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Abstract— In this paper, we address the problem of finding
cost-efficient three-dimensional paths that satisfy the maximum
allowed curvature and the pitch angle of the vehicle. For any
given initial and final configurations, the problem is decoupled
into finding the horizontal and vertical parts of the path
separately. Although the individual paths are modeled as two-
dimensional Dubins curves using closed-form solutions, the final
3D path is constructed using the proposed local optimization to
find a cost-efficient solution. Moreover, based on the decoupled
approach, we provide a lower bound estimation of the optimal
path that enables us to determine the quality of the found
heuristic solution. The proposed solution has been evaluated
using existing benchmark instances and compared with state-
of-the-art approaches. Based on the reported results and lower
bounds, the proposed approach provides paths close to the
optimal solution while the computational requirements are
in hundreds of microseconds. Besides, the proposed method
provides paths with fewer turns than others, which make them
easier to be followed by the vehicle’s controller.

I. INTRODUCTION

The interest and research in Unmanned Aerial Vehicles
(UAVs) is increasingly growing, mainly due to the decrease
in the cost, weight, size, and improvement in the performance
of actuators, sensors, and computational resources. Also,
considering their full range of applications, these vehicles
address a niche of employment that cannot be fulfilled by
any other mobile robots. In this context, three-dimensional
path planning is a fundamental task for robots moving in
the three-dimensional space, like fixed-wing UAVs but also
underwater gliders [1]. Even though it might be possible for
such robots to navigate in the environment reactively, the
competence of planning efficient paths is an essential feature
for applications such as monitoring and surveillance [2], [3],
[4]. In addition to the requirement that the path must be cost-
efficient (e.g., the shortest or fastest one), the essential goal
is that the path must be feasible by the particular vehicle.
Therefore, it is crucial to determine a path with a minimal
length while still satisfying the vehicle’s motion constraints.
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Fig. 1. Example paths connecting initial and final (goal) configurations by
the Dubins airplane model [5] (red) and the proposed approach (green) for
the problem instance Short 3 defined in Table I.

For fixed-wing vehicles operating in two-dimensional
space, the motion curvature can be limited by a particular
minimum turning radius, and the Dubins vehicle model [6]
can be utilized to determine the optimal maneuver connecting
two locations with the prescribed leaving and arrival angles
of the vehicle. In the case of the generalization of Dubins
maneuver into three-dimensional space, the climb (or dive)
angle is the fundamental constraint that refers to the rate of
the altitude change, and that is severely restricted for some
particular aerial and underwater vehicles.

In this paper, we address the problem of finding a 3D
curvature-constrained path satisfying both (i) the maximum
allowed curvature and (ii) minimum and maximum pitch
angle (hereafter referred to as climb angle). The proposed
methodology is based on the decomposition of the problem
into a separate calculation of 2D paths on horizontal and
vertical planes using optimal Dubins maneuvers [6] with two
separate turning radii. These paths are later combined into
one final feasible 3D path using relatively straightforward,
yet efficient, iterative optimization technique. Moreover,
lower and upper bound estimations of the optimal 3D ma-
neuver are proposed utilizing the same decoupled approach.
Based on the empirical evaluation of the proposed and
state-of-the-art approaches [5], [7], including numerically
found solutions [8], the newly proposed method provides
competitive solutions. Besides, the paths found by the pro-
posed method contain fewer turns in comparison to existing
heuristics, see Fig. 1, which may help a conventional flight
controller to follow the path.

The rest of the paper is structured as follows. The next
section overviews the related work. The used notation, to-
gether with the problem statement, is presented in Section III.
The proposed optimization procedure with lower and upper
bound estimations are described in Section IV. Results on the
numerical analysis are reported in Section V, and concluding
remarks in Section VI.



II. RELATED WORK

The addressed problem is related to the motion planning
for autonomous vehicles that is a subject of many inves-
tigations with several approaches proposed in the litera-
ture [9]. A considerable number of works addressing the
generation of feasible paths for non-holonomic vehicles are
based on heuristic approaches [10] including randomized
sampling-based [11], [12] and evolutionary [13], [14] meth-
ods. Although heuristic methods might provide feasible paths
quickly, it is at the cost of neglecting the path length.

A systematic study of the shortest path for a vehicle with
the limited turning radius has been presented by L. E. Dubins
in 1957 [6]. He proved the optimal curve between two
adjacent points in R2 with the prescribed leaving and arrival
orientation of the vehicle (also called Dubins maneuver)
could be composed only of a straight line segment (S) and
arcs (C) with the minimum turning radius, and two basic
types of the maneuvers exist CSC and CCC.

The original Dubins vehicle model [6] (limited to 2D
space) has been extended into the three-dimensional case
called the Dubins airplane model where, in addition to
the curvature limitation, the climb-rate constraint is also
considered [15]. The Dubins airplane model allows the
climb-rate to be changed abruptly, and thus the resulting
trajectories are not necessarily smooth. Contrarily to the 2D,
there is not a proven closed-form solution in the literature
to obtain the minimum path connecting any two arbitrary
configurations in the 3D space, respecting both curvature and
pitch angle constraints. Therefore, several approaches have
been proposed to tackle this challenging problem.

An approach based on the minimum 2D path between two
configurations in R2 (the projection of the original poses)
is proposed in [16]. The calculated path is then extended
to 3D by incrementing the altitude (z value) linearly along
the previously computed 2D path. However, such a path
might not respect the pitch angle constraint, especially for
configurations that are spatially close in the horizontal plane.

A sub-optimal approach to generate paths between two
3D poses dealing with both curvature and pitch constraints
is proposed in [17]. The final path is considered as a union of
three possible subpaths: two subpaths at the extreme points
to address the pitch angle constraint and one in the middle
of the final path to deal with the horizontal displacement.

The optimal path planning in the 3D is addressed by
the authors of [8] that propose geometrical and numerical
approaches to generate 3D paths. The geometrical approach
only fulfills the curvature constraint [18], while the numerical
approach also incorporates the pitch angle constraint. The
authors claim that their numerical approach provides optimal
solutions for large enough number of samples; however, no
formal proof ensuring the convergence is provided.

In [5], 3D Dubins paths are calculated by adding a helical
path at the beginning or end of the path to respect the
pitch angle constraint. However, initial and final pitch angles
are not taken into account. Similarly, the authors of [7]
present the Real-time Dynamic Dubins-Helix (RDDH), a 3D

Dubins approximation also based on the helical paths. Like
in [17], the resulting path is composed of three subpaths: two
semicircles and a Dubins-Helix added into the final curve.

In the presented work, we follow the idea of utilizing
2D Dubins maneuver; however, contrary to the previous
approaches, the method decouples planning the 3D path
according to its displacement on both horizontal and ver-
tical planes. The method utilizes local optimization of the
horizontal turning radius to prolong the path such that the
maximum curvature and pitch angle constraints are fulfilled,
if necessary. Moreover, based on the proposed decoupled ap-
proach, we propose both lower and upper bound estimations
of the optimal 3D Dubins maneuver that enable us to evaluate
the quality of the heuristically found solutions. Regarding the
results presented in Section V, the proposed method provides
competitive solutions, or even better, while the final paths
contain fewer turns than, e.g., solutions provided by [5].

III. USED NOTATION AND PROBLEM STATEMENT

The problem of finding the 3D optimal path for curvature-
constrained vehicles must consider not only the vehicle’s
position in space but also its departure (arrival) orientation
from the initial (final) location. The notion of the special
Euclidean group SE(n) is therefore utilized to represent the
homeomorphic topological space where the path planning
is performed. Both the minimum turning radius and pitch
angle are addressed, and therefore, the configuration of the
vehicle is denoted as qk ∈ 〈xk, yk, zk, ψk, γk〉 to represent the
pose k in SE(3), where 〈xk, yk, zk〉 are spatial coordinates
of the vehicle, ψk is the vehicle’s heading and γk is the
vehicle’s pitch. Since we consider generations of 2D paths,
the projection of the configuration qk ∈ SE(3) into SE(2)
corresponding with the horizontal XY plane is a function
P(qk) = 〈xk, yk, ψk〉 that maps qk into P(qk) ∈ SE(2). We
further denote the Euclidean magnitude of a vector as | · |,
2D Dubins function proposed in [6] as D(·) and {k}2π for
the modulus after the division of an angle k by 2π.

The addressed path planning problem is considered for
a given obstacle-free environment, where the motion con-
straints impose the only restrictions for the vehicle. The
problem is to determine a minimal smooth regarding the
variation of ψk and γk path from the initial pose qi to the final
pose qf such that the curvature of the path in the horizontal
plane is limited by the minimum turning radius ρmin, and the
pitch angle is constrained in the interval Γ = [γmin, γmax].

The requested path is a parametric curve ~r(t) : [0, 1] →
R3 from the class C1 (the first derivatives of the curve are
continuous) and the ends of the path are constrained by the
initial ~r(0) = qi and final ~r(1) = qf configurations.

Regarding the physics of the vehicle, the curvature κ(t):
Rn→ R+

0 can be defined as the quantity directly proportional
to the lateral acceleration of the robot in the space. The
maximum curvature is thus inversely proportional to the
minimum turning radius ρmin of the curve, and the curvature
function in the horizontal plane can be expressed as

κ(t) =
|ṙ(t)× r̈(t) |
|ṙ(t) |3 . (1)



The vehicle pitch denotes the climb (or dive) angle of
the vehicle, and it is proportional to the ascent (or descent)
rate of the vehicle in R3. Therefore, it is the fundamental
constraint for a vehicle with the bounded angle of the attack,
such as fixed-wing aircraft. The pitch angle is constrained by
the given interval Γ = [γmin, γmax] where particular values of
γmin and γmax depend on many factors such as velocity or
spatial orientation of the vehicle. The feasibility conditions
on the requested path ~r(t) to respect all the considered
motion constraints of the vehicle can be expressed as

κ(t) ≤ ρmin
−1 and γ(t) ∈ Γ. (2)

IV. PROPOSED SOLUTION TO THE 3D PATH PLANNING

The proposed approach to finding a feasible Dubins path
in the three-dimensional space is based on the separation of
the path into its horizontal and vertical parts. The overall
idea is similar to [5], where the horizontal projection of
the final path is computed as the 2D Dubins path, and the
vertical profile is an interpolation between the altitude at the
initial and final location. However, the interpolation might
provide unfeasible paths because abrupt changes in the pitch
angle in [5]. The herein proposed heuristic addresses this
issue by computing the vertical profile, also like the 2D
Dubins path, to ensure a smooth connection at the endpoints.
Thus, it respects both initial and final configurations of the
vehicle, which can be further utilized in multi-goal planning.
Furthermore, the horizontal radius ρh and vertical turning
radius ρv are addressed separately such that the final length
is minimized while the maximally allowed curvature is not
exceeded.

The proposed method consists of two fundamental steps.
Initially, the horizontal curve Dh of the 3D curve is computed
as the 2D Dubins path connecting the projections of qi and qf
into the XY (latero-directional) plane using the horizontal
turning radius ρh. Secondly, the altitude profile of the 3D
curve is also computed as the 2D Dubins path with the
minimum vertical turning radius ρv . In the vertical case, the
configurations are projected into the SZ (longitudinal) plane,
where the axis S represents the traveled horizontal distance,
and the axis Z represents the altitude, i.e., the longitudinal
plane captures the changes in the altitude along the traveled
path in the latero-directional plane, see Fig. 2.

The separation of the original 3D path planning problem
to its horizontal and vertical parts helps to find an effective
heuristic algorithm because of the closed-form expression of
the 2D Dubins curves [6] can found the solution in less than
microsecond as reported in [19]. Formally, the 2D Dubins
curve is the shortest curve D : [0, 1] → SE(2) from the
initial configuration D(0) to the final configuration D(1).

The Dubins path is a continuously differentiable function,
and thus the curve is from the class C1. Let the length of
the curve be L(D) for the rest of the paper, and it can be
defined as

L(D) =

∫ 0

1

∣∣∣ḊXY (t)
∣∣∣ δt, (3)
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Fig. 2. Projection of the 3D curve into the latero-directional (horizontal)
and longitudinal (vertical) planes.

where ḊXY (t) stands for the derivative of the position in
the XY plane defined by the Dubins path D.

Although the original problem is decoupled into two sub-
problems, they are not entirely independent because of the
maximal curvature constraint (2). The curvature depends on
the radii ρh and ρv , and also pitch angle γ because for γ 6= 0,
the horizontal and vertical turns are not perpendicular. The
particular curvature κ can be computed as

κ =
√

cos4(γ) ρ−2h + ρ−2v . (4)

The worst case occurs for γ = 0; then, the following
constrains limits the turning radii independently on γ angle

ρmin
−2 ≥ ρh−2 + ρv

−2. (5)

The procedure to find the decoupled solutions as Dubins
curves Dh and Dv is depicted in Algorithm 1 in which the
method Dubins2D returns the shortest Dubins path for the
requested initial and final configurations in SE(2) and the
specified minimum turning radius [20].

Algorithm 1: Decoupled(qi,qf, ρmin, ρh)

Output: Dh – Horizontal Dubins maneuver
Output: Dv – Vertical Dubins maneuver
//Compute both maneuvers separately

1 Dh ← Dubins2D (〈xi, yi, ψi〉 , 〈xf, yf, ψf〉 , ρh)

2 ρv ←
(
ρ−2min − ρ−2h

)− 1
2

3 Dv ← Dubins2D (〈0, zi, γi〉 , 〈L(Dh), zf , γf 〉 , ρv)
4 return Dh,Dv

The curves determined by the decoupled approach guar-
antee the maximal curvature is not exceeded. However, the
vertical profile given by Dv may violate the pitch angle
constraint (given by Γ) if the straight part of the CSC type
is too steep or if the CCC type occurs. If the length of the
horizontal maneuver L(Dh) is not sufficient to adjust the
altitude with the pitch angle in the range of Γ and meet
initial and final pitch angles γi, γf , the horizontal radius ρh is
increased to prolong the vertical part. The proposed heuristic



for finding the 3D Dubins path consists of the following three
parts that are summarized in Algorithm 2.

1) An initial feasible solution is found such that the
horizontal turning radius ρh is incrementally increased
until the length of the horizontal curve Dh is sufficient
to find its vertical counterpart that is feasible. The
Decoupled procedure listed in Algorithm 1 is utilized
and the feasibility of vertical curve Dv is checked by
the procedure IsFeasible(Dv,Γ) to meet (2).

2) The length of the found path is improved by a local
optimization using the hill-climbing technique such
that the most beneficial horizontal radius ρh is selected.
The optimization is stopped when the step ∆ is less
than a minimum change of the radius ∆min.

3) The final 3D path is constructed as a combination
of horizontal and vertical Dubins curves Dh and Dv ,
respectively.

Algorithm 2: Dubins3D(qi,qf, ρmin,Γ)

Input: qi, qf – Initial and final configurations
Input: ρmin, Γ – Curvature constraint: the minimum

turning radius and allowed pitch angle
Output: ~r(t) – Final 3D Dubins path

1 ρh ← ρmin // Init. horizontal radius ρv
// 1) Increase ρh to get a feasible sol.

2 repeat
3 ρh ← 2 ρh
4 Dh,Dv ← Decoupled(qi,qf, ρmin, ρh)
5 until IsFeasible(Dv,Γ);
// 2) Local optim. of the horiz. radius

6 ∆ = 0.1 ρmin // Init. the update step

7 while |∆| > ∆min do
8 ρ′h ← max(ρmin, ρh + ∆)
9 D′h,D′v ← Decoupled(qi,qf, ρmin, ρ

′
h)

10 if IsFeasible(D′v,Γ) and L(D′v) < L(Dv) then
11 ρh ← ρ′h
12 Dh,Dv ← D′h,D′v
13 ∆← 2 ∆
14 else
15 ∆← −0.1 ∆

// 3) Construct the final path

16 sh ← L(Dh)
17 ~r(t) : t→

〈
DXYh (DSv (t)/sh), DZv (t)

〉
18 return ~r(t)

A. Proposed Lower Bound

In addition to the heuristic solution of the 3D Dubins path,
the proposed decoupled approach can also be utilized for
estimating the lower bound of the optimal path length. The
idea is based on setting both horizontal and vertical turning
radii to their minimal values in Algorithm 1. For the vertical
radius, its minimum value is given by the minimum turning
radius ρmin. On the other hand, the horizontal radius can be
even smaller for γ 6= 0, when the turn is a spiral and the
minimum value ρ̂h can be derived from (4) according to the

maximum absolute value of the pitch angle as

ρ̂h = cos2(max(|γmin|, |γmax|)) ρmin. (6)

Once the minimum turning radii are set, both 2D Dubins
paths can be constructed separately, and the maximum path
length can be selected as the lower bound. However, we can
further tighten the lower bound value for the 2D Dubins
path in the vertical plane by a prolongation of the curve
to meet the pitch angle constraint. Therefore, we introduce
the procedure Vertical that provides the shortest possible
prolongation (or none if not necessary) along the S-axis for
the final configuration given by L(Dh) to create a space for
the altitude change within the pitch angle interval Γ. Such a
prolongation can be found by a closed-form expression, and
thus the proposed lower bound can be computed quickly. The
method is summarized in Algorithm 3.

Algorithm 3: LowerBound(qi,qf, ρmin,Γ)

Output: LB – Lower bound length
1 ρ̂h ← cos2(max(|γmin|, |γmax|))ρmin // Use (6)
2 Dh ← Dubins2D (〈xi, yi, ψi〉 , 〈xf, yf, ψf〉 , ρ̂h)
3 Dv ← Vertical (〈0, zi, γi〉 , 〈L(Dh), zf , γf 〉 , ρmin,Γ)
4 return max (L(Dh),L(Dv))
B. Proposed Upper Bound

The decoupled approach also enables to compute an upper
bound value on the 3D Dubins path length. The heuristic
Algorithm 2 is based on a local optimization that iteratively
computes the decoupled solution; hence, an upper bound
computed from a single decoupled solution can be signif-
icantly less computationally demanding.

Algorithm 4: UpperBound(qi,qf, ρmin,Γ)

Output: UB – Upper bound length
1 if | 〈xi, yi〉 − 〈xf, yf〉 | < 4

√
2 ρmin then

2 return ∞
3 Dh ← Dubins2D

(
〈xi, yi, ψi〉 , 〈xf, yf, ψf〉 ,

√
2 ρmin

)
4 Dv ← Vertical

(
〈0, zi, γi〉 , 〈L(Dh), zf , γf 〉 ,

√
2 ρmin,Γ

)
5 return max (L(Dh),L(Dv))

Particular values of both turning radii need to be selected
to guarantee the curvature constraint is always met. It can
be achieved by setting both radii to the same value which
results in the maximal curvature for γ = 0, i.e., ρh = ρv =√

2 ρmin, see (4). Then, the horizontal and vertical 2D Dubins
curves can be computed in the same manner as for the lower
bound. However, the horizontal distance between the initial
and final configurations need to be at least 4 ρh to guarantee
that the horizontal curve is of the CSC type, which ensures
a feasible solution is always constructible. Otherwise, the
horizontal curve may not be possible to prolong precisely
by a given value because the length of the Dubins curve is a
piecewise-continuous function, and discontinuities occur on
the boundary between CSC and CCC types. Thus, the upper
bound computation is limited to the cases of significantly
apart configurations. The proposed upper bound method is
summarized in Algorithm 4.



V. NUMERICAL ANALYSIS

The proposed method for solving the addressed 3D Dubins
path planning problem has been numerically evaluated using
the existing benchmark instances presented in [7], also listed
in Table I to make the paper self-contained and results
easier to replicate. Instances are divided into two groups
denoted Long and Short depending on the spatial distance
of the initial configuration qi and the final configuration qf
projected into the horizontal plane. For instances from the
Long group, the distance between qi and qf is much longer
than the corresponding difference in zi and zf.

TABLE I
BENCHMARK INSTANCES FOR 3D DUBINS PATH PLANNING PROBLEM

Name qi = 〈xi, yi, zi, ψi, γi〉 qf = 〈xf, yf, zf, ψf, γf〉
Long 1 (200, 500, 200, 180◦,−5◦) (500, 350, 100, 0◦,−5◦)
Long 2 (100,−400, 100, 30◦, 0◦) (500,−700, 0, 150◦, 0◦)
Long 3 (−200, 200, 250, 240◦, 15◦) (500, 800, 0, 45◦, 15◦)
Long 4 (−300, 1200, 350, 160◦, 0◦) (1000, 200, 0, 30◦, 0◦)
Long 5 (−500,−300, 600, 150◦, 10◦) (1200, 900, 100, 300◦, 10◦)

Short 1 (120,−30, 250, 100◦,−10◦) (220, 150, 100, 300◦,−10◦)
Short 2 (380, 230, 200, 30◦, 0◦) (280, 150, 100, 200◦, 0◦)
Short 3 (−80, 10, 250, 20◦, 0◦) (50, 70, 0, 240◦, 0◦)
Short 4 (400,−250, 600, 350◦, 0◦) (600,−150, 300, 150◦, 0◦)
Short 5 (−200,−200, 450, 340◦, 0◦) (−300,−80, 100, 100◦, 0◦)

The same values for the minimum turning radius ρmin =
40 m (defining the maximal path curvature) and pitch angle
interval Γ = [−15◦, 20◦] as in [7] are used in the herein
presented evaluation results. In addition to the proposed
method, the existing approaches Real-time Dynamic Dubins-
Helix (RDDH) [7] and the numerical method proposed in [8]
(denoted Numerical) have been selected for comparison.

Two lower bounds and one upper bound are also included
in the comparison. The first lower bound is denoted LBNum,
and it is computed as the shortest 3D curvature-constrained
path [18] but without considering the limitation on the pitch
angle. The second lower bound (denoted LB) is determined
by the method proposed in Section IV-A, and it is computed
as the longer value of the path length from the separately
computed minimal horizontal and vertical paths. Finally,
the upper bound UB, introduced in Section IV-B, allows
us to quickly estimate the path length for instances with
configurations more than 4ρmin apart in the horizontal plane.

The evaluation results are listed in Table II, where the
%GAP column indicates the relative gap in the percentage
points of the proposed solution to the tighter lower bound
value provided either by the LBNum or by the proposed
LB. In addition, we further distinguish the relative gap
computed only from the proposed lower bound LB and upper
bound UB as GAPb to provide an overview of how quickly
the solution quality can be estimated using the proposed
decoupled approach. The tighter lower bound values are
highlighted in bold similarly as the lowest path length. The
computational requirements TLB, TUB, and T are reporeted
for the implementation1 in Julia 1.2 executed on the Intel
i5-7600K CPU running at up to 4.2 GHz.

1Source codes in Julia language are available at [21], and together with
related software at https://purl.org/comrob/sw.

The results support the efficiency of the proposed decou-
pled approach further accompanied by iterative optimization
of the turning radius. The proposed method outperforms the
other methods for most of the test instances. The proposed
lower bound is tighter for the Short instances than the lower
bound based on [18], which can be considered as more
challenging because, in these instances, additional helical
parts might be needed to reach the final configurations at
relatively high altitude from the initial configurations. The
proposed upper bound provides interesting insights that the
RDDH [7] provides worse results for some cases that indicate
it should be accompanied by the proposed upper bound,
which is computationally efficient.

An example of the determined 3D Dubins path for the
benchmark instance Long 3 accompanied with the visualiza-
tion of the curvature and inclination profiles along the path
are shown in Fig. 3 to demonstrate that the horizontal and
vertical turning radii may have two very different values.
The curvature of the path depends on the particular turn at
the specific part of the path. From the visualized profiles,
it can be seen that there is only a little space for further
optimization of the found 3D path because the pitch angle
is saturated for most of the time. Note that the relative gap
of the path length to the determined lower bound is 0.855%.

A. Discussion

It is worth noting that the results for the Numerical [8] are
adopted from [7], and for some cases, the reported values are
lower than the determined lower bound. Despite an in-depth
investigation of possible errors in the used implementation,
we did not find any error, and it seems the Numerical method
might suffer from numerical stability issues. Besides, for
few cases, the proposed method and also RDDH [7] provide
better results than the Numerical method, which might also
be caused by numerical issues or by an early stop as the
Numerical method is claimed to converge to the optimal
paths. Because of these reasons, the values of the Numerical
method are shown in italic in Table II.

Regarding the computational requirements, the RDDH [7]
is reported to run in tens of microseconds on a Pentium-
class computer running at 2.2 GHz, while the Numerical
method is reported to take about 1.2 minutes in [8]. Our
proposed method runs in hundreds of microseconds, which
is slightly more than RDDH, but it provides better results
in most of the cases and also a relatively tight gap to the
newly introduced lower bound. Thus, the proposed heuristic
method might provide a suitable choice for finding 3D paths
with bounded curvature and pitch angle in real-time with
the estimation of the quality of the found solution using the
proposed tight lower bound.

Moreover, there is another advantage of the proposed
solution that is a generation of paths with fewer turns than,
e.g., using the Dubins airplane model [5]. An example of
such a difference is depicted in Fig. 1. Although the final path
length can be similar, a path with fewer turns may produce
benefits such as being more easily followed by the controller.



TABLE II
LENGTHS OF 3D DUBINS PATHS FOR LONG AND SHORT BENCHMARKING INSTANCES [7]

Name LBNum Proposed lower and upper bounds RDDH Numerical† Proposed Heuristic

[18] LB UB %GAPb TLB [µs] TUB [µs] [7] [8] Length %GAP T [µs]

Long 1 437.86 433.03 490.31 11.682 8.1 7.8 467.70 449.56 446.04 1.834 197.9
Long 2 631.73 621.97 692.39 10.171 7.1 8.0 649.52 636.12 638.45 1.052 137.0
Long 3 1059.20 1043.98 1099.57 5.056 6.9 7.9 1088.10 1063.41 1068.34 0.855 178.8
Long 4 1784.85 1774.27 1833.51 3.231 7.0 8.0 1802.60 1789.21 1788.80 0.221 151.7
Long 5 2213.70 2201.55 2238.40 1.646 7.0 7.4 2245.14 2216.40 2214.54 0.038 184.3

Short 1 299.34 580.70 — — 7.2 0.7 588.60 583.47 580.79 0.015 152.6
Short 2 281.96 667.24 — — 7.7 0.2 667.71 658.53 668.17 0.140 184.9
Short 3 342.52 976.34 — — 8.3 0.2 979.34 968.25 976.79 0.047 262.5
Short 4 422.26 1169.52 — — 7.1 0.8 1169.73 1161.55 1169.80 0.023 228.0
Short 5 437.46 1362.71 — — 7.6 0.2 1367.56 1354.12 1362.91 0.015 193.5

†The values are adopted from [7] and are shown in italic as they depend on the number of intervals taken for the multiple shooting algorithm.
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(a) 3D projection of the found trajectory.
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(b) Computed curvature of the found 3D path (green) with its limit (black).
Dotted lines represent theoretical curvature computed by (4): brown for the
horizontal turn, red for the vertical turn, and blue for the combined turn.
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(c) Pitch angle of the found 3D path (green) with its limits (black).

Fig. 3. Example of the computed 3D path by the proposed heuristic
approach for the instance Long 3. The minimum turning radius ρmin = 40 m
and the limit for the pitch angle Γ = [−15◦, 20◦]. The results are
supplemented with computed curvature and altitude profiles.

The proposed decoupled-based local optimization method
represents a relatively simple, yet efficient approach to
generalize the existing results on 2D Dubins path into the
three-dimensional space while respecting both the maximal
curvature and pitch angle constraints of the vehicle. The
presented methodology has been numerically evaluated using
existing benchmark instances, and the reported results show
that the proposed method is competitive to the optimal
solution [8]. Besides, it also provides paths with fewer turns
than solutions given by other similar state-of-the-art methods
like [5], [7], which provides benefits in the path execution.

The work has several directions to be addressed next.
One of the directions is to extend the technique to consider
environments with obstacles, a scenario that can fit real-
world cases. However, a known problem concerning the
use of Dubins curves is the discontinuity of the curvature
profile, leading to abrupt lateral accelerations. Therefore, we
intend to study possible techniques for generating smoother
variations of acceleration that can be based on other types
of curves such as clothoid [22] or Bézier [23] curves, e.g.,
that have been already utilized in multi-goal planning in
surveillance missions [24].

VI. CONCLUSION

In this paper, we address the problem of finding minimal
three-dimensional Dubins path with bounded curvature and
pitch angle. The proposed method is based on the decoupled
approach to determine two two-dimensional Dubins paths
separately for the horizontal and vertical projections of the
3D final path. The initially generated paths are further im-
proved by a local iterative optimization to decrease the length
of the final path while still guaranteed the path constraints are
met. Moreover, based on the decoupled approach, we propose
a computationally efficient method for estimating both lower
and upper bounds of the optimal path length that enables
to estimate the quality of solutions quickly. Regarding the
reported results, the lower bound seems to be relatively tight
in comparison to the found feasible solutions. Our future
research directions aim to address abrupt lateral accelerations
along the Dubins curves, and thus we plan to investigate
other curve parametrizations.
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