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Abstract— In this paper, we propose a novel dynamic gait
controller for the repetitive behavior of soft robot manipula-
tors performing routine tasks. Compliance with soft robots is
advantageous when the robot interacts with living organisms
and other fragile objects. However, predicting and controlling
repetitive behavior is challenging because of hysteresis and
non-linear dynamics governing the interactions. Existing prior-
free methods track the dynamic state using recurrent neural
networks or rely on known generalized coordinates describing
the robot’s state. We propose to model the interaction induced
by the repetitive behavior as gait dynamics and represent the
dynamic state with Central Pattern Generator (CPG) tracking
the motion phase and thus reduce the complexity of the robot’s
forward model. The proposed method bootstraps an ensemble
of the forward models exploring multiple dynamic contexts that
are expanded as it searches for repetitive motion producing the
target repetitive behavior. The proposed approach is experi-
mentally validated on a pneumatically actuated soft robot arm
I-Support, where the method infers gaits for different targets.

I. INTRODUCTION

The elastic construction of soft robots actuated by pres-

sure [1] or tendons [2] provides infinite degrees of freedom,

inherent dexterity[3], and naturally compliant interaction

with the environment [4]. The soft robot properties expand

the robotic domain by deployments where careful interaction

is needed [5] or in wet environments [6]. Elasticity has

direct advantages for locomotion, where the effectors are

less susceptible to damage and can be non-disruptive to

the environment [7], [8]. However, the behavior of complex

elastic bodies is non-linear. It induces dynamic phenomena,

such as time delay or hysteresis, which represents a great

challenge for dynamic gait control of soft robots [9].

The soft robot control is underactuated and depends on

the dynamic interaction between the elastic body and the

operational environment. Dynamic control requires describ-

ing the robot’s dynamic state, which is generally unknown.

The dynamic state can be inferred from sufficient sensory
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Fig. 1. The I-Support platform and the bootstrapping algorithm diagram. A
network of 8 cameras provides the tip coordinates for motion reconstruction.

observations, such as pose, velocity, and torque of the robot’s

joints [10]. Alternatively, with prior knowledge about the

physical nature of the state, it is possible to track the

system state with the Kalman filter [11]. Without prior

assumption about the state or sufficient sensory observations,

a dynamics model can be trained using the Recurrent Neural

Networks (RNN) [12], [13], thus representing the dynamic

state internally.

The RNN can be trained for arbitrary dynamics but is

computationally and memory intensive. Updating the RNN

for each new data is time intensive, and the model may catas-

trophically forget earlier learned experiences. Even more,

the computationally expensive capacity of the RNN may be

unnecessary for a subclass of general dynamics, where the

robot interacts with the environment using repetitive motion,

the gait dynamics. On the other hand, in the continual learn-

ing paradigm [14], [15], we assume the robot continually

experiences various dynamic contexts, so the robot updates

its knowledge continually.

Therefore, we propose to explore the soft robot dynamics

by bootstrapping algorithm expanding an ensemble of dy-

namic models used to control the gait motion. The proposed

method uses a biologically inspired concept, the Central Pat-

tern Generator (CPG), which is a neural oscillator involved

in animal gait locomotion studied in biomimetic controllers

for gait locomotion [16]. We use the CPG as a dynamic state

estimator, thus decoupling the gait control into phase control

and amplitude control [17], [18]. The Forward Model (FM)

is then composed of a simple CPG model tracking the gait

phase, while the sensory-motor interaction is modeled by a

Feed-forward Neural Network (FNN).

The ensemble of FMs is generated by the bootstrapping

algorithm that explores multiple dynamic contexts for a

given sensory target. In this work, the dynamic context is

determined by the performed gait, and we show that the



perturbation dynamics of each gait differ from the other.

Thus, multiple FMs must be learned to successfully synthe-

size such gait that produces sensory targets. We demonstrate

the proposed method on the soft robot arm, the I-Support [1]

depicted in Fig. 1, which is tasked with reaching a sequence

of given coordinates. The experiments show that the CPG-

based model encodes dynamics sufficiently to reach coor-

dinates reachable only by dynamic motion using open-loop

control. Moreover, we show that the bootstrapped ensemble

can be reutilized for other novel tasks.

II. RELATED WORK

Soft robotics presents many features but challenges for

dynamics modeling and control that the current research

tackles. The published solutions can be categorized by: (i)

the domain to kinematic or dynamic; (ii) prior knowledge as

model-free or model-based; (iii) control approach to direct

policy learning or model-based control. In the presented

short overview of the existing methods, we focus on the

category related to the proposed solution based on learning

the dynamic model (or control) without prior knowledge

about the robot dynamics. For a review of other categories,

we encourage the reader to study [9], [4].

Dynamic motion control can be learned indirectly by

learning the FM utilized in control or directly by learning the

inverse model providing the control policy for each input.

In [2], the authors compared multiple schemes for foam

robot hand control such as Reinforcement Learning (RL) or

supervised neural network learning using the learning data

collected from the finite element simulation. The RL method

was adapted for gait control in [18], where the CPG-based

controller decomposes the closed trajectory into optimized

amplitude and phase. The FM can be directly integrated

into the feedback loop using model predictive control as

demonstrated for trained pneumatic arm controller in [11]. If

the FM is differentiable, the distal learning [19] can exploit

feedback error back-propagation to regulate the control [20].

Both direct control policy learning and FM-based control

rely on online sensory feedback to infer the control policy.

Combining inverse and forward model learning allows the

FM to train the control policy offline. In [12], the RL obtains

a controller for the pneumatically actuated soft robotic arm,

where the controller is trained in an environment simulated

by the FM implemented as an RNN. A similar approach

to the RNN-based FM training is used to develop an I-

Support controller [21]. The controller can be trained by

FMs continually, as shown in [15], where the inverse model

learns novel control policies without forgetting previous

policies. The task of learning of inverse model and FM are

complementary.

The FM has another essential role in ensemble dynamics.

The ensemble of specialized models has physiological evi-

dence [22] where the internal models are activated by their

relevancy to the task. The relevancy assessment is modeled

in [23], where each FM provides performance prediction or

assesses the current estimation error, which regulates the out-

put of the whole ensemble [24]. The proposed bootstrapping

algorithm builds an ensemble to be further utilized in control;

hence, learning the FM is necessary.

The dynamics FM must be able to model the dynamic phe-

nomena, and without sufficient dynamic state observation, it

depends on a sequence of inputs. Thus many dynamic FM

learners implement RNNs [12], [21]. The RNN architecture

can be adapted to the robot morphology as shown in [13],

where each RNN models a part of the soft robot. However,

modeling RNN capabilities require large datasets and are

computationally expensive. An RNN must unroll to predict

whole trajectories (instead of just the next state), which

causes slower prediction and control inference than in the

case of FNNs. The FNN inverse model has continual learning

capabilities, in [15]; however, the RNN-based FM is retrained

every time, forgetting previously learned dynamics. We show

that the dynamics FM can also be implemented as the FNN

and used with a continual learning scheme.

In the present work, we focus on dynamics where the

behavior results from repetitive motion, the gait dynamics.

The gait dynamics model relaxes the task of the general dy-

namics model while keeping the dynamics complex enough,

allowing the robot’s mobility [7], [8], [25]. We show that the

CPG and FNN are sufficient to encode the gait dynamics and

control the soft robot arm to reach the desired behavior and

targets.

III. PROBLEM STATEMENT

For the given T -periodic sensory target y∗(t) = y∗(t+T )∈
R

N , the open-loop controller must produce periodic motor

command u(t) = u(t + T ) ∈ R
M resulting in the sensory

observation y(t) that is close to the sensory target y(t) ≈
y∗(t). We aim for model-based control with a dynamic

forward model estimating the motor command effects

dx

dt
= g(x(t),u(t)), (1)

y(t) = f (x(t),u(t)), (2)

where the dynamic state x is unknown and partially observed

by the sensors y. The dynamic component of the model

corresponds to the dynamic nature of the soft robot, where

hysteresis and non-linear behavior can be expected. Without

prior knowledge, it is hard to identify functions g and f

describing the soft robot arm dynamics. Furthermore, the

dynamic state x can contain infinite-dimensional information

relevant to the robot-environment interaction.

In the presented work, we focus on modeling the repetitive

dynamic behavior induced by repetitive motion, the gait dy-

namics. During undisturbed gait, the motor commands repeat

with the T -period, which entrain the sensory observations to

be T -periodic. We can distinguish two components of the

dynamic state x that influence the sensory-motor relation,

entrained dynamic state x′ and dynamic context c. First, the

entrained state x′ describes an unknown dynamic variable

that is entrained by the motor, and thus it is also T -periodic.

Besides, the dynamic context c reflects a dynamic situation

relevant to the sensory-motor interaction that persists over

multiple gait cycles. Since we focus on the dynamic context



determined by an average gait motion, we can assume the

entrained state and dynamic context represent the hidden

state sufficiently. Their computational representations are

described in the following section.

IV. PROPOSED METHOD

The proposed method iteratively generates forward models

that estimate dynamics induced by perturbing a given gait.

The dynamics are estimated by the FNNs combined with the

CPG providing the state phase awareness. Each generated

model is added to the ensemble, which is used to synthesize

a new gait. The particular building blocks are described in

detail in the following parts of the section.

A. Gait Dynamics Forward Model

During undisturbed gait, the motor command trajectory

u(t) = u(t + T ) creates a closed loop, u0 ¢ R
M; likewise,

the entrained state x′ follows a single loop denoted x′0. The

position on the loop x′ ∈ x′0 can be uniquely represented

by the state phase φ ∈ [0,2π). Thus, as long as the state x′

stays in the vicinity of the loop x′0, the entrained state x′

of the unknown dimensionality can be represented by a one-

dimensional state phase φ . For the state phase estimation,

we can use the simplified mathematical model of the CPG

dφ

dt
= ω + p(t)sin(φ), (3)

where ω is the angular velocity of the estimated phase, and

p(t) = 0 denotes the external input to which the CPG can

synchronize.
The state phase φ is sufficient to describe the state only

when the entrained state x′ is on the loop x′ ∈ x0; however,

if the motor command temporarily changes u(t) ̸∈ u0, the

trajectory x′ can change as well. In practice, the legged agent

sustains its gait by biomechanic properties of the body or

reflexes. Thus, after the regular gait motion is restored, the

state x′ returns to the loop x0. Hence, we focus on such cases

where the following assumption holds.
Assumption 1 (J-Gait Closure Property): A transient mo-

tion perturbation has a transient effect on the sensory obser-

vation that vanishes within J periods.
Assuming J-gait closure, the deviation from the loop x0 at

the time t is a result of the J previous gaits U(t) = {u(τ)|τ ∈
(t −T J, t]}. The state phase φ(t) and the history of J gaits

of the motor commands U(t) describes the current state x′(t)
that is observed by the sensory measurement y(t).

We approximate U(t) by taking discrete samples from

it to keep the FM computationally tractable. The signal is

sampled at the state phases Φk = 2πk/K;k ∈ {1, . . . ,K} with

the granularity K. The sampling time of the kth sampling

phase Φk can be defined as

Φ̃k(t) = max{τ|τ ∈ (t −T, t] : φ(t) = Φk}. (4)

We further define motor embedding as a sequence of com-

mands sampled by the estimated phase µ(t) = (u(Φ̃k))
K
k ∈

R
M×K . The motor history U is then represented by the

window of the last J gait embeddings, Û(t) = (µ(t−Ti))J
i ∈

R
M×K×J .

We estimate the sensory observation with a phase-aware

FM

ŷ(t) = F(Û(t),φ(t)) =
K

∑
k

ϕk(φ(t))Fk(Û(t)), (5)

ϕ(φ)k =

�

1 if k = argmink′(φ −Φk′)
2,

0 else,
(6)

where Fk : RJ×K×M →R
N is a model for the state phase Φk.

The phase model Fk is implemented as the FNN. The gait

dynamics FM denoted F is then implemented as multiple

FNNs switched by the CPG estimated state phase φ .

B. Learning the Forward Model

The FNNs of the FM denoted F are trained by datasets

collected during perturbing the given base gait β ∈ R
M×K

that induces effects in sensory observations. For each gait

cycle, during motor babbling, random noise is added to

the base gait resulting in perturbed gait µ ∈ R
M×K . The

resulting motor embedding µ can be transformed into a

motor command by

u(t) =
K

∑
k

ϕ ′
k(φ(t))µ[k], (7)

ϕ ′
k(φ) =

exp(φ −Φk)
2

∑
K
l exp(φ −Φl)

2
, (8)

where φ is the state phase estimated by the CPG, µ[k] ∈R
M

denotes the motor command at the kth phase, and ϕ ′
k(φ) is

a softmax weight that smooths the transition between the

command phases. The result motor command u(t), sensory

observation y(t), and estimated phase φ(t) are stored into

recording R = (u(t),y(t),φ(t))t1
t0

, where t0 and t1 denote the

start and end of the motor babbling, respectively.
The recording R is used for learning the FM denoted F .

After computing the sampling times (4), the signals y(t)
and u(t) are embedded into the set of triplets D =

{(Ûi,yi,Φk,i)}
|D|
i . Each kth phase model Fk is trained by the

dataset {(Û ,y)|(Û ,y,Φ) ∈ D : Φ = Φk}. The FM denoted F

is then added into ensemble F .

C. Gait Synthesis

The problem is to find such a gait β ∗ that results in

the behavior with the sensor observation y∗(t). First, we

define the evaluation of the gait β as the squared difference

between the target and predicted outcome of J-times repeated

gait, (β )J
j , estimated by the FM denoted F : L(β ;F) =

∑
K
k ||Fk((β )

J
j)−y∗(Φ̃k)||

2, where y∗(Φ̃k) is the sensory target

at the state phase Φk. Let F be a set of the forward

models; then, the loss function can be defined as the average

evaluation

L (β ) =
F

∑
F

wF L(β ;F), (9)

where wF ∈ {0,1} is a parameter set by a model selection

strategy, detailed in Section V. We use Particle Swarm

Optimization (PSO) to minimize the loss function L and

synthesize a new gait β ′.



D. Bootstrapping Forward Model Ensemble

The FM denoted Fc is optimized for the prediction in the

dynamic context c in which the model was trained. In this

work, the dynamic context is determined by the base gait

β c. Therefore, each model Fc is optimized for predicting

sensory-motor interaction during its respective base gait β c.

The FM ensemble F = {Fc}C
c is bootstrapped by repeating

two stages: (i) Gait synthesis and (ii) Model learning.

At the first iteration c = 1, the base gait is set to zero

β 1 = 0. Then, the motor babbling is added during the model

learning, and the FM denoted F1 is trained. The newly

trained model is added into the ensemble F , synthesizing

the next base gait β 2. In consequent iterations, we generate

gait and model sequence (0,F1)→ (β 2,F2) · · · → (βC,FC).
On the time scale of bootstrapping iterations, the algorithm

behaves as an iterative closed-loop controller, where the

record Rc is the feedback that updates the ensemble by

adding a new FM denoted Fc resulting in a new base gait β c.

Since every gait synthesis is performed with respect to the

sensory target y∗(t), we hypothesize that the sequence of

the base gaits β c gradually improves the real performance.

Moreover, the output of the bootstrapping algorithm is then

the FM ensemble F of the size C that can be utilized

for different sensory targets, as shown in the experimental

evaluation presented in the following section.

V. RESULTS

The proposed method was deployed on the I-Support arm

and evaluated in three experiments: (i) trajectory following;

(ii) dynamic reaching for a given point; and (iii) multiple

reaching motion inference. The first two experiments demon-

strate the bootstrapping of multiple CPG-based forward mod-

els that encode and exploit the dynamics of their respective

contexts, see Section V-C and Section V-D, respectively. In

the last experiment described in Section V-E, the trained

bootstrapped ensemble is reused in various tasks showing

that the ensemble has generalization qualities.

A. Experimental Setup

I-Support is a soft robotic arm composed of two con-

nected, individually pneumatically actuated modules with

three pneumatic control signals each; see Fig. 1. Each module

is composed of three coupled pneumatic chambers [1], [26]

that inflate or deflate depending on the pressure set by the

control signal in the range 0kPa to 90kPa. The change in the

chambers’ volume results in a change in the effector pose.

The pose of the I-Support arm was tracked by the Vicon

motion capture system consisting of eight cameras employed

to capture different perspectives of the robot for shape re-

construction and actuator tracking. The tip of each module is

tracked via three Vicon markers placed in isosceles triangular

form. Four additional markers are placed on the support

frame to establish a reference coordination system. Thus, ten

markers were observed by the Vicon’s cameras. The marker

was then post-processed into module tip spatial coordinates;

see Fig. 1 for the coordinate axes.

B. Preliminary Experiments and Hyperparameters Settings

We empirically searched for the controller and boot-

strapping hyperparameters in preliminary experiments. The

embedding granularity was set to K = 8 and the CPG angular

velocity to ω = 4.5rads−1 (measured gait-cycle duration:

T ≈ 1.4s), which produced resonant behavior of the sensory

observation y. The gait-closure parameter J = 3 representing

the sensory estimation computed from the three last gaits was

found sufficient for the estimation and control inference.

Regarding the 3-gait closure, during preliminary experi-

ments, we observed that as the arm performs periodic motion,

the Z coordinates of both segment centroids slowly decrease

over the entire session. Because the non-periodic behavior is

outside of the scope of the proposed model, the Z coordinate

is omitted in the experiments.

The phase models, Fc
k , are implemented1 as the FNN with

the input M×K×J = 144 and output N = 4 sizes. The FNN

has one hidden layer of the size 100 units with the hyperbolic

tangent activation function. The neural network is trained by

Adam with 1000 epochs. The training data was gathered

using motor babbling for 80 gait cycles. The base gaits,

β c ∈R
48, are synthesized by the PSO2 that searched for the

optimum for 500 iterations. The select-last-three

models strategy, wFC−3 = wFC−2 = wFC−1 = 1, was used for

computation of the loss value (9), where C is the bootstrap-

ping iteration. One bootstrapping iteration consisting of the

PSO gait synthesis, data collection, and FM learning was

measured to take 156s on average3.

C. Double-loop Experiment

The I-Support is tasked to reach a set of target locations,

where each must be reached at a certain phase during the gait

cycle; see Fig. 2. For each phase, k, the target XY coordinates

are set for both segments, depicted as green markers in Fig. 2.

Therefore, each segment tip should follow its target trajectory

loop using a periodic motor command, a gait.

We ran the experiment six times for ten bootstrapping

iterations. The base gaits and their result trajectories are

shown for the performed double-loop experiment in Fig. 2,

where we show the early, best, and last iteration of the one

selected experiment. The result of the early iteration shows

no apparent pattern in the command, and only a few observed

trajectory points are close to the target. The later iterations

show a pattern resembling antagonist commands between

chambers of the same segment (u1,u2 or u5,u6), where the

positive peak of one signal co-occurs with a negative peak

of the other. The result trajectories fit better with the target;

the observed trajectory points are close to the target points

of their respective phase.

Bootstrapping improves the base gait after ten iterations

in all six experimental runs. The gradual improvement

of the performance error K−1 ∑
K
k ||y(Φ̃k)− y∗(Φ̃k)||

2 was

1Sklearn library implementation of the multi-layer perceptron regressor
from the https://scikit-learn.org/stable/ is used.

2Pyswarms implementation from https://github.com/

ljvmiranda921/pyswarms was utilized.
3Using Intel Core i7 with 16 GB RAM.

https://scikit-learn.org/stable/
https://github.com/ljvmiranda921/pyswarms
https://github.com/ljvmiranda921/pyswarms


Fig. 2. Double-loop experiment motor-sensory overview for early, best, and
last iterations. Motor commands on top with gait-cycle starts are highlighted
in red. Below are sensory observations, targets, and estimations with phases
indicated by numerals.

Fig. 3. The predicted and measured performance error of the double-loop
experiment.

observed in all six experiments; see Fig. 3. Interestingly,

despite the PSO minimizes the predicted performance error

K−1 ∑
K
k ||ŷ(Φ̃k)− y∗(Φ̃k)||

2, the predicted performance error

is on average higher than the observed performance error.

The estimation error K−1 ∑
K
k ||y(Φ̃k) − ŷ(Φ̃k)||

2 grows

with the difference of the dynamic context. The cross-

evaluation between each cth iteration model Fc and the c′th

iteration dataset Dc′ is visualized in a matrix of the mean

squared estimation errors in Fig. 4. For each model-dataset

pair (c,c′), we evaluate the estimation error and the squared

difference between the base gaits β c and β c′ . Both indicators

are projected into the plot on the right in Fig. 4. The growing

trend, where the estimation error grows with the dynamic

context difference, is apparent. Across all six experimental

runs, the average correlation between the error and context

difference is 0.80±0.04.

Fig. 4. Relation between the dynamic context difference and estimation
error. The mean model estimation error in its dynamic context is 45.24 with
the variance 2.61. The correlation between the dynamic context distance and
estimation error is 0.80 with the variance 0.04.

D. Single-point Experiment – Dynamic reaching

The I-Support was tasked to reach one point with the

distal segment at a particular phase of the gait motion.

The tip of the distal segment should create a trajectory

loop, which reaches the given point in the second phase.

For three different points, the arm was able to optimize

its performance, which can be observed from the results

depicted in Fig. 5.

Fig. 5. Single-point experiment performance progress (left). The progress
of the trajectory point at Φ2 goes beyond the reference point (right). The
final trajectory is visualized in blue.

The exploitation of the dynamic model is demonstrated

by the task that can be solved only by a dynamic motion

as follows. First, a reference point that the I-Support can

reach with static control was measured. Two chambers of

the proximal segment and one chamber of the distal segment

were given maximal pressure (90kPa), and after the arm

settled, the centroid of the distal segment was taken as the

reference point. Then, the arm was manually stretched further

from the resting position, and the tip position was captured

as the target point. The assumption is that reaching the target

point requires dynamic movement, and thus the model must

encode the system dynamics. After 22 iterations, the base

gaits reached the vicinity of the target point, Fig. 5.

We examine the capability of the trained FM denoted

F1 to reproduce dynamic phenomena, particularly the time

delay between the command and the sensory effect. For

the selected phase k of the base gait β 1, the kth command

was randomly changed, and F1 predicted sensory change

for each consequent phase. The experiment was repeated

ten times, and the averages of the consequence magnitude

for each sensory phase are shown in Fig. 6, where we can



Fig. 6. Comparison between predicted and measured time delays. The
color bands highlight the phase delays and the corresponding time delays.

see that the highest sensory response is predicted to occur

after two phases, which corresponds to the time delay of

0.35s. Comparing the auto-correlation between the norms of

u(t) and y(t) ground truth signals, which show covariance

between the control and sensor signals at different times, the

correlation peaks fit the predicted response delay.

E. Single-point Experiment – Ensemble Generalization

Fig. 7. Three different setups reutilizing the trained models.

We examined whether the FMs trained in Section V-

D can be reused for other tasks. We implemented the

select-competent-three models strategy used in loss

(9) computation, which selects three models from the entire

ensemble. For each model, we evaluate the sensory expecta-

tion as ỹc(Φ̃k) = Fc
k (β

c), and we choose three models that

have the sensory expectation closest to the given sensory

target. Such a heuristic allows the gait synthesis to access

the entire ensemble and pick the best FM that knows the

dynamic context. Different manually set targets were tried,

and after the gait synthesis, the robot approached the target

point, as seen in Fig. 7.

VI. DISCUSSION

The I-Support production results in embodiments with

specific dynamics that further change with the soft-material

exhaustion, thus incremental dynamics learning is essential.

The gait dynamics estimated by the proposed CPG-based

FM encode the dynamics sufficiently for synthesizing a gait

that approaches the target trajectory in open-loop control.

Because the optimized gait motion changes each iteration

and the context change increases the estimation errors of

the already learned models, bootstrapping new models is

necessary. Bootstrapping shows performance improvement

in each iteration, and the resulting FM ensemble can be

reutilized for new tasks.

The reutilization of the ensemble opens the possibility of

adding FMs learned during various tasks, thus improving

the overall performance incrementally without forgetting

the previous experience. The strategy of the FM selection

is essential; each FM models its respective dynamic con-

text, some more relevant to the current task than others.

The two proposed strategies, select-last-three and

select-competent-three (introduced in Sections V-

B and V-E, respectively), are intuitive heuristics selecting the

three relevant models, where the relevancy is given either by

novelty or expectation. The heuristics performance and other

strategies in multi-task scenarios should be further examined.

The model training data are generated by motor babbling,

where each iteration uses the same babbling parameters.

Therefore, the dynamics are sampled with the same coarse-

ness, resulting in repeatedly unprecise FMs whose estima-

tions are shown in Fig. 2. Adaptive regulation of the babbling

parameters can improve FM performance.

Adding feedback to the control time scale, as opposed to

the bootstrapping time scale, might improve the performance

three-fold. First, since the FM has a simple FNN architecture,

it can be integrated with a feedback control scheme such

as the distal learning [19] tuning the control online [20].

Second, the estimation error of the FM can be assessed

online, and thus the relevant FM can be selected by the

current best estimator [24]. Thirdly, the feedback can be

integrated into the CPG, thus synchronizing the estimated

phase with observations [17]. The estimated phase can be

shifted, or the angular speed can change through variable

p(t), see (3). Therefore, the dynamic context, gait amplitude,

and phase would adapt to the situation online by adding

feedback. We plan to investigate the benefits of sensory

feedback in our future work.

VII. CONCLUSION

The proposed algorithm for bootstrapping CPG-based FMs

explored the dynamics of I-Support, soft robot arm, and

synthesized gaits approaching a given trajectory. As the

newly synthesized gaits change the dynamic context, the

estimation error grows for the current models, and a new FM

adapts to the new context. This iterative adaptation improves

the overall performance of the ensemble. The result CPG-

based FMs capture dynamic properties, such as time delay,

sufficiently to synthesize a gait dynamically reaching beyond

the farthest steady state point. Moreover, the bootstrapped

ensemble can be reused for novel tasks, where the gait

synthesis selects FMs corresponding to the given target and

generates novel gaits approaching the target. In future work,

we aim to examine ensemble learning in multi-task scenarios

and integrate the sensory feedback into the gait controller.
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