
Mixed Reality Simulation for Incremental Development
of Multi-UAV Systems

Martin Selecký, Jan Faigl, Milan Rollo

Abstract— Development of complex multi-robot systems re-
quires time-consuming and expensive testing and, especially
in a case of unmanned aerial systems, it aggregates risk of
hardware failures and legal issues when operating more than
one unmanned aircraft simultaneously. It is highly favorable
to deal with most of the eventual design flaws and system
bugs before the final field tests in a simulation where the risks
are significantly lower. On the other hand, the fidelity of the
simulation needs to rise as the system development approaches
the final stages and since some phenomena are difficult to be
modeled precisely, a partial embodiment of the simulation in the
physical world is necessary. In this paper, we present our results
in the utilization of mixed reality simulation for incremental
development of multi-UAV systems. We present three use cases
where this method was used for development of various systems
to show its versatility: (i) an unmanned system consisting of
heterogeneous team of autonomous unmanned aircraft; (ii) a
system for verification of collision avoidance methods among
fixed wing UAVs; and (iii) a system for planning collision-free
paths for light-sport aircraft.

I. INTRODUCTION

Development and verification of algorithms for command
and control of heterogeneous robot teams is a complicated
task since there is a lot of complex issues that need to
be taken into account [1]. Some of them, like complex
interactions among the team members, can be modeled with
the help of multi-agent simulations and software simulations
[2], [3]. However, since the goal of the development process
is to deploy the algorithms in the real-world, software
agent simulations by themselves are no longer appropriate.
Effects of real world phenomena like those of the weather,
communication issues, sensor and actuator errors or limited
computational resources, which are difficult to model on high
fidelity levels, need to be verified on real hardware assets.

Experiments were done in a virtual world and in the real
world, both have their limits and justifications [4]. Simula-
tions are much easier to set up and repeat; they can be easily
used to model a basic functionality of the developed system
and allow quick observation of the results. Simulations can
be used to study effects of various environmental phenomena
by modifying only specific environmental conditions and
fixing others and thus removing possible sources of noise.
Experiments in virtual environments can significantly save
costs in cases of malfunctions and accidents.

On the other hand, it is challenging to incorporate all
sources of inputs from the real world for realistic modeling
of the behavior of the developed system. That is why the real

Authors are with the Czech Technical University, Faculty of Elec-
trical Engineering, Technicka 2, 166 27, Prague, Czech Republic
{selecmar|faiglj|rollom}@fel.cvut.cz

Fig. 1. Aerial vehicles used in practical deployment of the proposed method

world experiments should be an obligatory step for obtaining
realistic results in later stages of development of a robotic
system and for validating the robotic software’s robustness
before it is deployed in real missions.

Mixed Reality (MR) simulations [5] present the world
where both the virtual and real objects and the virtual and
real entities can co-exist and interact in real time. The MR
concept allows the system developers to get more insight
into the behavior of the entities (e.g., by visualization of
their inner states) and to perform much cheaper and safer
experiments with a part of the system being real and the
other part virtualized. MR simulations also relieve simulators
from recreating complete worlds since the simulation occurs
partially in the real world where certain phenomena, such as
noise and complex physics, do not need to be modeled.

A. Overview and Contribution

This paper reports on practical usage of the method for
incremental development of HART (for human, agent, and
robot teams) applications originally introduced in [1] and
multilayer architecture for incremental development of com-
plex unmanned aerial systems (UASs) [6]. The method and
architecture have been employed in the development process
of different aviation applications showing the versatility of
the methods for UASs in research and development projects
funded by Czech Ministry of Defence, U.S. Air Force
Research Lab, and U.S. Army CERDEC, and also utilized
for the development of an assistant system for light-sport
aircraft pilots. An overview of aerial vehicles for which the
method has been utilized is shown in Figure 1.

2017 International Conference on
Unmanned Aircraft Systems (ICUAS)
June 13-16, 2017, Miami, FL, USA

978-1-5090-4494-8/17/$31.00 ©2017 IEEE 1530

The first presented use case is an unmanned system
consisting of a heterogeneous team of autonomous unmanned
aircraft, which is capable of performing complex tactical
missions such as team area surveillance, target tracking or
critical infrastructure protection and performing dynamic
mission reconfiguration in case of change of the mission
or number of available assets. The second application is a
system for verification of cooperative, communication-based
collision avoidance methods among fixed wing UAVs, where
the system was incrementally deployed on two Lockheed
Martin’s Desert Hawk III aircraft. Finally, the third appli-
cation is a system for increasing flight safety of light-sport
aircraft for which a combination of negotiation among air-
craft, cooperative, and non-cooperative methods of collision
avoidance and trajectory planning algorithms were used to
recommend the best collision-free trajectories for pilot or
autopilot of light-sport aircraft.

After relating the presented approaches to the respective
research fields in Section II, the remainder of this contri-
bution is structured as follows. Section III describes the
proposed multilayer architecture used for the incremental
development of UAS together with options for virtualization
of individual system layers, and various development stages
that every such a system should go through during its devel-
opment. Section IV presents the developed aviation systems
and shows how they utilize the multilayer architecture. In
Section V, the experience, and lessons learned from the
system deployment are summarized. Section VI gives a
conclusion of the achieved results.

II. RELATED WORK

Simulations are commonly used to develop complex sys-
tems since they can speed up the development process and
save costs on hardware since they allow to early discover,
isolate and correct potential implementation issues. Mutter
et al. [7] mentioned two approaches to a simulator devel-
opment: (i) the software-in-the-loop (SIL), where all system
components (sensors, actuators, aircraft, etc.) are simulated
using mathematical models and (ii) hardware-in-the-loop
(HIL), where only some (or none) system parts are simulated
and other elements are replaced by real hardware. Examples
of simulators using SIL approach can be found in [8], [2].
HIL approach is taken, e.g., by Goktogan et al. [9], Day et
al. [10], and Pizetta et al. [11] to name few approaches.

This paper describes a utilization of the HIL approach
extended to take benefits of MR simulations for incremental
development of complex UAS and assistant system for pilots
of light-sport aircraft. Therefore, in this section, we report
on the related work in these research areas.

As for approaches to develop and deploy complex multi-
UAV systems, Burkle et al. [12] introduced deployment of
control mechanisms for teams of hardware Vertical Take-Off
and Landing (VTOL) micro-UAVs, Scerri et al. [13] designed
a system for deployment of multi-agent technology for UAV
coordination to an industrially developed applications, and
most recently, e.g., Sanchez-Lopez et al. [14] presented a

multipurpose system architecture for autonomous multi-UAV
platforms with basic high-level planning features.

As for systems for light-sports aircraft operation, there are
existing off-the-shelve autopilots that can hold level flight
and change aircraft heading to the next waypoint. These
control systems are still subject of research and improvement
[15]. The actual trend in this field is equipping the aircraft
with Electronic Flight Instrument System (EFIS) with “glass
cockpit” that integrates avionic sensors into one digital
instrument [16] that allows for adding further functions [17],
[18]. Haberkorn et al. [19] studied options and efficiency
of methods for cooperative and non-cooperative detection
(TCAS – Traffic Collision Avoidance System, PCAS –
Portable Collision Avoidance System) of other aircraft for
collision prevention and there have been projects dealing
with increasing pilot’s awareness of surrounding air traffic
[20], [21].

One of the first notions of MR simulations used for devel-
opment of mobile robots was presented by Chen et al. [5].
The authors used MR simulation tool based on the 3D robot
simulator Gazebo in a single robot scenario to demonstrate
advantages of combining real entity and simulated objects for
robotic system development. Later, in [22], the same authors
showed that MR simulations can help to provide efficient
testing, identify improvements to the UAV controller, and
provide valuable insights into the UAV system performance
that would be otherwise difficult to obtain in real world tests.
Honig et al. [4] used MR simulations together with robotic
simulators, showed that these simulations can provide many
advantages for research and development in robotics, and
supported their findings by use-cases with nano quadcopters.

One of the most recent approaches to formal dealing with
the issues of development of complex robotic systems has
been proposed by Jakob et al. in [1]. They came up with a
concept of incremental multi-level development of complex
systems by a use of mixed-reality test-beds. The authors
defined levels of virtualization as the extent to which parts
of the target application setup are replaced with synthetic
computational models in a given test-bed configuration. They
proposed to begin development with a fully virtual system
with all agents purely simulated and move to the configu-
ration with no virtualization level by iterating through the
space of test-bed configurations in a direction that depended
on the development cost of the particular iteration step.

The architecture presented here builds on ideas of [1]
that were generalized for incremental implementation of HW
subsystems in MR simulation system. It allows incremental
development of systems of multiple autonomous entities
and based on its generality, it provides a universal method
applicable for the development of systems of various types,
as it is shown further in this paper.

III. ARCHITECTURE FOR INCREMENTAL SYSTEM
DEVELOPMENT

The architecture has been first introduced in [6] and
already used for development of multi-UAV systems con-
sisting of fixed wing aircraft [23], [24]. It is a seven-

1531

HMI

Reasoning

Communication

Sensors

Autopilot

Asset

Environment

Fig. 2. Modular architecture for multi-robotics system development

layer structure that modularizes a multi-robot system into
individual subsystems. These modules can be represented by
a real hardware or by a software model with various levels
of virtualization. By a combination of these real and virtual
modules in MR simulations, we can gradually decrease the
virtualization level of the whole system by adding hardware
parts and thus efficiently develop various complex multi-
robot systems.

There are two main parts of the development method: (i) a
multi-layer architecture of various virtualization levels; and
(ii) various stages that determine the virtualization levels of
the layers during development together with the process of
verification of correct behavior on each level.

A. Design layers

The herein presented method uses a seven-layer archi-
tecture that is shown in Figure 2 together with schematic
indication of interactions among individual subsystems. The
architecture layers starting from the bottom are as follows.

1. Environment layer represents the environment in which
all the assets or agents exist. It subsumes real environment
if the virtualization level of at least one agent is such that
it can sense or move in the real world, and it contains a
simulation server that has a model of a virtual world (with
the defined terrain, weather or entities obtained from third
party systems). Simulation server can use the information
from real assets to enhance the virtual world model with
real world data.

2. Asset Layer defines the flight dynamics of the entities
in the system and their physical behavior in the environment,
i.e., how the environmental forces affect the state of the
entity.

3. Autopilot Layer represents the behavior of the autopi-
lots. Entities can be equipped either by hardware autopilots
(in such case this layer implements the protocols to com-
municate with the autopilots) or by a set of algorithms and
control loops that simulate the autopilot.

4. Sensory Layer specifies the payload that is deployed
on the assets, such as camera, LiDAR, ADS-B, etc. Either

Sensors

Communication

Autopilot

Flightxdynamics
Preprogrammedxsimplexbehavior
Flightxsimulator
Flightxinxrealxworld

Autopilotxmodel
HWxautopilot

Sensorxmodel
Realxsensor

Localxobjectxexchange
Messagexexchangexviaxwiredxnetwork

MessagexexchangexviaxRFxmodems
RFxsignalxpropagationxmodel

Virtualizationxlevels

Environment
Environmentxmodel
Controlledxenvironment
Realxenvironment

Fig. 3. Virtualization levels of the system layers

real hardware devices or their models can be used. In the
case of mixed-reality scenarios where both hardware and
virtual sensors are used, the information from real sensors is
passed through the simulation server to the simulated sensors
and vice versa. This way, developers can increase both the
scalability of the scenario and the simulation’s fidelity.

5. Communication Layer is used for a message exchange
and also defines a set of communication protocols, such
as various interaction protocols (e.g., FIPA protocols [25]),
routing protocols for Mobile Ad-hoc NETworks (MANETs)
or protocols of the message transport (handshakes, etc.).
Exchange of messages between entities with a different level
of virtualization (i.e., between those with hardware and those
with virtual communication infrastructure) is handled by the
same means as other mixed-reality data exchanges – on the
level of the simulation server.

6. Reasoning Layer defines algorithms for high-level
control, coordination, decision making, mission planning,
and execution monitoring. This is a pure software layer, and
as such, it is the same for all agents independent of their
virtualization level.

7. HMI Layer is the uppermost layer used by the system
operators to command and control the assets and to visualize
mission data.

The realization of the bottom five layers depends on the
virtualization level of entities used in the testing scenario
and can vary from simulated models to the utilization of
hardware equipment. Possible variations of individual levels
can be seen in Figure 3. More details about the individual
layers and the subsystems their represent have been presented
in [6].

B. Development Stages

During the development of an autonomous multi-UAV
system, the very system must pass through several stages that
differ in the utilized level of virtualization of their system

1532

Application´sTEnvironmentControlledTEnvironment

Simulation Simulation

VirtualTScenario HILTScenario

Simulation

Mixed-RealityTScenario

Simulation

HWTTestT HWTApplication

a) b) c)

d) e)

ControlledTEnvironment

Fig. 4. Consecutive scenario stages of a development process

layers. These development stages are represented by the
following scenarios and schematically depicted in Figure 4.

Purely virtual scenarios (see Figure 4a), where the envi-
ronment of agents is represented solely by the simulation
server with no mixed reality feeds. The UAV assets are
modeled by simple software behaviors, and they are equipped
only with simulated sensors. This setting is most suitable for
early stages of development where the system fidelity is not
yet so important, and it is used for high-level system design
and validation.

Mixed-reality scenarios, where at least one layer of the
proposed architecture in one of the assets is virtual, and at
least one layer consists of physical hardware. Depending
on the virtualization level, the mixed reality scenarios can
range from groups of agents with some simulated and some
hardware layers (Hardware-in-the-loop (HIL) configuration),
see Figure 4b, to groups where fully simulated agents interact
with others that are fully hardware deployed1 (Figure 4c)). In
the case of an HIL configuration, the most frequently virtu-
alized layers are the Asset layer and Environment layer, that
are usually replaced by a flight simulator, since utilization
of hardware assets is the most costly part, and outdoor flight
tests are very time and resource consuming.

Fully deployed hardware field tests are such where all
the agents are embodied by hardware assets of various types
with real sensors, on-board computers and data modems
under controlled conditions and operator and developers
supervision (Figure 4d). This setting corresponds to the
desired final stage of the UAS where all the assets operate
in the real world in a distributed autonomous fashion with
the minimal requirements on a human operator. Carrying out
the flight test in this configuration is the most demanding in
costs, time and risk taken. This type of scenarios does not
scale well because of the price of the overall setting, and
because of the limitations posed by communication medium
bandwidth, legislation, and safety requirements.

Fully deployed hardware application (Figure 4e) is the
final stage of the unmanned system development, where the
system is deployed in the real application. System settings
do not differ from the previous stage; however, the condi-

1By fully hardware deployed entity it is meant an entity with none of
its mission-critical parts virtualized that can be still equipped with virtual
sensors for reception of simulation-based feeds.

Actual level

Identify required
tests

Determine pass
criteria

Execute tests

Evaluate results

passed

Move to next level

Decrease
virtualization

Identify & Solve
problems

not
passed

Fig. 5. Steps for verification of individual virtualization levels

tions are not controlled anymore. The system needs to be
operational in all situations required by the application, such
as various weather and light conditions, battery management
needs to be solved (either by automatic exchange or recharge)
and safety and legal issues need to be taken care of. Exhaus-
tive field testing must precede this final system stage.

As the system has to pass through multiple virtualization
levels during its development, it has to be verified on
each such level before moving to the next one. Verification
procedure ensures that eventual design or implementation
errors are found and resolved and that the system is ready
to proceed to further virtualization decrement. Individual
verification steps for a given virtualization level are depicted
in Figure 5.

At each virtualization level, we first need to identify re-
quired system behavior, fidelity features, and corresponding
tests needed for a transition to the next level. Next, criteria
for passing these tests based on the requirements should be
set. If after the execution of the proposed tests and evaluation
of their results the pass criteria are not met, it is necessary
to identify and resolve the problems causing test failures and
re-run the tests. Otherwise, if all the tests pass, it is possible
to move to the next level and decrease the virtualization of
the system.

IV. CASE STUDIES

A. Heterogeneous Team of Autonomous UAVs

The method and architecture presented above have been
used for development of unmanned system consisting of
heterogeneous team of autonomous UAVs capable of per-
forming complex tactical missions such as team area surveil-
lance, target tracking or critical infrastructure protection
and performing dynamic mission reconfiguration in case of
change of the mission or number of available assets, the
parts of which has been already described in [24], [6], [26].
Individual layers of the architecture and their inner content
are shown in Figure 6. Note that the first five layers can
be mixed up with both real and simulated parts to allow
incremental development in MR simulation.

We have performed series of experiments with fixed wing
and VTOL rotary UAVs to verify the architecture. These

1533

FlightWDynamicsWModel

Simulation
Server

PixhawkKestrel

Autopilot

SIMWAutopilot

Asset

Environment

HWWAssets

Rotary
Aircraft

Fixed
Wing

Comm

Reasoning

Sensors

Terrain
Obstacles
Weather

PlanWExecution
Feedback

HWWComms

Microhard Xbee jjj
WiFi Bluetooth jjj

XGeoWfencing.
TrajectoryWPlanning

CollisionWAvoidance SecurityWPolicy

ComplexWMissions

ISTAR SLAM CIP

MissionW
Control

Visualization
HMI

SIMWComms

SignalWPropagation
Model

3rdWparty
entities

SIMWSensors RGBWCamera FlightWControlWSensors

Fig. 6. Architecture of the system for command and control of autonomous
UAVs

experiments started from the pure simulation of all assets
and environment. Next, we run indoor hardware-in-the-loop
simulations with real modems and autopilots with simulated
sensory inputs and flight dynamics. We implemented inter-
action protocols for autopilots used (i.e., Kestrel, Pixhawk).
Next, we performed field experiments in MR simulations
with one hardware UAV and several virtual ones. Finally, we
experimented with multiple fully deployed hardware assets,
following the incremental development of HART application
as specified in [1]. This incremental implementation of HW
subsystems allowed less flight test hours for one and mainly
two aircraft flying simultaneously. The proposed methodol-
ogy has been found advantageous because of deployment
cost because the tests were executed once they were neces-
sary for the verification of the particular virtualization levels.

The system was deployed on real hardware UAVs ac-
cording to the scheme shown in Figure 7. It is divided
into two parts: (i) on-board agent control and reasoning;
and (ii) ground control station (GCS) with mission control,
simulation, and visualization. The first part runs on an on-
board computer that is connected to all sensory payload,
directly to an autopilot to allow waypoint upload, and to
the data modem for team coordination and communication
with the operator.

Fig. 7. Scheme of multi-UAV system deployment

Fig. 8. Flight tests of multi-UAV system

The GCS part runs all optional virtual UAVs together
with the simulated environment if necessary, and is used for
the mission assignment and visualization. Third party GCS
software (Mission Planner, Virtual Cockpit, UGCS, etc.) can
be connected for safety reasons and extended visualization
options. For further improvement of the operation safety and
for legal reasons the system allows to overtake control of
each UAV by a pilot with the Remote Controller (RC).

The most significant difference among the experimental
stages and one of the tests required for transfer between in-
dividual development stages were communication bandwidth
and delay. The bandwidth has to be wide enough to transmit
plans, commands, telemetry, and other data required for a
proper system behavior and transmission delay had to be
small enough to provide good response time and well-timed
collision avoidance. The minimal bandwidth and maximal
delays were estimated in simulated scenarios with a variable
number of UAVs and tasks performed. The communication
delay manifested itself as: (i) the delay between operator’s
command and the beginning of the mission execution; and
(ii) the amount of time before possible collision when the
collision avoidance planners start to re-plan the trajectories.
Note that each UAV should be informed about any pos-
sible collision 50 seconds ahead because of periodic plan
broadcast. Variable delays were caused by different data-
link throughputs in every development stage. Together with

1534

TABLE I
DATA-LINK QUALITY IN DIFFERENT DEVELOPMENT STAGES.

System Data-link
spec

Throughput
[Mbps]

Mission
execution
delay [ms]

Collision
Avoidance
delay [s]

Sim
localhost
TCP/IP
sockets

650.0 10 50

HIL RF modems
in lab 30 300.0 48

HW RF modems
in the field 0.5 1500 40

the requirements on bandwidth, and available budget, these
characteristics were used to select suitable communication
hardware. Since cheap XBee modules shown unsatisfactory
for our purposes because of their range and available band-
width, Microhard nVIP2400 RF modems were used, and
their effects on throughput and delays are shown in Table I.

B. System for Verification of Collision Avoidance Methods

The presented development method has also been de-
ployed in a project with U.S. Airforce Research Lab (AFRL),
Quanterion Solutions Inc., and NUAIR alliance, where it was
used to enable high-level command and control of multiple
fixed wing aircraft Desert Hawk III. The emphasis here
was placed on training the system operators, flight safety
in shared airspace and verification of cooperative collision
avoidance among aircraft where the testing was crucial for
achieving desired reliability.

This system is similar to the first one, and also the
individual layers of the architecture and their inner content
are similar to those in Figure 6. Increased safety requirements
lead to usage of extra RC as well as extra GCS with
proprietary third party software (Virtual Cockpit) in the HMI
layer for every single UAV and a common GCS for multi-
agent command and control. Also, a new autopilot proto-
col (AFRL’s Common Communications Client for Payload
Operations (C3PO)) had to be implemented and tested, see
Figure 9.

It should be noted, that the system was not deployed and
operated by us, but by members of Quanterion Solutions
with our remote assistance only. This refers to simplicity and
portability of the resulting system. Figure 10 shows Desert
Hawk III launch and field test setting.

During this project, there was an extensive hardware-
in-the-loop testing phase, not only for the development
reasons but also for system operators to get familiar with
it safely. These operators provided feedback that resulted
in changes in the HMI layer and integration of third party
software for monitoring and visualization (Virtual Cockpit2

software). Also, since communication based cooperative col-
lision avoidance techniques were to be tested, verification of

2http://www.lockheedmartin.com/us/products/procerus/kestrel-
autopilot.html

Fig. 9. Scheme of system deployment on Desert Hawks

Fig. 10. Flight tests with Desert Hawks III

communication devices, particularly the sufficiency of their
range and reliability was performed.

C. Safefly - System for Flight Safety of Light-Sport Aircraft

The last herein reported use case where the architecture
for incremental development has been used is the Safefly
project that aimed to build a system for increasing flight
safety of light-sport aircraft. A combination of negotiation
among aircraft, cooperative, and non-cooperative methods of
collision avoidance and trajectory planning algorithms were
employed to prepare and recommend the best collision-free
trajectories for pilot or eventually upload them to an autopilot
of light-sport aircraft if possible.

1535

Fig. 11. Architecture of the system for light sport aircraft control with
hardware components used for its realization

The system consists of multiple hardware parts that were
selected to satisfy needs of the final system on computational
power, communication bandwidth, size, and weight.

• TL-1000 Integra - an electronic flight instrument sys-
tem (EFIS) that integrates all primary flight instruments,
navigation, and 3-D terrain, together with glass cockpit
for various visualization options and autopilot options
for pitch and roll control. Integra systems were inte-
grated into two light-sport planes Tecnam P-2002 Sierra
and connected with the other system parts.

• Zaon PCAS XRX - a passive collision avoidance system
that uses amplitude and phase shift of other aircraft’s
transponder responses to estimate their presence and
position. Since a great majority of civil aircraft is
equipped with a transponder, this system provides non-
cooperative detection of surrounding aircraft.

• Microhard n920F - an RF module for cooperative plan
exchange and negotiation of evasion maneuvers among
aircraft equipped with the Safefly system. It is also used
to transmit mixed reality data and information to/from
GCS.

• Gumstix Overo FireStorm - an onboard ARM compu-
tational unit that is connected to all the other system
parts and runs the reasoning algorithms for planning,
collision avoidance, and negotiation.

The individual layers of the architecture and their inner
content are shown in Figure 11 where the simulated parts of
the layers are omitted because they are similar to those in
Figure 6.

Fig. 12. Model of P-2002 Sierra utilizing BADA performance character-
istics used for MR simulations

20

10

-10

-20
3-1-2-3 1 2

1 2 3

Fig. 13. Plan visualization in Integra Glass Cockpit used for situation
awareness (in red are depicted Zaon observations and orange is a trajectory
of near cooperating aircraft) and flight path recommendations (blue line)

Accordingly to the concept of the incremental devel-
opment, we firstly prepared a flight dynamics model of
Tecnam aircraft based on their BADA performance char-
acteristics [27] and tested planning and collision avoidance
maneuvers in pure simulation, see Figure 12. Later, a model
of Zaon PCAS, based on its theoretical characteristics stated
by the manufacturer was integrated into the system to provide
for non-cooperative collision avoidance. After that, we ob-
tained a simulation of the Integra EFIS from its manufacturer
and prepared interaction protocols to upload plan waypoints
to glass cockpit / autopilot.

In the next stage, we tested individual physical modules
for reliability, bandwidth and range of RF modems, real
behavior of the Zaon PCAS, and interaction with the pilots in
various situations to verify the suitability of the modules and
to increase the precision of the respective software models.
After a discussion with pilots, we have designed a plan
visualization widget (Figure 13) to be shown in the glass
cockpit together with other flight data that would help them
in following the provided best collision-free path.

Next, we deployed the Safefly system on one of the
experimental Tecnam planes (see Figure 14), fed it with
data of a virtual plane in MR simulation and observed
pilot reactions on plan recommendations. After integration
of pilots’ feedback into the system and solving the raised
hardware issues, we finally fully deployed the system on
two experimental planes.

V. LESSONS LEARNED

The incremental development strategy with the use of MR
simulation shown itself useful in all the presented projects.
MR simulation provided valuable insights into the systems
that would be otherwise difficult to obtain in regular real

1536

Fig. 14. Aircraft pilot panel with integrated Safefly system – build-in EFIS
Integra, Zaon PCAS with GPS on the flight panel and rest of the system
integrated under the panel

world tests. The most valuable lessons learned are summa-
rized in the following paragraphs.

A. Re-use of system modules

The modular architecture enables re-use of many system
modules in different projects even if they are of different
type (e.g., communication protocols, planning and collision
avoidance methods, etc.) and can save time and effort when
searching for hardware requirements since they were already
estimated before. For example, the communication device
and onboard computers in the Safefly system were selected
based on our measurements of system requirements from
previous projects.

B. Interchangeable modules

Using MR simulation with incremental decreasing of
virtualization level makes replacement of individual system
parts a straightforward task. This was the case in the Safefly
project because the manufacturer of Zaon XRX PCAS device
stopped its production and support and some of its alterna-
tives have to be used (e.g., PowerFLARM). Integration to the
system requires just implementation of the device interface
and its step by step verification in particular development
stages.

C. Incremental training of system operators

MR simulations can significantly help final system opera-
tors in getting familiar with the system without legal issues
and risk of damage to hardware or third party property. They
can utilize incremental decreasing of virtualization level to
get familiar with the system step by step. This is especially
useful for aerial systems where the risks and legal issues are
of the high importance, as was found in the AFRL project
in which the operators requested extensive hardware-in-the-
loop testing.

D. Localization of problems

Incremental development helps in the localization of prob-
lems that would not appear in purely SW simulation, and that
would be difficult to isolate in the fully deployed complex
system, e.g., autopilot behavior during path following, or
effect of delays in the communication.

E. Bridging development delays

In a case of a cooperation of multiple parties on a project,
such as the Safefly project, the MR simulation shown itself
useful for substituting delayed hardware parts. During the
project, there were significant periods when we were waiting
for software or hardware delivery from our project partners.
In these cases, virtualization and modeling of individual
system layers shown to be beneficial since they were used
as a substitute for the hardware without the need to delay
further system development.

F. Problematic wireless communication modeling

MR simulations are difficult to be used for study wireless
communication related issues. The problem here is that
even if the virtual entities use hardware RF modems to
communicate with the physical entities, and thus contribute
to the common bandwidth use, the fact that locations of the
modems do not correspond to the assumed locations of the
virtual entities cause incorrect assumptions on the RF signal
propagation. We would like to address this issue in our future
work.

VI. CONCLUSION

In this paper, a methodology for incremental development
and verification of complex multi-robot systems used in a
number of UAS projects is presented. Universality of this
method is demonstrated by its utilization for building three
different aviation applications: (i) a system for command
and control of heterogeneous team of autonomous unmanned
aircraft; (ii) a system for verification of collision avoidance
methods of third party’s unmanned aircraft; and (iii) an
assistant system for pilots of light-sport aircraft that should
increase their situation awareness and safety through recom-
mendations of collision-free flight paths.

ACKNOWLEDGMENT

The presented work has been supported by the Czech
Science Foundation (GAČR) under research project No. 16-
24206S, Ministry of Agriculture of the Czech Republic under
contract No. QJ1520187, and by the Technology Agency of
the Czech Republic under project No. TA01030847.

REFERENCES

[1] M. Jakob, M. Pěchouček, M. Čáp, P. Novák, and O. Vaněk, “Mixed-
reality testbeds for incremental development of HART applications,”
IEEE Intelligent Systems, vol. 27, no. 2, pp. 19–25, 2012.

[2] R. Garcia and L. Barnes, “Multi-UAV simulator utilizing x-plane,”
in Selected papers from the 2nd International Symposium on UAVs,
Reno, Nevada, USA June 8-10, 2009, pp. 393–406.

[3] A. Komenda, J. Vokřı́nek, M. Čáp, and M. Pěchouček, “Developing
multiagent algorithms for tactical missions using simulation,” IEEE
Intelligent Systems, vol. 28, no. 1, pp. 42–49, 2013.

[4] W. Honig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian,
“Mixed reality for robotics,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2015, pp. 5382–5387.

[5] I. Chen, B. MacDonald, and B. Wunsche, “Mixed reality simulation
for mobile robots,” in IEEE International Conference on Robotics and
Automation (ICRA), 2009, pp. 232–237.

[6] M. Selecký, M. Rollo, P. Losiewicz, J. Reade, and N. Maida, “Frame-
work for incremental development of complex unmanned aircraft
systems,” in Integrated Communication, Navigation, and Surveillance
Conference (ICNS). IEEE, 2015, pp. J3–1.

1537

[7] F. Mutter, S. Gareis, B. Schatz, A. Bayha, F. Gruneis, M. Kanis,
and D. Koss, “Model-driven in-the-loop validation: Simulation-based
testing of UAV software using virtual environments,” in 18th IEEE
International Conference and Workshops on Engineering of Computer
Based Systems (ECBS), 2011, pp. 269–275.

[8] S. Demers, P. Gopalakrishnan, and L. Kant, “A generic solution to
software-in-the-loop,” in Military Communications Conference (MIL-
COM). IEEE, 2007, pp. 1–6.

[9] A. Goktogan and S. Sukkarieh, “Distributed simulation and middle-
ware for networked UAS,” in Unmanned Aircraft Systems, 2008, pp.
331–357.

[10] M. Day, M. Clement, J. Russo, D. Davis, and T. Chung, “Multi-
uav software systems and simulation architecture,” in International
Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 426–
435.

[11] I. Pizetta, A. Brandao, and M. Sarcinelli-Filho, “A hardware-in-the-
loop platform for rotary-wing unmanned aerial vehicles,” Journal of
Intelligent & Robotic Systems, vol. 84, no. 725, pp. 725–743, 2016.

[12] A. Burkle, F. Segor, and M. Kollman, “Towards autonomous micro
UAV swarms,” Journal of Intelligent & Robotic Systems, vol. 61, no. 1,
pp. 339–353, 2011.

[13] P. Scerri, T. Von Gonten, G. Fudge, S. Owens, and K. Sycara,
“Transitioning multiagent technology to UAV applications,” in Inter-
national Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS): Industrial track, 2008, pp. 89–96.

[14] J. Sanchez-Lopez, J. Pestana, P. de la Puente, and P. Campoy, “A
reliable open-source system architecture for the fast designing and
prototyping of autonomous multi-uav systems: Simulation and experi-
mentation,” Journal of Intelligent & Robotic Systems, vol. 84, no. 1-4,
pp. 779–797, 2016.

[15] P. Chudy, P. Dittrich, and P. Rzucidlo, “HIL simulation of a light air-
craft flight control system,” IEEE/AIAA 31st Digital Avionics Systems
Conference (DASC), pp. 6D1–1, 2012.

[16] M. Aydemir, “Design and implementation of a compact avionics in-
strument for light aviation,” Turkish Journal of Electrical Engineering
& Computer Sciences, vol. 24, no. 5, 2016.

[17] P. Pačes, T. Levora, O. Bruna, J. Popelka, and J. Mlejnek, “Integrated
modular avionics onboard of small airplanes: Fiction or reality?” in
IEEE/AIAA 30th Digital Avionics Systems Conference (DASC), 2011,
pp. 7A1–1.

[18] K. Rydlo, P. Rzucidlo, and P. Chudy, “Simulation and prototyping of
FCS for sport aircraft,” Aircraft Engineering and Aerospace Technol-
ogy, vol. 85, no. 6, pp. 475–486, 2013.

[19] T. Haberkorn, I. Koglbauer, R. Braunstingl, and B. Prehofer, “Require-
ments for future collision avoidance systems in visual flight: a human-
centered approach,” IEEE Transactions on Human-Machine Systems,
vol. 43, no. 6, pp. 583–594, 2013.

[20] J. Pellebergs and Aeronautics, “The MIDCAS project,” Saab Aero-
nautics, 2012.

[21] C. Munoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, M. Con-
siglio, and J. Chamberlain, “DAIDALUS: detect and avoid alerting
logic for unmanned systems,” in IEEE/AIAA 34th Digital Avionics
Systems Conference (DASC), 2015, pp. 5A1–1.

[22] I. Chen, B. MacDonald, and B. Wunsche, “Evaluating the effectiveness
of mixed reality simulations for developing uav systems,” in Inter-
national Conference on Simulation, Modeling, and Programming for
Autonomous Robots, 2012, pp. 388–399.

[23] M. Selecký and T. Meiser, “Integration of autonomous UAVs into
multi-agent simulation,” Acta Polytechnica, vol. 52, no. 5, pp. 93–99,
2012.

[24] M. Selecký, M. Štolba, T. Meiser, M. Čáp, A. Komenda, M. Rollo,
J. Vokřı́nek, and M. Pěchouček, “Deployment of multi-agent algo-
rithms for tactical operations on UAV hardware,” in International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS),
2013, pp. 1407–1408.

[25] L. Chiariglione. (2001) FIPA: Foundation for intelligent physical
agents. [cited 5 May 2017]. [Online]. Available: http://www.fipa.org

[26] M. Selecký and M. Rollo, “Distributed control of heterogeneous
team of autonomous uavs,” in Proceedings of EXPONENTIAL 2016:
Association for Unmanned Vehicle Systems (AUVSI), 2016, pp. 707–
717.

[27] A. Nuic, D. Poles, and V. Mouillet, “Bada: An advanced aircraft
performance model for present and future atm systems,” International
Journal of Adaptive Control and Signal Processing, vol. 24, no. 10,
pp. 850–866, 2010.

1538

