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Abstract—In this work, we are proposing a collision avoidance
system for a hexapod crawling robot based on the detection of
intercepting objects using the Lobula giant movement detector
(LGMD) connected directly to the locomotion control unit based
on the Central pattern generator (CPG). We have designed and
experimentally verified the proposed approach that maps the
output of the LGMD directly on the locomotion control param-
eters of the CPG. The results of the experimental verification
of the system with real mobile hexapod crawling robot support
the feasibility of the proposed approach in collision avoidance
scenarios.

I. INTRODUCTION

Collision avoidance within the context of autonomous mo-
bile robots has been a subject of studies ever since the mobile
robots appear, because the ability to navigate from one place
to another comes hand in hand with the need of the mobile
system to interact with physical objects and entities along a
robot’s path. It is desirable to avoid contact with fixed or
moving objects while en route because such a contact might
have fatal consequences for the mission the robot is performing
or even for the robotic platform itself.

In this paper, we concern a biologically inspired neural-
based locomotion control to develop a collision avoidance
system for a legged walking robot. In particular, we utilize
a Central pattern generator (CPG) for the locomotion control
together with the vision-based collision avoidance approach
for the interception detection using the Lobula giant movement
detector (LGMD) to enable collision avoidance behavior of
a hexapod walking robot, thus enhance the capabilities of
mobile robots and their autonomous operations in an unknown
terrain. Moreover, the proposed combination of biologically
inspired approaches is conceptually simple, easily deployable
on computationally constrained robotic hardware, and it has
already shown promising results when deployed on different
robotic platforms [1], [2].

The overall structure of the proposed system is depicted in
Fig. 1. The proposed solution builds on our previous work [3]
on chaotic oscillator-based CPG for motion control of the
hexapod walking robot. In [3], we propose a locomotion con-
troller that can parametrize any given trajectory by adjusting
only two input parameters, the turning radius turn and the
period of the oscillations p that in fact allows selecting a
different type of the robot motion gait. In this work, we extend
our previous work by visual feedback, which allows adjusting

Fig. 1. Overview of the control system structure

the parameter turn online as the robot is crawling through
the environment, and thus prevent collisions with obstacles.
The LGMD neural network processes the visual data and gets
stimulated whenever there is an object interfering with the
robot’s path. A decision rule is applied to adapt the motion
control parameter turn to alter the robot behavior and avoid
a collision. The proposed approach has been experimentally
verified with a real walking robot while the specific discrete
nature of the legged locomotion makes the task very different
in comparison to wheeled [1] or flying [2] robots for which
the LGMD has been already utilized. The main difference
originate in the abrupt motions of the camera induced by
the locomotion which negatively influence the output of the
collision avoiding visual pathway.

The paper is organized as follows. Section II lists the most
relevant approaches on the neural-based collision avoidance
for mobile robots. Section III describes the individual building
blocks of the proposed architecture in detail. Results on the
experimental evaluation of the proposed system deployed on
the real hexapod walking robot are detailed in Section IV. The
concluding remarks and discussion are dedicated to Section V.

II. RELATED WORK

Two basic building blocks can be identified in the structure
of the proposed control system. The first one is the CPG-based
locomotion controller for the hexapod walking robot based on
the combination of neural based chaotic oscillator and post
processor which shapes the output of the oscillator to be used
for the direct control of individual robot limbs. The second



building block is the collision avoidance system based on
the LGMD neural network. Since these building blocks have
been pre-selected, a brief overview of the existing approaches
is commented in this section to advocate a suitability and
advantages of the selected approaches.

Biologically inspired strategies based on CPGs have already
been utilized in a control of the legged locomotion. In general,
the CPG is a neural network that produces patterned rhyth-
mical outputs that are responsible for breathing, walking, and
other repetitive processes in animals and insects [4], [5]. There
are many ways of achieving patterned output [6], [7], [8], [9]
which is either directly processed by neural networks with the
motoneurons as the output layer [10], [11] or post-processed
and transformed to the individual joint angles using inverse
kinematics [12].

Most commonly used CPG implementations are based on
non-linear oscillators (NLO), which are not strictly biolog-
ically based, but share many common characteristics with
biophysical models. Among them the Matsuoka NLO [13],
implementing the half center principle: extensor and flexor
neurons inhibiting each other with an adaptation mechanism, is
the prevalent one. The Matsuoka model was successfully sim-
ulated and implemented in hexapod [12], [14], quadruped [15],
and biped walking [16]. Our CPG-based locomotion controller
is based on an NLO proposed in [10] but uses different post-
processing for shaping the output signal [3].

The most relevant neural-based collision avoidance systems
include earlier work on LGMD published in [1], [17], and [2].
In [1], the authors describe the LGMD model for a collision
avoidance and deploy the system on a wheeled robot moving
in an arena. The behavior of the LGMD is studied for different
speeds of the mobile robot. In the recent work [17], the LGMD
is compared to the directional selective neurons (DSN) which
are both to be found in the visual pathways of insects, in
the ability to avoid collisions. The presented results show
that the LGMD can be trained to outperform the DSN in the
collision recognition ability. The LGMD collision avoidance
has also been considered for the collision avoidance of a Blimp
UAV in [2]. Note, all of the above mentioned approaches
experimentally verify the collision avoidance with a real robot
either in a closed arena where it is necessary to avoid collisions
with walls or in a scenario where a static robot is supposed
to detect an intercepting object. In this paper, we consider the
LGMD on a different robot (hexapod walking robot) and in a
different setup, the robot is requested to reach its goal location
and avoid obstacles on its pathway.

Regarding our target scenario, the most relevant approach
to the proposed solution has been presented in [18]. The
authors use a bio-inspired collision avoidance approach based
on the extraction of nearness information from the visual
motion to detect obstacles and avoid collisions. The whole
system allows a simulated hexapod robot to navigate cluttered
environment while actively avoiding obstacles. In comparison
to their work, we are using a different neural-based approach
for detecting a possible collision. Moreover, we utilize a neural
based locomotion controller. We also emphasize the real-world

practical verification of our approach while the dynamics of
the walking robot makes the whole task more complicated than
the simulation framework used in [18].

III. PROPOSED SOLUTION

The proposed solution of the reactive hexapod agent consists
of two main parts. The first part is the hexapod locomotion
control based on the chaotic oscillator [3], [10], [19] control-
ling the walking pattern and solving the kinematics. It allows
to change the type of the motion gait and steer the robot motion
according to the input signal defining the turning radius.
The second part is the LGMD neural network, which is a
biologically inspired system for avoiding approaching objects
and triggering escape behavior [20], [21]. The main idea of
the proposed approach is to use the LGMD for setting the
hexapod control parameters, in particular, the turning radius
of the robot.

Fig. 1 shows the overall structure of the proposed solution,
where the orange blocks belong to the locomotion control
system whereas the green blocks represent the visual pathway
for the obstacle avoidance mechanism. The goal of the pro-
posed solution is to close the feedback loop from controlling
the actuators (orange blocks) with the observations of the
environment (green blocks) to achieve an obstacle avoidance
behavior. Therefore, the most important part of the proposed
approach is to set parameters of the LGMD for the particular
walking pattern that would allow the hexapod to safely avoid
obstacles on its path. Along with the LGMD parameters, a
suitable mapping function Φ has to be found, which transforms
the LGMD output to the locomotion control parameters

Φ : X → turn, (1)

where X is the range of the vision system output and turn
is the locomotion control parameter determining the turning
radius of the hexapod. The individual building blocks and the
proposed solutions are detailed in the following sections.

A. Hexapod Locomotion Control

The locomotion control is based on a chaotic CPG consist-
ing of two interconnected neurons with a control input com-
puted solely based on the input period p [3]. The control input
stabilizes a periodic orbit of p from the chaotic oscillation so
the output is a discrete periodic signal. Period p ∈ {4, 6, 8, 12}
directly determines the resulting walking pattern (gait): tripod,
ripple, tetrapod, and wave, respectively [22].

The output of the chaotic oscillator is shaped and post-
processed in order to obtain signal usable for a trajectory
generator and to determine the phase of individual legs,
i.e., whether the leg is swinging or supporting the body.
Fig. 2 visualizes the output of the chaotic CPG together with
individual steps of the post-processing pipeline. The top plot
shows the oscillations before stabilization (blue lines) and
after stabilizing the periodic orbit (red line) where the dots
are the individual states of the oscillator (for p = 6 there
are 6 states) for the first x1(t) and second x2(t) neuron. For
further processing, the difference of the second neuron output
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Fig. 2. CPG patterned output generation and post-processing

x2(t) and its delayed value x2(t−1) is passed through a time
window function, which samples and holds the value only if
mod (t, 13) = 0 to achieve smoother leg movement. Then, the
output is thresholded and a triangle wave alternating between
−1 and 1 is produced, where the upslope (swing phase) is a
constant and the downslope (support phase) depends on the
period p. Based on the leg coordination rules [23], individual
delays are applied to the triangular wave per each leg to
produce the rhythmic pattern for each leg based on one CPG.
In other words, there is only one CPG for the robot and by
delaying and shaping its output a control signal is produced
for each leg.

The result of the post-processing module is fed into a
trajectory generator, which determines the position of foot-
tips according to the input signal along with the parameter
turn, which is obtained by the mapping function Φ. The turn
parameter is equal to the distance (in millimeters) from the
robot center to the turning center on a line perpendicular to
the heading of the robot connecting the default positions of
the middle legs. The inputs of trajectory generator uniquely
determine the foot-tip positions of each leg on the constructed
arcs which are limited by the angle α. The value of α is
computed from the distance of the furthest leg from the pivotal
point established by turn and the maximum step size ymax.
The idea of the trajectory generator is visualized in Fig. 3.

Fig. 3. Trajectory generation - the turning point denoted as red circle is given
by turn parameter. α is computed as the maximum angle given the turning
radius and the maximum step size ymax.

The output of the trajectory generator is transformed into
the joint space using the inverse kinematics module (IKT) and
then sent to the robot actuators. The robot motion is performed
by the gait type according to the period p, which moves the
robot body forward at a particular speed defined by the gait
type while the robot angular velocity is controlled by the turn
parameter, which is adjusted by the LGMD described in the
following section.

B. Lobula Giant Movement Detector

The obstacle avoiding behavior is achieved by utilizing the
LGMD neural network. The LGMD is a system of neural
layers found in the visual pathways of insects, such as locusts,
which responds selectively to objects approaching the animal
on a collision course. The neural network is composed of four
groups of cells: Photoreceptive, Excitatory, Inhibitory, and
Summation; and two individual cells: Feed-forward inhibitory
and Lobula Giant Movement Detector.

The Photoreceptive layer processes the sensory input from
the camera. Its output is the difference between two successive
frames grabbed from the camera computed as

Pf (x, y) = Lf (x, y)− Lf−1(x, y), (2)

where f denotes the current frame and L is the intensity of
the (x, y) pixel in grayscale. In principle, the Photoreceptive
layer detects changes in intensity values and forms the input
to another two layers – the Inhibition layer and Summation
layer.

The response of the Inhibition layer is computed as

If (x, y) =

n∑
i=−n

n∑
j=−n

Pf−1(x+ i, y + j)wI(i, j) (3)

(i 6= j, if i = 0),

where wI are the inhibition weights set as

wI =


0.125 0.250 0.125

0.250 0 0.250

0.125 0.250 0.125

 . (4)



The Inhibition layer is essentially smoothing the Photorecep-
tive layer output values filtering those caused by noise or
camera imperfections.

The response of the Summation layer is computed as

Sf (x, y) = abs(Pf (x, y))− abs(If (x, y))WI , (5)

where WI is the global inhibition weight.
Let S′f be a matrix, where each value exceeding the thresh-

old Tr is passed and any lower value is set to 0

S′f (x, y) =

{
Sf (x, y) if Sf (x, y) ≥ Tr
0 otherwise

. (6)

Then, we can compute an excitation of the LGMD cell as

Uf =

k∑
x=1

l∑
y=1

abs(S′f (x, y)) (7)

and finally, the LGMD cell output is

uf = (1 + exp−Ufn
−1
cell)−1, (8)

where ncell is the total number of cells (the number of pixels).
Note, the output of uf is in the interval uf ∈ [0.5, 1].

Typically, the LGMD neural network contains Feed-forward
cells which suppress the output of the LGMD cell in a case
of camera movement. However, the experimental evaluation
showed that the Feed-forward cells are not necessary and
in several cases restrict the collision avoidance behavior. In
principle, the LGMD neural network reacts on the lateral
movement of significant vertical edges in the environment
regardless their depth in the scene. In a case of camera pan the
further edges might play a more prevalent role in the decision
of the LGMD than the closer less significant ones. The purpose
of the Feed forward cell is to suppress the output of the LGMD
in such a case which is; however, not desirable when the robot
moves continuously as in our case.

Our vision system consists of two separate LGMDs to detect
the direction of interception, and thus be able to steer the
robot in the opposite direction to achieve the desired obstacle
avoiding behavior. The input image is split into two left and
right parts with the overlapping center part. The output of the
system is the difference between the left and right LGMD
responses. The difference is mapped to turn parameter by the
proposed Φ mapping function. The particular function Φ has
been designed experimentally and it has the form

Φ(e) =

{
100/e for abs(e) ≥ 0.2

10000 · sgn(e) for abs(e) < 0.2
, (9)

where e is the difference of the LGMD outputs

e = uleftf − urightf . (10)

The feasibility of the proposed solution to provide a collision
avoiding behavior has been experimentally verified using a
real hexapod walking robot. The results of the performed
experiments are reported in the next section.

IV. EXPERIMENTAL EVALUATION

The proposed neural-based architecture for the collision
avoiding behavior has been experimentally verified in a set
of experiments. We are emphasizing the practical verification
with a real walking robot to thoroughly test the proposed
solution and provide insights on the achieved performance.
Fig. 4 shows two test tracks used for the evaluation of the
obstacle avoiding behavior.

Fig. 4. Experimental setup in the hallway and in the lab environment

The experimental evaluation has been considered with the
PhantomX hexapod walking robot. The robot has six legs
attached to the trunk that hosts the sensors. In particular, two
cameras have been attached to the robot trunk. The Logitech
C920 camera with the Field of view (FOV) 78◦ to provide
the LGMD with the visual input and Asus Xtion Pro Live
RGB-D camera to provide a reliable tracking and ground truth
for the experiment based on the localization technique [24].
The image data fed into the LGMD neural network has been
captured by the Logitech C920 camera, subsampled to the
resolution of 176×144 pixels and finally divided into two parts
overlapping in 10% of the image area.

The first experimental setup consists of 3 m length path
in the lab environment with only one obstacle placed directly
in front of the robot, whereas the second setup in a hallway
consists of 3 obstacles as visualized in Fig. 4. The lab
experiment tests the ability of the system to deal with more
cluttered environment with a narrow passage only slightly
exceeding the robot’s outline. The hallway experiment has
been conducted to verify that the robot can navigate between
multiple obstacles.

During the experiments, the robot was started from approx.
the same place with heading directly intercepting the first
obstacle and was reactively guided by the proposed controller
through the experimental test track. Note, the forward speed
of the robot is given by the used gait (parameter p), thus only
turn parameter is adjusted during the traversal.

During the traversal, RGB-D data has been logged and
later post-processed by the RGB-D Simultaneous localization
and mapping (SLAM) algorithm [25] to recover the executed
trajectory. We have used this approach instead of external
localization to precisely evaluate the position of the obstacles
with respect to the robot concerning its current FOV. Alto-
gether four trials s1..4 in the lab and five trials denoted as
t1..5 on hallway setup have been performed. The experimental
results are detailed in the rest of this section.
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Fig. 5. Trajectories with obstacle and overlying point cloud recovered by the
RGB-D SLAM

A. Results

Fig. 5 shows all the resulting trajectories together with an
outline of the obstacles with a part of the overlying point cloud
recovered by the RGB-D SLAM. As can be seen, in all nine
cases, the robot was able to avoid the obstacles and reach the
end of the path.

Fig. 6 and 7 show the individual trajectories s2, s3 s4 and t3,

t4, t5 respectively from the aerial view with overlaid output
of the LGMD which shows the strength of the turning at a
given point. Note, for a better readability the graph includes
the difference of the LGMD outputs e given by (10) and
not the actual value of the Φ mapping function. Regarding
the proposed Φ, a particular value of the turn parameter is
inversely proportional to the strength of the LGMD output, i.e.,
as the parameter turn gets higher, the robot walks straight.
A very high value of the turn parameter means the robot
is crawling along a curve with a high curvature, and thus
it moves straight ahead. The direction of the LGMD output
determines the direction in which the LGMD is trying to avoid
the obstacle given the heading of the robot.

Fig. 8 shows a plot of distances to the obstacles along
the path together with the LGMD output e. The distances to
the obstacles which are currently in the field of view of the
camera are taken into account. The vertical axis of the plot
discriminates the direction to the obstacle given the heading
of the robot. Although there are obstacles in a closer distance
to the robot, only the ones that are currently in the field of view
are influencing the output of the LGMD; hence, the heading
of the robot. The phenomena can be observed in Fig. 9 which
shows the images captured by the camera along the path.

B. Discussion of the Results

The results indicate that the proposed neural-based locomo-
tion controller with the collision avoidance feedback provided
by the LGMD neural network is feasible.

Concerning the laboratory test track, the robot was able to
navigate the path without collisions; however, it can be seen
that a more cluttered environment has a substantial effect on
the reliability of the algorithm and smoothness of the motion.
In a case of the hallway experiment, the main conclusions
can be drawn from Fig. 7 and Fig. 8. It can be seen that the
majority of the LGMD actions are in the opposite direction to
the closest obstacle unlike in case of the lab test track. The
reason behind this behavior is, that the LGMD neural network
reacts on any moving vertical edge in the image. This can be
seen in t3, t4, and t5 sequences at about 80% of the trajectory
which corresponds to Fig. 9f. During this part, the doors to
the hallway forms the most prevalent edge in the environment
which influences the turning of the mobile robot. Whenever
the robot ceases to see the door, the most prevalent edge in the
empty hallway is the jamb on the right side of the door at the
end of the hallway. At that moment, the LGMD starts to push
the robot to the left which is clearly visible in Fig. 8. However,
that is the anticipated behavior of the LGMD-based collision
avoidance, e.g., whenever the robot is in a closed arena, the
influence of the closest obstacle gets inevitably the prevalent
role in the direction designation. This phenomena causes the
LGMD output of trajectories s2, s3, and s4 less smooth with
significant turns on the spot.

It also has to be noted that the output of the LGMD is
considerably influenced by the movement of the robot. As has
been said, we did not incorporate any suppressing mechanism
to the output of the LGMD. It has shown that the legged
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Fig. 9. Images taken by the robot during the traversing the t3 sequence

locomotion does not influence the output of the LGMD in
a markable way, therefore in less cluttered environments, the
suppressing mechanism is not necessary. On the other hand,
we tested the collision avoiding behavior also in heavily
cluttered environment where the robot was unable to avoid
obstacles in a continuous motion due to a lot of stimuli from
the distinctive edges in far distance from the robot because of
the locomotion.

It is also worth noting that we tested the LGMD collision
avoidance also with a fish-eye lens camera with FOV of 178◦

which also did not work well because of a fast movement of

the edges the robot is passing by. A solution might be to learn
the weights of the individual neurons in LGMD layers using
reinforcement learning or evolutionary technique which we
consider as a subject of our future work. Such an approach
might neglect the influence of distinctive far vertical edges
which mostly impacts the collision avoiding behavior in a
cluttered environment. Moreover, as the reaction of the robot
is based solely on the current observation of the environment
it is necessary to incorporate a memory time windowing
mechanism which would prevent the robot hitting obstacles
from the side that has successfully avoided earlier.



V. CONCLUSION

In this paper, we propose a neural-based locomotion con-
troller with integrated obstacle avoiding behavior based on
the visual feedback. We have implemented and experimentally
verified the proposed approach with a real walking robot in a
collision avoidance scenario. The experimental results support
feasibility of the proposed approach. We have experimentally
verified that the collision avoidance behavior is triggered
correctly by the closest obstacles when the environment is
less cluttered. Whenever the environment is heavily cluttered,
the LGMD output gets more influenced by distant objects and
the image motion induced by the locomotion. In that case, it
is necessary to adapt the controller to incorporate mechanisms
for the LGMD output suppressing and weighting. Addressing
this issue is considered for future work.
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