

Even though a local optimization of Bézier curves is
performed every time a new node is added to N v , it might
not be possible to collect the reward from o unless nodes
associated to less rewarding objects or nodes with relatively
far waypoints are removed from N v , see [17] for further
details. Hence, such nodes are conditionally removed from
the array to shorten the trajectory in the benefit of collecting
the reward of additional o. However, the new node ν∗

conditionally added to N v is preserved only if the trajectory
satisfies Tmax and the solution is improved by collecting more
rewards; otherwise all local changes to N v are discarded.

The unsupervised learning is performed in cmax epochs or
until all rewards are collected. During each epoch, all objects
O are examined in a random order, and thus the learning
procedure can be considered as stochastic search. The arrays
are initialized by the requested start and terminal locations
and for each of m vehicles, the array of the v-th vehicle
is set to N v = {νv1 , νvend} with νv1 = pvs and νvend = pvt .
Because the start and terminal locations are prescribed, the
nodes νv1 and νvend are never removed or changed, and their
waypoints are identical to the node locations νv1 and νvend.

For a single examination of o ∈ O, all the arrays are tried
to adapt to o but only the array with the highest reward
improvement is selected, and the shortest prolongation is
preferred in a case of the same reward; the other arrays
are reverted to the state before examination of o. After
examination of all O (after one learning epoch), all nodes
from the previous epoch are removed from the arrays by
the regenerate() procedure, because only the newly added
nodes with their associated waypoints represent the re-
quested trajectories. Besides, the Local Iterative Optimization
(LIO) [18] is utilized to shorten the Bézier curves for the
all arrays. Then, trajectories represented by the arrays are
extracted, and since the learning is stochastic search, the best
solution found so far is maintained.

The array N v grows by adding new node ν∗ that is
determined as the closest point po of the current trajectory
represented by N v to the particular location o of the exam-
ined object. The trajectory is a sequence of Bézier curves
connecting the waypoints associated to the nodes; hence, po
is on the Bézier curve defined by two consecutive nodes
νi and νi+1; and therefore, new node ν∗ is added to N v

between the nodes νi and νi+1 with the location set to
ν∗ = po. Moreover, the point po is utilized to determine
the waypoint ν∗.p to collect the reward as the farthest

Algorithm 1: Multi-vehicle CEOP with Bézier curves
Input: O = {o1, . . . ,on}; start and terminal locations

(p1s,p
1
t ), . . . , (p

m
s ,p

m
t ); travel budget Tmax

Output: X 1, . . . ,Xm – trajectories visiting subset of O

σ ← 12.41n+ 0.6, α = 0.1, µ← 0.5; c← 1;1

for v ∈ {1, . . . ,m} initialize N v ← (pvs ,p
v
t );

Sbest ← {X 1 . . . ,Xm} for X v ← Extract(N v)
while c ≤ cmax and Rewards(Sbest) <

∑n
i=1 ri do2

foreach v ∈ {1, . . . ,m} do Rv ← 0 end3

foreach object o in a random permutation of O do4

foreach v ∈ {1, . . . ,m} with (Rv,N v) do5

(Rvprev,N v
prev)← (Rv,N v)// Save array6

(p, νi, νi+1)← closestsPoint(N v,o, δ(o))7

Rv,N v ← insert&adapt(N v, νi, νi+1,p)8

vb ← argmax1≤v≤m and Xv≤Tmax

(
Rv −Rvprev

)
9

foreach vehicle v ∈ {1, . . . ,m} \ {vb} do10

(Rv,N v)← (Rvprev,N v
prev) // Revert11

� Update arrays and the best solution found so far12

N v, . . . ,Nm ← regenerate(N 1, . . . ,Nm)13

c← c+ 1 and σ ← (1− α)σ // Decrease gain14

if Rewards(N 1, . . . ,Nm) ≥ Rewards(Sbest) then15

Sbest ← {X 1 . . . ,Xm} for X v ← Extract(N v)16

return Sbest17

point from o on the segment (p,o) that is inside the δ-
neighborhood of o. The new node ν∗ is then adapted towards
ν∗.p together with its neighboring nodes ν ∈ N v that are
in the distance (in the number of nodes) d ≤ 0.2M from
ν∗, where M is the current number of nodes in N v . The
adaptation of the node ν is an update of the node location
ν ← ν+µf(σ, d)(ν∗.p−ν) using the neighboring function
f(σ, d) = exp(−d/σ2), where µ is the learning rate and σ
is the learning gain. Note, the learning gain is initially set to
a sufficiently high value that is decreased after each learning
epoch using the gain decreasing rate denoted α [13]. The
learning procedure is summarized in Algorithm 1.

A solution of the CEOP is available after each learning
epoch, but few epochs are needed to improve the solution.
In particular, cmax = 20 is used for the results reported in
this paper. Regarding the structure of the learning procedure
depicted in Algorithm 1, its computational complexity de-
pends on the number of nodes that depends on the number
of objects n and vehicles m. However, the nodes are dis-
tributed in particular arrays, and therefore, the total number
nodes is always below 2n + 2m because nodes from the
previous epoch are removed in the regenerate() procedure.
Hence, the number of nodes is increased by the number of
vehicles only in the additional 2m nodes corresponding to
the prescribed start and terminal locations of the vehicles.
Thus, the computational complexity of the adaptation to n
objects can be bounded by O(n(n+m)), which also holds for
the whole single learning epoch because the velocity profile
is determined in O(n) [5] and LIO can also be bounded by
O(n) for some small fixed number of iterations [18].



(a) Tmax = 20, m = 1, T = 16.8, R% = 16.3 % (b) Tmax = 20, m = 2, T = 19.5, R% = 33.5 % (c) Tmax = 20, m = 3, T = 18.4, R% = 43.1 %

(d) Tmax = 30, m = 1, T = 28.8, R% = 36.4 % (e) Tmax = 30, m = 2, T = 28.5, R% = 65.9 % (f) Tmax = 30, m = 3, T = 28.7, R% = 77.1 %

(g) Tmax = 40, m = 1, T = 39.4, R% = 54.0 % (h) Tmax = 40, m = 2, T = 39.8, R% = 82.6 % (i) Tmax = 40, m = 3, T = 39.0, R% = 98.8 %

(j) Tmax = 50, m = 1, T = 49.9, R% = 64.5 % (k) Tmax = 50, m = 2, T = 49.6, R% = 95.0 % (l) Tmax = 50, m = 3, T = 47.0, R% = 100.0 %

Fig. 2. Selected best found solutions for the particular Tmax and number of vehicles m, where T = max1≤v≤m T (X v) and R% is the sum of the
collected rewards in the percentage points of the maximal reward Rmax = 250.58.

IV. RESULTS

Due to lack of any other solver capable of solving the
CEOP with Bézier curves, the proposed solver has been
empirically evaluated in 3D instances of the CEOP with
22 target locations with up to six additional locations (5 m
above the ground) where the MAVs start and terminate
their reward collecting tours1. The found solutions have also
been deployed in a real experiment to verify the feasibility
of the planned trajectories, and the results are reported
in Section IV-A. The particular considered velocity and
acceleration limits are vvert = 1ms−1, avert = 1ms−2,
vhoriz = 5ms−1, and ahoriz = 2ms−2.

For the empirical evaluation, we consider Tmax ∈
{20, 30, 40, 50} and m ∈ {1, 2, 3} which gives 12 instances
with n = 22 target locations that are at different altitudes.
Each location has an individual neighborhood radius δi and
reward value ri randomly drawn from the interval δi ∈ [0, 10]
and ri ∈ [0, 20], respectively. The total maximal sum of the

1Problem instances of the addressed Close Enough OP and found solu-
tions are available at https://purl.org/comrob/sw.

rewards in the scenario is 250.58. The proposed solver has
been implemented in C++, compiled by the Clang version
6.0.1 with the -O3 and -march=native flags, and run on a
single core of the Intel i7-6700K CPU running at 4 GHz. The
computational requirements depend on Tmax because small
values allow only a short array with relatively fast evaluation.

TABLE I
SUM OF THE COLLECTED REWARDS FOR THE FOUND SOLUTIONS

Tmax
Best found R Average found Ravg

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

20 40.9 84.1 107.9 38.3 68.8 79.7
30 91.2 165.0 193.1 76.7 114.1 161.6
40 135.3 207.0 247.7 113.2 183.1 234.8
50 161.7 238.2 250.6 147.7 227.5 250.5

Each instance has been solved 20 times for each Tmax
and m, and the sum of the collected rewards R for the
best-found solutions together with the average sum of the
collected rewards Ravg are reported in Table I and Fig. 3.
The best found solutions are visualized in Fig. 2. The

https://purl.org/comrob/sw
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Fig. 3. Influence of the increased Tmax and number of vehicles m to the
sum of the collected rewards and required computational time for the same
scenario with n = 22 and variable sensing range per each target location.

results indicate that increasing Tmax increases the sum of the
collected rewards R similarly as adding more vehicles. The
real computational requirements increase with Tmax, but also
with m. It is mainly because a longer Tmax allows visiting
more locations, and thus more nodes are in the arrays and the
trajectories consist of more Bézier curves for which the used
local optimization is more demanding. More vehicles have
a similar effect as more trajectory segments are evaluated.
A noticeable decrease of the computational requirements can
be seen for Tmax = 50 and m = 3 in which the total travel
budget is sufficiently high to collect all the rewards.

In Fig. 2, it can be seen that for small travel budgets, tra-
jectories at the altitude similar to start and terminal locations
are preferred, which is indicated by the green parts of the
trajectories. For longer Tmax, there is typically one peek to
reach locations at a higher altitude that is visualized by the
red color.
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Fig. 4. Planned and real velocity and acceleration profiles for three vehicles
(each in one column) divided to their horizontal (top) and vertical (bottom)
components for the experiment with Tmax = 45 s and non-mutually crossing
trajectories depicted in Fig. 1.

The optimal solution of the addressed problem is not
available, and therefore, the solution quality can be studied
by the saturation of the velocity and acceleration limits for
which we can assume that a high-quality solution should
quickly reach and keep the maximal velocity. The planned
and real velocity and acceleration profiles are shown in Fig. 4
that have been recorded from the experimental deployment.

It is worth noting that the start and terminal locations

of the vehicles are selected to support a division of the
workspace to particular vehicles, but they are also pragmat-
ically motivated to have sufficient space around the vehicles
for the autonomous take-off and landing. Besides, the loca-
tions also support mutual collision-free trajectories which are
not explicitly guaranteed by the proposed planning approach.
The influence of the local mutual collision avoidance in the
employed MPC [19] is reported in the following section.

A. Real Experimental Deployment

The practical experimental verification of the proposed
solution to the introduced variant of the multi-vehicle CEOP
with Bézier curves has been performed with three iden-
tical MAVs, see Fig. 5. The most important part of the
field deployment is the MPC-based trajectory following
controller [15] which is capable to precisely navigate the
vehicle along the planned trajectory (that satisfies the vehicle
maximal velocity and acceleration limits) using the RTK
GPS. Besides, local collision avoidance is implemented in
the MPC to steer the vehicle to a collision-free trajectory in
a case of nearby vehicles [19]. Therefore, we consider two
solutions of the same problem instance: one without mutually
crossing paths and one with crossing paths, and thus with a
possible collision.

Fig. 5. A snapshot from the real experimental verification of the proposed
solution to the multi-vehicle CEOP with Bézier curves.

For the mutually non-crossing trajectories, only negligible
differences between the planned and real executed trajec-
tories can be seen in Fig. 1. However, for a solution with
the mutually crossing trajectories, the first and third vehicles
have to significantly adjust their trajectories while the second
vehicle follows almost completely the planned trajectory, see
Fig. 6. A combination of the collision avoidance with the
optimal MPC-based trajectory following controller causes
that some of the planned waypoints are missed and not all
planned rewards are collected. The issue can be eventually
addressed by hovering at a location instead of active collision
avoidance, but it will not save the energy which can be very
similar for hovering as for motion, and thus the sum of the
collected rewards would be lower anyway. Hence, we need
guaranteed mutually non-crossing trajectories as a solution to
the multi-vehicle CEOP. Alternatively, a new instance of the
problem reflecting the current situation can be created, and
the mission plan for each particular vehicle can be updated,
for which we need a new solution quickly. Both of these
ideas are considered for our future work.
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Fig. 6. Example of the real execution of the mutually crossing trajectories for m = 3 vehicles. The used MPC-based trajectory following controller
avoids possible collisions; however, it is therefore not possible to follow the whole planned trajectory (dotted), and thus vehicles do not visit all the planned
locations. The not visited locations are marked by small black disks.

V. CONCLUSION

We introduce a novel variant of the multi-vehicle
curvature-constrained multi-goal trajectory planning that is
denoted multi-vehicle Close Enough Orienteering Problem
(CEOP) with Bézier curves. The problem is addressed by a
novel heuristic approach that is based on the unsupervised
learning technique called the GSOA. The proposed solution
leverages on our previous work on the developed GSOA for
routing problems and also on a solution of the problems with
curvature-constrained vehicles, i.e., the CEOP with Dubins
vehicle and CETSP with Bézier curves. Therefore, the main
contributions of the paper are in reporting on the empirical
evaluation and experimental verification of the proposed
approach in several scenarios with up to three vehicles. The
particular problem instances with the found solutions are
made available to support further research on the problem.

Our particular future research directions are motivated
by the raised issue of the local collision avoidance which
may reduce the sum of the collected rewards as it has been
observed in the reported experimental deployment. There-
fore, we plan to extend the proposed solution to guarantee
mutually non-crossing trajectories explicitly, but we also plan
to consider a more general problem formulation to determine
solutions that would be robust to local disturbances and
which can provide initial solution for the fast plan update
because of influences that are not known before the planning
but only during the real mission execution.
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[15] T. Báča, D. Heřt, G. Loianno, M. Saska, and V. Kumar, “Model pre-
dictive trajectory tracking and collision avoidance for reliable outdoor
deployment of unmanned aerial vehicles,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 6753–
6760.

[16] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, Dec
2015.
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