
On Unsupervised Learning based Multi-Goal Path 
Planning for Visiting 3D Regions 

Jan Faigl 
Computational Robotics Laboratory 

Faculty of Electrical Engineering (FEE) 
Czech Technical University in Prague (CTU) 

Technicka 2 Prague Czechia 16627 
faiglj@fel.cvut.cz 

Jindřiška Deckerová 
Computational Robotics Laboratory 

Faculty of Electrical Engineering (FEE) 
Czech Technical University in Prague (CTU) 

Technicka 2 Prague Czechia 16627 
deckejin@fel.cvut.cz 

 
 

ABSTRACT 
In this paper, we report on our early results on deploying 
unsupervised learning technique for solving a multi-goal path 
planning problem to determine a shortest path to visit a given set 
of 3D regions. The addressed problem is motivated by data 
collection missions in which a robotic vehicle is requested to visit 
a set of locations to perform particular measurements. Instead of 
precise visitation of the specified locations, it is allowed to take 
the measurements at the respective distance from the locations, 
and thus save the travel cost by exploiting non-zero sensing radius 
of the vehicle. In particular, the problem is formulated as a 3D 
variant of the Close-Enough Traveling Salesman Problem 
(CETSP), and the proposed approach is based on the recently 
introduced technique called the Growing Self-Organizing Array 
(GSOA). The GSOA is a neural network for routing problems that 
is accompanied with unsupervised learning procedure to 
determine a solution of the TSP-like problems in a finite number 
of learning epochs. Based on the reported results, the proposed 
GSOA-based approach provides competitive or better results than 
existing combinatorial heuristics based on the so-called Steiner 
zones, while the computational requirements are significantly 
lower. 

CCS Concepts 
• Computing methodologies →  Artificial intelligence → 
Planning and scheduling →  Robotic planning • Computing 
methodologies → Machine learning → Learning paradigms → 
Unsupervised learning • Computing methodologies → 
Machine learning → Machine learning approaches → Neural 
networks 
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1. INTRODUCTION 
Having a set of locations to be visited by a robot, the problem to 
find a shortest path to visit all the locations is called multi-goal 
path planning problem (MTP) [1] and it can be formulated as one 
of the most popular combinatorial routing problems, the Traveling 
Salesman Problem (TSP). The TSP is a purely combinatorial 
problem to determine the optimal sequence of visits to the given 
locations, and it is known to be NP-hard, unless P=NP. The TSP 
is an important problem, and it can be considered as a well-
studied problem of operational research with many existing 
approaches [16] including exact, approximate, and heuristic 
algorithms [2]. On the other hand, in complex situations [19], 
such as surveillance and data collection missions [10], it is 
desirable to optimize not only the sequence of visits but also the 
particular configurations (locations) of the visits. Hence, the 
problem becomes more challenging because it contains not only 
the NP-hard combinatorial optimization part but also continuous 
optimization in determining the most suitable points of visits to 
minimize the requested multi-goal path. 

A particular motivation of the herein studied problem is a 
surveillance mission where a robotic vehicle is requested to take a 
snapshot of the object of interest using its downward looking 
camera, and it is sufficient to take a snapshot of the object within 
the field of view of the utilized camera, i.e., considering non-zero 
sensing radius. Then, it is sufficient to visit the location of the 
object of interest within the sensing distance, and thus eventually 
save the travel cost by avoiding precise visitation of the prescribed 
locations. Such a variant of the TSP is called the TSP with 
Neighborhoods (TSPN) in the literature [9] and this problem 
formulation has also been utilized for data collection planning 
[11], robotic environmental monitoring [5, 8], but also sequencing 
problems of robotic manipulators [1, 19]. In general, the 
addressed problem of multi-goal path planning for visiting given 
set of regions can be considered as the TSPN; however, following 
the notation introduced in [15], the problem is rather considered 
as the Close-Enough TSP (CETSP) to emphasize a continuous 
disk-shaped neighborhood with the radius δ. 

The CETSP has been explicitly introduced by the authors of [15] 
to solve data collection planning problem to retrieve monthly data 
about customer utility measures using wireless communication. 
The authors of [15] proposed six heuristics based on determining 
a subset of possible locations of visits (called supernode set) and a 
solution of the regular TSP using the supernode set. Further, the 
CETSP has been extensively studied by Mennell in [17] where he 
proposed series of benchmarks for 2D and 3D problem instances. 
In [17], he reports on the evaluation of 15 heuristics based on the 
previous work on supernode set [7, 5, 15] including a sampling-
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based approach based on an explicit sampling of the 
neighborhoods and transformation of the CETSP to the 
Generalized TSP (GTSP). Although Mennell reports that the best 
solutions are found by the GTSP-based approach, he notes it is too 
computationally demanding, and the best trade-off between the 
solution quality and computational requirements are reported for 
his heuristic solution based on the Steiner zones (SZ), i.e., 
intersections of the respective neighborhoods, further denoted as 
SZ approaches. 

In this paper, we report on early results on deploying recently 
proposed the Growing Self-Organizing Array (GSOA) [13] in a 
solution of the 3D variant of the CETSP. The GSOA can be 
considered as a variant of the unsupervised learning based neural 
network for a solution of various routing problems, and it 
originates in the self-organizing map for the TSP [12] generalized 
for polygonal regions in [14]. Beside the solution of the TSP, the 
same principles as for the solution of the TSP have also been 
deployed in a solution of the orienteering problem in [3] that has 
been further employed in active perception scenarios [4]. 

In the GSOA, a solution of the CETSP is represented as an array 
of nodes that evolves in the input space according to the 
unsupervised learning based adaptation procedure. The centers of 
the regions to be visited are iteratively considered for the 
adaptation of the GSOA, and a new node is created for each such 
a region as the closest point of the path formed by the connected 
nodes in the array. Then, the new node is adapted (moved) 
towards the determined location that is inside the respective δ 
neighborhood of the particular center of the region. The learning 
is performed in learning epochs, where a single learning epoch is 
a presentation of all regions to the GSOA. After each learning 
epoch, only the newly determined nodes are preserved, and all 
other nodes are discarded to balance the number of nodes with the 
number of the regions to be visited. Hence, the preserved nodes 
with their respective associated waypoint locations in the 
particular neighborhood (regions) represent a feasible solution of 
the CETSP because the order of visits is defined by order of the 
nodes in the array. 

Although the GSOA introduced in [13] allows a straightforward 
extension for solving 3D variants of the CETSP directly, only 
results for the planar instances have been reported so far. 
Therefore, in this paper, we report on the early deployment of the 
GSOA for the CETSP [13] in a solution of the selected 
benchmarks of the 3D CETSP proposed in [17]. The achieved 
results are compared with the best performing heuristics based on 
the Steiner zones proposed in [17]. Based on the reported results, 
the proposed GSOA-based solution of the 3D CETSP provides 
solutions of the competitive quality, and in several cases, with 
better results than the best performing heuristics proposed in [17]. 
Moreover, the proposed GSOA approach is significantly less 
computationally demanding. It better scales with the problem size 
and for the largest and complex problems with many overlapping 
regions (neighborhoods) it is up to three orders of magnitude 
faster than the SZ-based approaches. 

The rest of the paper is organized as follows. The formal 
introduction of the addressed problem is presented in the 
following section. A brief overview of the GSOA is presented in 
Section 3 because the same algorithm as for the 2D instances of 
the CETSP proposed in [13] is employed for the solution of the 
3D CETSP, with only minor adjustments for 3D distances. The 
early achieved results in the selected benchmarks for the 3D 
CETSP with the comparison to the SZ based approaches proposed 

in [17] are reported in Section 4. Finally, concluding remarks are 
in Section 5. 

2. PROBLEM FORMULATION 
The addressed problem is multi-goal path planning, where the 
goal is to find a shortest path to visit a given set of 3D regions. 
The problem is formulated as a variant of the Close-Enough 
Traveling Salesman Problem (CETSP) where each region is 
defined by its center and radius δ, and thus the regions are 
spherical. The motivation is arising from data collection planning 
and following the notation utilized in the groundwork [13], we 
consider a given set of 𝑛 locations 𝑆 = ሼ𝒔ଵ, ⋯ , 𝒔௡ሽ, 𝒔௜ ∈ ℝଷ, each 
location possibly with an individual radius 𝛿௜ ∈ ℝ଴ା . Notice if all 𝛿௜ = 0, the problem becomes the regular TSP. The travel cost 
between any two points 𝒑ଵ, 𝒑ଶ ∈ ℝଷ  is the Euclidean 
distance‖ሺ𝒑ଵ, 𝒑ଶሻ‖. 

In the CETSP, a particular region (location) 𝒔௜  is considered 
visited if a point 𝒑௜ of the final path is within 𝛿௜ distance from 𝒔௜, 
i.e., ‖ሺ𝒔௜, 𝒑௜ሻ‖ ≤ 𝛿௜ .Hence, the problem is to determine a 
sequence of visits to the locations that can be expressed as a 
permutation Σ = ሺ𝜎ଵ, ⋯ , 𝜎௡ሻ,  where 1 ≤ 𝜎௜ ≤ 𝑛  and 𝜎௜ ≠ 𝜎௝   for 𝑖 ≠ 𝑗, and the respective waypoints 𝑃 = ሼ𝒑ଵ, ⋯ , 𝒑௡ሽ, 𝒑௜ ∈ ℝଷ, in 
the δ-neighborhood of the particular location, and thus ‖ሺ𝒔௜, 𝒑௜ሻ‖ ≤ 𝛿௜ . Having these preliminaries, the CETSP can be 
formulated as a discrete combinatorial optimization in finding the 
sequence Σ and continuous optimization in finding the waypoint 
locations 𝑃 as follows 

Problem 1 (Close Enough Traveling Salesman Problem) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒ஊ,௉ 𝐿ሺΣ, 𝑃, 𝑆ሻ 

𝐿ሺΣ, 𝑃, 𝑆ሻ = ෍ฮ൫𝒑ఙ೔, 𝒑ఙ೔శభ൯ฮ + ฮ൫𝒑ఙ೙, 𝒑ఙభ൯ฮ௡ିଵ
௜ୀଵ  

subject to 𝑆 = ሼ𝒔ଵ, ⋯ , 𝒔௡ሽ; 𝒔௜ ∈ ℝଷ Σ = ሺ𝜎ଵ, ⋯ , 𝜎௡ሻ;  1 ≤ 𝜎௜ ≤ 𝑛 𝑃 = ሼ𝒑ଵ, ⋯ , 𝒑௡ሽ; 𝒑௜ ∈ ℝଷ 𝒔ఙభ = 𝒔ଵand‖ሺ𝒔௜, 𝒑௜ሻ‖ ≤ 𝛿௜, for 1 ≤ 𝑖 ≤ 𝑛 

For simplicity and without loss of generality, we assume the first 
location 𝒔ଵ is the initial location of the vehicle, and therefore, we 
consider 𝒔ఙభ = 𝒔ଵ . Besides, we can further assume 𝛿ଵ = 0if the 
initial (and final) location of the vehicle is strictly requested to be 
at the particular location. 

3. GSOA FOR 3D CETSP 
The Growing Self-Organizing Array (GSOA) has been introduced 
in [13] together with its evaluation in 2D benchmarks of the 
CETSP. The same algorithm has been directly employed in the 
solution of the 3D instances of the CETSP with the only extension 
of the dimension of the data representation for 3D and the related 
computation of the distances and determination of the locations 
within a spherical neighborhood around each location, which is 
analogical for the disk-shaped neighborhood in 2D. Therefore, 
only a brief overview of the GSOA is presented here to make the 
paper self-contained. 

The GSOA is an array of nodes 𝒩 = ሼ𝜈ଵ, ⋯ , 𝜈ெሽ , which 
represents a solution of the TSP that is accompanied by an 
unsupervised learning procedure. Each node corresponds to a 
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 𝒑௦ outside the δ-neighborhood of 𝒔 𝒑௦ inside the δ-neighborhood of 𝒔 

Figure 1. Principle of determining new node 𝝂∗for 𝒔 with the 
corresponding waypoint location 𝒔𝒑. Adapted from [13]. 

location in the problem space  𝝂௜ ∈ ℝଷ , i.e., 𝝂௜ = ൫𝑥ఔ೔, 𝑦ఔ೔, 𝑧ఔ೔൯ , 
and it is further associated with the particular location to be 
visited 𝒔 ∈ 𝑆  and also waypoint location 𝒑 ∈ ℝଷ inside the 
δ-neighborhood of 𝒔. Thus, a solution of the CETSP as a sequence 
of waypoints can be constructed by traversing the array. 

The learning procedure starts with a single node 𝒩 = ሼ𝜈ଵሽ that is 
initialized, e.g., as the first location 𝒔ଵ . Then, new nodes are 
iteratively determined for all 𝒔 ∈ 𝑆, and each new node is added to 
the array and adapted towards the respective waypoint location. 

During the learning, the GSOA is adapted towards every sensor 
location 𝒔 ∈ 𝑆, and adaptation to all locations is called learning 
epoch. The locations are considered in a random order to avoid 
local optima and for each 𝒔 a new node 𝝂∗is determined as the 
closest point 𝒑௦ of the array to 𝒔. In particular, for an array of 𝑀 
nodes, two nodes 𝝂௜ and 𝝂௜ାଵ form a straight line segment and we 
can iterate through the array and determine the point 𝒑௦  as the 
closest point of the i-th segment ሺ𝝂௜, 𝝂௜ାଵሻ  to 𝒔  that has the 
minimal distance to 𝒔, e.g., as in (1). 𝒑𝒔 = argminଵஸ௜ஸெ‖ሺ𝒑௜ᇱ, 𝒔ሻ‖ subject to 𝒑௜ᇱ ∈ ሺ𝝂௜, 𝝂௜ାଵሻand𝝂ெାଵ = 𝝂ଵ 

(1)

Then, the corresponding waypoint is determined as a point on the 
straight line segment connecting the location and the closest point, ሺ𝒑𝒔, 𝒔ሻ. We can distinguish two cases, see Fig. 1. For 𝒑𝒔 outside 
the δ-neighborhood of𝒔, the waypoint is determined as a point on 
the straight line segment ሺ𝒑𝒔, 𝒔ሻ with the distance from 𝒔 equal to 
the respective radius 𝛿  (the real distance is 𝛿 − 𝜖 , where 𝜖  is a 
small constant), i.e., 𝒔𝒑 = 𝒔 + ሺ𝒑𝒔 − 𝒔ሻ 𝛿 − 𝜖‖ሺ𝒑𝒔, 𝒔ሻ‖ (2)

For 𝒑𝒔  inside the δ-neighborhood, the point 𝒑𝒔  is directly the 
waypoint location itself. 

After determination of𝒑𝒔 , a new node 𝝂∗ = 𝒑𝒔 is added to the 
array and it is together with its neighboring nodes adapted towards 
the waypoint location 𝒔𝒑 with decreasing power of adaptation for 
farther neighbors using the neighboring function 𝑓ሺ𝜎, 𝑑ሻ = ቊ𝑒ష೏మ഑మ for 𝑑 ൏ 0.2𝑀0 otherwise , (3)

where 𝑀 is the number of nodes in the array, 𝜎 is the learning 
gain, 𝑑 is the distance of the adapted node 𝝂 to 𝝂∗ counted in the 
number of nodes in the array. The adaptation is adjustment of the 
node locations according to  

𝝂ᇱ = 𝝂 + 𝜇𝑓ሺ𝜎, 𝑑ሻ൫𝜈∗. 𝒔𝒑 − 𝝂∗൯, (4)

where 𝜇 is the learning rate, 𝑓ሺ𝜎, 𝑑ሻ is the neighboring function (3) 
and 𝜈∗. 𝒔𝒑 is the determined waypoint of the new node 𝝂∗. At the 
end of the learning epoch, each location 𝒔 ∈ 𝑆  is assigned to 
newly determined node added to the array in the current epoch, 
and therefore, all other nodes are removed from the array. Besides, 
the learning parameters are updated to ensure convergence of the 
learning, and the solution is obtained by traversing the array and 
connecting the corresponding waypoints associated with the nodes. 
Then, the best solution found so far is maintained and the learning 
is repeated for the next learning epoch until the GSOA converges 
to a stable solution, which is usually in less than one hundred 
epochs. Finally, the solution is improved using Two-opt heuristic 
[6]. 

The complexity of the single learning epoch can be bounded by 𝑂ሺ𝑛ଶሻfor the 𝑛 number of locations 𝑆. The initial values of the 
learning parameters are 𝛼 = 0.0005 , 𝜇 = 0.6 , and 𝜎  =10. The 
learning gain 𝜎  is updated after each learning epoch as 𝜎 ←ሺ1 − 𝑖𝛼ሻ𝜎 , where 𝑖  is the epoch counter. More details together 
with the computational complexity and convergence analyses can 
be found in [13]. 

4. RESULTS 
The performance of the GSOA in solving 3D instances of the 
CETSP has been evaluated in a series of instances proposed by 
Mennell in [17]. In particular, we consider benchmarks with 
arbitrary δ-neighborhood radius per each location. The 
benchmarks include instances with hundreds of locations up to 
one thousand locations, and thus the reported results provide an 
overview how the algorithms scale with the size of the problem 
and its complexity (regarding overlapping neighborhoods) by 
means of the solution quality and the required computational time. 
The deployed GSOA [13] is compared with the best performing 
heuristics based on the computation of the Steiner zones proposed 
in [17]. The selected heuristics are the SZ2 and SZ3, where the 
SZ3 is more demanding than the SZ2, but it is reported to provide 
high-quality solutions [17]. 

The performance indicators are the solution quality and 
required computational time. The quality is defined by the length 
of the found multi-goal path that is measured as the percentage 
deviation from the reference solution of the best solution value 
among the found solutions and it is denoted %PDB %PDB = 𝐿 − 𝐿௥௘௙𝐿௥௘௙ ⋅ 100%, (5)

where 𝐿௥௘௙ is the best known solution of the particular problem 
instance and 𝐿 is the length of the best solution found among the 
performed trials. The initial value of the reference solutions are 
the best solutions reported in [17]; however, the deployed GSOA 
provides better results in several cases, and therefore, we denote 
the previous reference solutions of [17] as 𝐿௥௘௙ᇱ  and 𝐿௥௘௙ denotes 
the new best solutions among all solutions found by the SZ2, SZ3, 
and GSOA-based solvers in the rest of this paper. 

In addition to %PDB, the percentage deviation from the reference 
of the mean solution value over the performed trials (denoted %PDM ) is computed to measure the robustness of the solver 
similarly as in [13] because the GSOA is a randomized algorithm. 
The %PDM value is computed as 
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%PDM = 𝐿௔௩௚ − 𝐿௥௘௙𝐿௥௘௙ ⋅ 100%, (6)

where 𝐿௔௩௚ is the average solution length among the performed 
trials. 

 

 

Table 1. Computational Results for 3D instances of the 
CETSP with arbitrary radius per each location 

Probl
em 
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ce 

𝑛 𝐿௥௘௙ 𝐿௥௘௙ᇱ SZ2 SZ3  GSOA %P TCPU %P TCPU[  %P %PDTCPU
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_100r
dmRa
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1
0
1 
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59 
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59 

4.
6
1 

8.
45

7 
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1
5 
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 1.
6
7
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5
4
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0
2
4
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2
0
1 
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6 
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5 
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3
1 
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61 
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4
5 
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56 

 0.
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4
1

0.
0
9
1
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_300r
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3
0
1 
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.2
9 
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8 
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1
6 
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.0

56 
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4
4 
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 0.
0
0
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0
0

0.
1
6
6

team4
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d 

4
0
1 
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.6
9 

12
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0 
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1
9 

48
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2 

0.
3
7 
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3 

 0.
0
0
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5
0

0.
3
6
4

team5
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dmRa
d 

5
0
0 
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27 

84
0.

48 

9.
8
6 
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.7

23 

2.
5
9 

66
68
2.7
34 

 0.
0
0

3.
6
1

0.
4
1
9
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dmRa
d 

5
0
1 

10
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.5
2 

10
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.3
5 

1
1.
0
3 
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.0

96 

5.
8
9 

29
26
5.7
81 

 0.
0
0

2.
0
0

0.
4
6
9

kroD 1 21 26 2 84 2 56.  0. 1. 2.

100rd
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0
0
1
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.4
4
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1

3.
0
6
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43 

3.
0
6 

39
6 

0
0

7
5

1
1
7
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1
0
0
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1.

57
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1.

57

1.
8
2
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72

3 

 0.
0
0 

75.
41

0 

 0.
9
6

2.
0
0

0.
0
2
3

lin31
8rdm
Rad 

1
9
5

83
.5
1

84
.4
7

3.
7
2

8.
93

6 

 1.
1
4 
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15.
79

1 

 0.
0
0

2.
9
2

0.
0
4
2

rd400
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ad 

3
1
8

21
89
.4
3

21
89
.4
3

7.
1
8

52
.4

51 

 0.
0
0 
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9.9
31 

 0.
6
8

5.
2
9

0.
1
7
6

pcb44
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Rad 

4
0
0

35
95
.9
7

35
95
.9
7

0.
0
8

13
0.
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5 

 0.
0
0 

10
40.
18

6 

 5.
4
0

6.
5
2

0.
3
7
7

d493r
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d 

4
4
2

25
1.

66

25
8.
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7.
2
8
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.8

46 

 2.
6
8 

46
28.
74

0 

 0.
0
0

1.
2
9

0.
3
4
6

dsj10
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mRad

4
9
3

73
6.

26

76
1.

07

9.
4
4

21
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6 

 3.
3
7 

15
63
2.8
71 

 0.
0
0

2.
6
5

0.
4
5
2

bonus
1000r
dmRa
d 

1
0
0
0

16
52
.3
0

20
74
.8
4

2
5.
5
7

39
.8

64 

 2
5.
5
7 

29.
28

7 

 0.
0
0

2.
2
6

1.
8
1
3

 
Only a single solution is reported for the SZ2 and SZ3 in [17], and 
therefore, the only %PDB is reported for these heuristic methods. 
On the other hand, the GSOA-based solution is found 20 times for 
each particular problem instance, and thus the reported results 
include also the overview of the algorithm robustness measured as %PDM. 

The computational requirements are measured as the real required 
computational time denoted as TCPUreport in seconds. The GSOA 
is implemented in C++, and all the reported results have been 
found using a single core of the Intel i5-5200U processor running 
at 2.2 GHz that is about 1.57 times faster than the reported results 
for the SZ2 and SZ3 [17] obtained using the Intel Pentium E2220 
processor according to single thread rating [18]. Therefore, the 
reported required computational times in [17] are divided by 1.6 
to make the herein presented computational times comparable 
with the computational times of the GSOA achieved by the 
different computational environment. 

It is worth mentioning that computation of the Steiner zones in the 
3D is much more computationally demanding than for the 2D. It 
is not the case of the unsupervised learning in the GSOA, where 
only 3D Euclidean distances are computed together with 
intersections of the straight line segments with a sphere (instead of 

circle); hence, it can be expected the computational requirements 
are only slightly changed in comparison to the solution of the 2D 
instances of the CETSP reported in [13]. 

The results on 3D instances of the CETSP with arbitrary radii per 
each location [17] are listed in Table 1. Selected best solutions 
found by the GSOA are visualized in Fig. 2–Fig. 4 with and 
without visualization of the respective spherical neighborhoods to 
improve clarity of the complex solutions in 3D scenarios. 

The employed GSOA provides new best solutions for most of the 
evaluated instances of the 3D CETSP, which is indicated by the 
highlighted values of 𝐿௥௘௙ and also by the respective zero values 
of %PDB in Table 1. Moreover, computational times are below 
one second except for two cases with one thousand locations. 
Therefore the GSOA is significantly less computationally 
demanding than the heuristics based on the Steiner zones [17]. 
Regarding the results for 2D instances of the CETSP reported in 
[13], the extension of the GSOA from 2D to 3D instances seems 
to be computationally negligible which is not the case of the SZ 
approaches. The online sampling of the possible waypoint 
locations during the unsupervised learning is the main benefit of 
the GSOA-based approach in comparison to the explicit 
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computation of the Steiner zones, which is computationally very 
demanding for the 3D instances. 

With neighborhoods Without neighborhoods

Figure 2. Best found solution of the rd400rdmRad problem 
with 𝑳 = 𝟑𝟕𝟓𝟗. 𝟕𝟔. 

With neighborhoods Without neighborhoods

Figure 3. Best found solution of the team1_100rdmRad 
problem with 𝑳 = 𝟗𝟐𝟐. 𝟕𝟏. 

 

With neighborhoods Without neighborhoods

Figure 4. Best found solution of the team4_400rdmRad 
problem with 𝑳 = 𝟏𝟐𝟕𝟓. 𝟔𝟗. 

5. CONCLUSION 
In this paper, we report on the deployment of the unsupervised 
learning based approach called the Growing Self-Organizing 
Array (GSOA) for routing problems in a solution of the 3D 
instances of the CETSP. The GSOA for 2D instances is directly 
deployed with a straightforward extension to 3D that consists only 
of computing distances in R3 and intersections of straight line 
segments with a sphere. Based on the reported results, the GSOA 
seems to be vital also for a solution of the 3D scenarios, where it 
provides competitive solutions with significantly lower 
computational requirements. In our future work, we plan to 
thoroughly evaluate the performance of the GSOA in all available 
3D benchmarks proposed in [17] but also in other scenarios 
motivated by multi-goal path planning for visiting 3D regions, e.g., 
[19]. Besides, we plan to investigate the cases where the SZ-based 
approaches provide better results than the GSOA with the aim to 
eventually combine the benefits of both the unsupervised learning 
based and combinatorial heuristic approaches in a single solver. 
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