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Abstract—In this paper, we extent an existing self-organizing
map (SOM)-based approach for the Dubins traveling salesman
problem (DTSP) to solve its multi-vehicle variant generalized for
visiting target regions called k-DTSP with Neighborhoods (k-
DTSPN). The Dubins TSP is a variant of the combinatorial TSP
for curvature-constrained vehicles. The problem is to determine a
cost efficient path to visit a given set of continuous regions while
the path allows to satisfy kinematic constraints of non-holonomic
vehicles. The k-DTSPN is a generalization to determine k such
paths, one for each vehicle. Although the k-DTSPN has been
addressed by evolutionary methods, the proposed approach is
able to provide solutions very quickly in units of seconds on con-
ventional computationally resources which makes the proposed
SOM-based approach suitable for on-line planning. The studied
problem is motivated by surveillance task in which it is required
to quickly provide information about the given set of target
locations. Therefore, real computational requirements are crucial
properties of the desired k-DTSPN solver. The proposed method
meets this requirement and feasibility of the found solutions are
demonstrated not only in computer simulations but also with a
practical deployment on real aerial vehicles.

I. INTRODUCTION

The herein studied problem is motivated by surveillance
planning to quickly validate that objects of interest are at
the particular locations. Based on the prior information about
the locations of the objects, the problem is to verify if the
expected objects are really the objects of our interest and what
a particular type the object is. The problem is motivated by
practical needs of multi-robot team deployment in the robotic
competition MBZIRC [1], [2]. In this competition, a fleet of
Unmanned Aerial Vehicles (UAVs) has to quickly identify
where objects of interest are located. Then, based on the score
associated with the object, the system has to decide which
objects should be collected and delivered to the dedicated area.
In our approach, an initial scan of the area is provided from the
overfly at very high altitude which provides a rough estimate
about the location of the objects of interest. Then, the UAVs
are requested to quickly visit the expected object locations
to confirm the locations and reject false positive estimates.
The UAVs fly relatively fast (approximately 5 m.s-1) and the
most time-consuming operation is the pickup and delivery of
the object of interest. However, the time to collect as most
valuable objects as possible is limited, and therefore, it is
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Fig. 1. The used hexa-rotor UAV, the vehicle in the vicinity of the object
of interest, and demonstration field site with the objects of interest. The field
site is about 80 m × 60 m large.

beneficial to identify locations of the most valuable objects
and do not spend too much time in planning the trajectories to
verify the object locations because any additional second spent
in planning is a significant distance the vehicle can travel.
Hence, we quickly need a feasible solution of the multi-robot
multi-goal path planning problem to allocate the robots in
the verification and identification of the most valuable objects
of interest. A fast solver for this problem is the main topic
addressed in this paper.

A problem of finding a cost efficient path to visit a set of
locations is a variant of the combinatorial Traveling Sales-
man Problem (TSP) for which many approaches have been
proposed [3]. However, when planning a path for a non-
holonomic vehicle with the limited minimal turning radius,
e.g., such as fixed-wing aircraft or car-like vehicle, it is
necessary to consider the kinematic model of the vehicle
to ensure the found path is feasible for the robot and a
real robot will visit the required locations with a sufficient
precision. Moreover, the curvature-constrained path is also
suitable for micro aerial vehicles such as hexa-rotors used in
the motivational practical deployment, see Fig. 1. Curvature-



constrained trajectory is desirable for these vehicles because it
allows a fast motion (i.e., the maximal forward velocity) and
more precise trajectory following than trajectories with sharp
turns with respect to the particular controller employed for the
trajectory following [4].

An existing and widely used model of the curvature-
constrained vehicles is called the Dubins vehicle and the vari-
ant of the curvature-constrained TSP is called the Dubins TSP
(DTSP) [5]. Further, considering the surveillance missions
with a camera sensor with a particular field of view, it is not
necessary to visit the location exactly as the object of interest
can be captured from its vicinity respecting the sensing range
δ to reliably capture the object. Therefore, the travel cost can
be saved by determining not only the order to inspect the
objects of interest, but also by determining the most suitable
waypoints at which the objects can be captured by a downward
looking camera. Thus, a suitable problem formulation of such
a planning problem for a single vehicle is called the DTSP
with Neighborhoods (DTSPN) [6], [7], [8].

Similarly to the generalization of the TSP to multi-vehicle
problem formulation, the DTSPN with a team of Dubins
vehicles is called the k-Dubins TSPN (k-DTSPN) and it has
been introduced in [9]. Even though the k-DTSPN shares
many similarities with the k-TSP and the Vehicle Routing
Problem [10], [7], there are only few approaches that directly
address the k-DTSPN. The authors of [9] proposed an evolu-
tionary algorithm that provides solutions for a team of Dubins
vehicles starting at a common location, but do not report on
real required computational time. In [11], a memetic algorithm
for the k-DTSPN has been proposed, but again authors did not
report on the real required computational times.

In addition to the aforementioned evolutionary methods, a
novel unsupervised learning technique of the self-organizing
map (SOM) for the TSP has been proposed to address the
specific properties of the Dubins TSP in [12]. The authors
compare the performance of the SOM-based approach with the
existing heuristics for the DTSP [5], [13], and the Memetic al-
gorithm [11]. The reported results indicate the SOM-based ap-
proach provides better results than the Memetic algorithm [11]
in some problem instances while it is computationally less
demanding than the Memetic algorithm which runtime has
been restricted to 10 seconds. The results [12] together with
existing generalization of the SOM for the TSP to address
the TSP with Neighborhoods (TSPN) [14], [15] and k-TSP
variants [16], [17] motivated us to further consider the ideas
of unsupervised learning employed in the SOM for the TSP to
develop SOM-based solution of the k-DTSPN that will quickly
provide a feasible solution for the real aerial vehicles.

Due to the limited mission time in the motivational deploy-
ment of the robotic competition, the expected time needed to
find a feasible solution of the k-DTSPN instances arising from
scenarios of the competition was specified to do not exceed
one second. Regarding the velocity of the UAVs, one second
means about five meters and ten seconds is about a quarter of
the arena size, and thus the required time to find a solution
should be significantly smaller than the time to travel over the

arena. Therefore, finding an optimal solution at the cost of high
computational requirements is not desirable and it is rather
preferred to find a feasible (good enough) solution quickly.

The proposed solution is built on early results on the
SOM for the DTSP reported in [12] which has been further
developed to meet the desired properties of the surveillance
planning with a team of aerial vehicles. In particular, the main
contributions of the paper are as follows:
• Improved adaptation procedure to quickly find a feasible

solution of the DTSP.
• Generalization of the method to save the travel cost by

considering sensing range δ, i.e., a solution of the DTSP
with Neighborhoods (DTSPN).

• Generalization of the method to solve the problem with
a team of vehicles, i.e., a solution of the k-DTSPN.

• Comparison of the proposed method with the existing
solver based on the Memetic algorithm [11].

• Verification of the feasibility of the found solutions using
real aerial vehicles.

The paper is organized as follows. The problem statement
together with a brief overview of Dubins vehicle model and
Dubins multi-goal planning are introduced in Section II. The
proposed algorithm is proposed in Section III. Empirical
results and reports on experimental deployment are presented
in Section IV. Conclusion and final remarks are in Section V.

II. PROBLEM STATEMENT

The motivation of the studied problem is to determine k
curvature-constrained paths for the k aerial vehicles such that
all n objects of interest can be seen from at least one vehicle
traveling along its path. Therefore, it is required that for each
object of interest, at least one path is closer than the given
sensing range δ to provide a reliable snapshot of the object and
identification of the reward value associated with the object.
All the vehicles are identical with the same minimal turning
radius ρ that allows flying at the constant, maximal, and safe
forward velocity while the error of the trajectory following
(based on the controller [4]) is at the acceptable level. Finally,
each vehicle starts at its individual location prd ∈ R2, where
the superscript r denotes the r-th vehicle, and the path has
to ends at the same location prd. The formal definition of the
problem with the necessary background arising from the non-
holonomic constraints of the used Dubins vehicle model are
presented in the rest of this section.

The used vehicle model is the Dubins vehicle [18] with the
constant forward velocity v and the minimal turning radius ρ.
The state of each vehicle q = (x, y, θ) consists of its position
p = (x, y) in the plane p ∈ R2 and its heading θ, θ ∈ S1, i.e.,
q ∈ SE(2). The mathematical model of the vehicle motion
can be described by (1), where u is the control input. ẋ

ẏ

θ̇

 = v

 cos θ
sin θ
u · ρ−1

 , |u| ≤ 1. (1)

Having two configurations q1, q2 ∈ SE(2), the optimal path
connecting q1 and q2 respecting the kinematic constraints (1)



consists of straight line segment (S) and arcs (of two types L –
left, R – right) with the curvature ρ. Such a path can be called
the Dubins maneuver and only six possible combinations exist:
LSL, LSR, RSL, RSR, LRL, and RLR [18].

The optimal Dubins maneuver can be computed analyti-
cally [18]; however, to find an optimal path connecting two
points p1, p2 ∈ R2 we need the orientation (heading) of the
vehicle at these points. Therefore, a solution of the DTSP
consists not only of determining the sequence to visit the
locations (as in the ordinary TSP) but also the optimal heading
at each location has to be determined. Moreover, if the object
of interests at the location oi ∈ R2 can be covered from
anywhere at the δ distance to oi, the problem becomes the
DTSPN where in addition to the headings and sequence of
visits, we also need to determine a particular waypoint pi at
which each object oi is covered, i.e., |(pi, oi)| < δ, such that
the total length of the Dubins path is minimized.

The motivational problem is formulated as the k-DTSPN
which stands to find k Dubins paths {L1, . . .Lk} for k Dubins
vehicles such that locations of the all n objects of interests
O = {o1, . . . , on} are in at most the δ-distance from one of
the found paths and the length of the longest path is minimal,
i.e., the MinMax variant of the multi-vehicle TSP [17]. Each
individual path Lr for the vehicle r can be described as a
sequence of waypoints Qr = (qrd, q

r
1, . . . , q

r
nr , q

r
d), where the

projection of the waypoint qrd to R2 corresponds to the vehicle
starting location prd, i.e., P(qrd) = P(qrnr ) = prd, which is
also supposed to be the vehicle final location. The number
of waypoints nr of the path r corresponds to the number of
objects of interests that are covered by the path Lr, i.e.,

Or = {oi ∈ O| for which |(P(qri ), oi)| < δ, qri ∈ Qr}. (2)

The length of the path Lr defined by the waypoints Qr and
the covered objects Or can be expressed as

Lr(Qr,Or) = L(qrd, q
r
1) +

nr∑
i=1

L(qri , q
r
i+1) +L(qrnr , q

r
d), (3)

where L(qi, qj) denotes the length of the Dubins maneuver
connecting the configurations qi and qj . Notice, each configu-
ration qi consists of the point location pi ∈ R2 and the vehicle
heading θi ∈ S1, i.e., qi = (pi, θi).

Having a notion of the individual path Lr, its waypoints,
and objects Or covered from Lr, the k-DTSPN can be defined
as a problem to determine for each vehicle r, the sequence of
waypoints Qr and a subset of nr locations of the objects of
interest Or ⊆ O such that all objects are covered and the
length of the longest tour is minimal. The problem can be
formally defined as:

minimize(Qr,Or) for r∈{1,...,k} max
r∈{1,...,k}

Lr(Qr,Or) (4)

subject to O =

k⋃
r=1

Or and for o ∈ O there is

qr ∈
⋃k
r=1Q

r such that |(P(qr), o)| < δ.

(5)

Notice, it is sufficient that each object is covered by at least one
vehicle but regarding (4) it can be covered by more vehicles
if it does not affect the length of the longest path.

III. SELF-ORGANIZING MAP FOR THE k-DTSPN

The proposed approach to address the k-DTSPN is directly
based on the self-organizing map (SOM) for the DTSP in-
troduced in [12]. Here, the unsupervised learning technique
is extended to address the neighborhood defined as the disk
with the radius δ centered at the location of each object of
interest, i.e., a solution of the Dubins TSP with Neighborhoods
(DTSPN). This extension is based on the idea to determine the
waypoint at the δ-distance from the location during the winner
selection. The idea has been proposed in [19] and utilized in
the solution of the TSPN in [14] and further developed in [15].
The generalization of the proposed SOM-based solution for the
DTSPN to the k-DTSPN follows the idea of the SOM-based
solution of the k-TSP [16], [17] in which an individual neural
network is created for each vehicle. Each network (called a
ring) represents a path for one vehicle and during the winner
selection, the length of the current path is taken into account
to prefer winner neurons from shorter rings (networks), and
thus minimize the longest path [16].

The SOM for the k-DTSPN is a direct extension of the
SOM for the DTSPN. Moreover, the solution of the DTSPN
follows the general adaptation procedure of the SOM for the
TSP. Therefore, a general idea of the employed unsupervised
learning is presented prior the proposed modifications to make
the reader familiar with the main principles of the employed
learning technique. Then, we introduce an extension of the
learning to address the curvature-constrained TSP [12] to-
gether with the proposed modification of the winner selection
to address the DTSPN variant. Finally, the rule to prefer
winner neurons from shorter rings, and thus solve the k-
DTSPN is presented.

A. Self-Organizing Map for the TSP

The SOM for the TSP is two-layered neural network which
maps the input space, the set of target locations (cities) O,
into a finite number of the output neurons organized into an
array of the output units [20]. Contrary to a conventional SOM
for clustering or classification problems [21], the SOM for the
TSP does not represent a 2D lattice but the output layer is one
dimensional and the neuron weights share the space with the
input signals, and thus connected neurons form a ring of nodes
that represents the desired path to visit the target locations [22].

For each vehicle r, a separate neural network is created
with the neurons N r = (νr1 , . . . , ν

r
mr ) where νri represents

the vehicle configuration in the input space and mr is the
actual number of neurons in the r-th ring. In the ordinary
Euclidean TSP, each neuron νri represents a position in the
input space νri ∈ R2 and the final path is constructed simply
by connecting the neurons in the ring by straight line seg-
ments [22]. However, for the DTSPN, we need to consider also
the vehicle heading, and therefore, the neuron represents the
Dubins vehicle configuration, i.e., νri ∈ SE(2), and the final



curvature-constrained path has to be constructed by connecting
the neurons by the Dubins maneuver. Even though the neuron
representation differs in a solution of the TSP and the DTSP, a
solution of the both problems can utilize the same SOM-based
framework for the unsupervised learning. The framework can
be summarized as follows.

1) Initialization: For n target locations O, create a ring
of neurons with randomly initialized weights, e.g., with
2n neurons [14]. Initialize the learning parameters as
follows: the learning gain σ = 10, the learning rate
µ = 0.6, the gain decreasing rate α = 0.1, and set the
learning epoch counter i = 1.

2) Randomizing: Create a random permutation of locations
Π(O) to avoid local minima [23].

3) Learning epoch: For each o ∈ Π(O)

a) Select winner neuron ν∗ for o as the best matching
neuron, i.e., the closest neuron to o.

b) Adapt ν∗ and its neighbors to o using the neigh-
bouring function (6), i.e., set the neuron weights
to the new locations ν′ determined as:

ν′ = ν + µf(σ, d)(o− ν).
4) Ring regeneration to improve headings associated with

the neurons to optimize the length of the Dubins path
represented by the ring. (For solving DTSP and DTSPN)

5) Update learning parameters: σ = σ(1− iα), i = i+ 1.
6) Termination condition: If solution is not improving or

i ≥ imax Stop the adaptation. Otherwise go to Step 2.
7) Construct the final (Dubins) tour using the last winners.
The used neighbouring function follows the existing SOM

for the TSP [23], [22] and it has the form

f(σ, d) =

{
e

−d2

σ2 for d < 0.2mr

0 otherwise [23]
, (6)

which decreases the power of adaptation of the neighbouring
nodes to the winner neuron ν∗ with increasing distance d of
the neuron to ν∗ counted in the number of neurons of the ring.

The adaptation can be viewed as a movement of the neurons
to new position ν′ which replaces the neuron weights ν. An
evolution of the ring of neurons is shown in Fig. 2.

B. SOM for the DTSP and Winner Selection for the DTSPN

The neurons represent the particular waypoints of the path
and to directly solve the DTSP by SOM, the neurons also
contain information about the expected vehicle headings [12].
Then, the Dubins path can be directly computed as a sequence
of the Dubins maneuvers connecting the neurons in the
ring. However, the heading value at the particular waypoint
can significantly affect the total path length, therefore each
neuron νi ∈ N has associated a set of heading values
Θi = {θ−ki , θ−k+1

i . . . , θi, θ
k
i , . . . , θ

k
i } which are used to find

Dubins path represented by the current ring.
Having a sequence of neurons in the ring and each neuron νi

has a set of possible heading values Θi, the best heading values
to represent the shortest possible Dubins path connecting the
neurons in the ring can be found as follows. We can consider

(a) Epoch 12 (b) Epoch 28 (c) Epoch 35

(d) Epoch 42 (e) Final path (f) Final Dubins path

Fig. 2. An example of the ring evolution of SOM for the TSP with 10 target
locations. The target locations are represented as the green disks while the
current neurons are in blue. After 53 epochs a solution of the Euclidean TSP
is determined which provides a sequence of the target locations which can be
used to determine headings at the waypoints and a solution of the DTSP.
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Fig. 3. A search graph where each layer corresponds to one neuron with
particular heading values Θi. Two neighboring layers are fully connected by
the oriented edges representing the direction of the vehicle.

the ring of connect neurons as a search graph, where each
neuron represents a layer with possible heading values Θi and
two neighbouring layers are fully connected, see Fig. 3. Then,
the best heading values are selected by a feed-forward search
with the time complexity bounded by O(ms3), where m is
the current number of neurons in the ring and s is the number
of heading values associated with each neuron.

The above described procedure allows to determine Dubins
path that is represented by the current ring of neurons. This
path is further utilized in the novel procedure to select the
winner neuron. Contrary to the approach [12], the winner
neuron is determined as the closest point po of the Dubins
path connecting the current neurons in the ring. Therefore,
prior the actual selection of the winner neuron to the currently
presented location o to the network, the point po as the closest
point of the Dubins path to the location o is determined, see
Fig. 4. Then, the winner neuron ν∗ is the neuron with the
weights identical to po. If such a neuron does not exist in the
ring, a new neuron is created and its weights are set to be
identical to the point po. Notice, the vehicle heading θp at the
point po is utilized as the main heading of the winner neuron
and the other heading values of Θν∗ are set around θp as
Θν∗ = {θp, θ1p, . . . , θip, θ−1p , . . . , θ−ip }, where θip = θp + iπ/l,
1 ≤ i ≤ l and l is set to l = 12.
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Fig. 4. Proposed winner selection procedure: the location o is presented to
the network where the current ring of neurons represents the Dubins path
showed as the black curve connecting the blue neurons. The closet point po
of the Dubins path to o is used as the neuron weights for the winner neuron.
The point op corresponds to the alternate target location towards which the
network is adapted to save the travel cost by covering o within δ distance
from o. The shortest possible path connecting νprev and νnext through the
point o using the vehicle heading θp is in red.

In addition to the determination of the point po, the point op
as the intersection of the straight line segment (po, o) (defined
by the points po and o) with the δ-radius circle centered at o is
determined if |(po, o)| > δ. The point op is than considered as
the target location at which the object o can be covered with
the sensing range δ, and thus the network is adapted towards
op and not to o to save the travel cost. However, if po is already
within the δ-distance from o, the particular winner neuron is
determined, but the network is not adapted as o can be already
covered from po.

Another important modification of the SOM for the Dubins
TSP is the adaptation of the neurons. Instead of adaptation
of the neighbouring neurons as in the ordinary SOM for
the TSP using the fixed neighborhood, e.g., d < 0.2m, the
neighborhood is defined by the neurons νprev and νnext that
are determined such that the length of the expected Dubins
path to visit the location o is minimized:

Lg = L(νprev, (o, θ)) + L((o, θ), νnext), (7)

where νprev, νnext are neurons from the activation bubble
A(ν∗) around ν∗ and θ is one of the heading values θ ∈ Θν∗

of the winner neuron ν∗. The activation bubble A(ν∗) consists
of all neurons around the winner ν∗ for which the current
value of the neighbouring function (6) is above the activation
threshold, which is set to 10−5. The neighbouring function
f(σ, d) depends on the learning gain σ which is decreasing
after each learning epoch, and therefore, neurons νprev and
νnext may not be necessarily found. In such a case, only the
particular winner neuron is adapted towards the point op.

Although neurons νprev and νnext are determined according
to the Dubins path connecting o, the neurons are adapted
towards the alternate location op to save the total tour length
as in [15]. Since, the shape of the optimal Dubins maneuver
depends on the departure and arrival angles at νprev and νnext,
we further modify the original adaptation step of SOM, and
only neurons between νprev and νnext (including the winner
ν∗) are adapted towards op. This is performed by moving ν∗ to

op and determination of the optimal Dubins maneuvers from
νprev to ν∗ and from ν∗ to νnext. Then, the weights of each
neuron between νprev and νnext are set to the corresponding
closest points on these maneuvers. The neurons νprev , νnext,
and ν∗ are marked as active neurons for the current epoch.

Because the winner ν∗ may be added to the network in the
winner selection step, one another neuron between νprev and
νnext is removed (if such exists) from the network during the
adaptation to decrease the computational burden and keep the
number of neurons below 2n. Moreover, after each learning
epoch, a ring regeneration is performed to improve a solution
of the DTSP and remove unused neurons. Thus, only the
active neurons are preserved and their main headings νθ are
set according to the determined the shortest Dubins path
connecting neurons by the forward search procedure using the
graph representation visualized in Fig. 3.

C. SOM for the k-DTSPN

The generalization of the proposed SOM for the DTSPN to
k-DTSPN is straightforward and it is based on the creation
of the individual ring of neurons N r for each vehicle r ∈
{1, . . . , k}. Then, the main objective of the k-DTSPN (4) is
addressed by preferring selection of the winner neuron from
shorter rings, and thus minimize the length of the longest path.
Therefore, an average length of the Dubins paths represented
by each ring of neurons N r denoted L(N r) is determined
during the SOM learning

Lavg =
1

k

k∑
r=1

L(N r). (8)

Then, the weights of the winner neuron are still selected as
the closest point pro of the individual ring r to the location o.
However, instead selecting the pro from the ring r for which
|(pro, o)| is minimal, the distance between pro and o is weighted
by the multiplication factor proportional to the difference of
the Dubins path length represented by the particular ringN r to
the average length of the Dubins paths Lavg . Thus, the ring r
from which the particular point pro is used for the determination
of the winner neuron ν∗ is determined as

r = argmin
r∈{1,...,k}

(
1 +

L(N r)− Lavg
Lavg

)
|(pro, o)|. (9)

Then, the particular pro of the selected ring r for the adaptation
is used as in the solution of the single vehicle DTSPN
described in Section III-B.

Besides, the adaptation is further modify to respect indi-
vidual starting locations of each vehicle as follows. At the
beginning of each learning epoch, each ring N r is adapted
towards the particular starting locations prd using the first
neuron of the ring without competition between neurons. This
ensures that each Dubins path represented by the ring starts
and ends at the particular prd.

Here, we would like to comment that all the results pre-
sented in this paper consider the prd also with the δ distance.
Even though the SOM adaptation procedure allows to use
an individual δ per each object of interest, for simplicity



(a) Epoch 1 (b) Epoch 25 (c) Epoch 50

(d) Epoch 75 (e) Epoch 104 – SOM solution (f) Epoch 103 - Final tours

Fig. 5. Evolution of the proposed SOM for the k-DTSPN with n = 22 target locations represented by small green disks. The yellow disks represent δ = 2 (in
meters) neighborhood to cover the target locations. The minimal turning radius of the Dubins vehicle is ρ = 5 meters. The initial positions of the vehicles
are the red disks. The final found solution has the maximal path 146.2 meters long.

of the algorithm and comparison with existing methods, we
allowed to do not exactly start at prd. Regarding the practical
deployment, this is not an issue as the vehicles have to be
firstly positioned at the particular locations before they are
asked to follow the planned trajectories. Additional travels
about δ distance do not add a significant delay because of
moving speed of the real vehicles.

The evolution of SOM is similar to the solution of the TSP;
however, the ring of neurons directly represents Dubins path
and the network not only provides estimation of the headings
at the waypoints, but also the particular locations to cover the
objects of interests at the δ-distance to them, and thus the
rings represent a solution of the k-DTSPN. An example of
the network evolution and the final found solution is shown
in Fig. 5. Empirical evaluation of the proposed algorithm and
comparison with existing approach are presented in the next
section together with the reported results on real deployment
of the method in the field.

IV. RESULTS

The proposed SOM-based solver for the k-DTSPN has been
evaluated in testing scenarios arising from the motivational de-
ployment of the solver in the robotic competition MBZIRC [2],
[1]. All the test instances contains 22 objects of interests1 and
the goal is to take a detail photo of each object for which the
vehicle needs to be closer than δ = 2 meters. An example of
the object with a particular label denoting the object reward

1Locations of the objects of interests (in meters): {(27.5, 46), (10, 35.5),
(51.5, 40.5), (32, 36.5), (67, 15), (44, 48), (44, 15.5), (49.5, 17), (60.5, 19.5),
(39.5, 33.5), (78, 15.5), (67, 36), (76.5, 0.5), (28.5, 32), (22.5, 10.5), (57, 30),
(47, 32), (4, 16.5), (36, 11), (57, 42), (22.5, 35.5), (11, 41)}

is shown in Fig. 1 together with the field site and positions
of the objects. We consider three scenarios depending on the
number of vehicles used in the mission. The starting locations
of the vehicles are prescribed for each particular setup for
k ∈ {1, 2, 3}. 2 The used UAVs are model as Dubins vehicles
(1) with the forward velocity u limited to 5 m.s-1 and the
physical constraints limit the vehicle lateral acceleration, and
thus the minimal turning radius is ρ = 5 m.

A. Comparison of the Solution Quality

The evaluation of the proposed SOM-based approach for
the k-DTSPN has been performed to validate if the approach
provides solutions of sufficient quality with low computational
requirements. Therefore, the performance of the proposed
solver has been compared with the existing Memetic algo-
rithm [11] that has been used as follows. The same mutation
and crossover operators together with the local optimization of
the visiting configuration at the δ-distance from the location of
the object of interests as in [11] have been utilized. The size of
the population has been set to 1000 individuals which is close
to the value suggested by the authors of [11]. The mutation
probability has been set to 0.1. On the other hand, the only
parameter of the proposed SOM-based approach presented in
Section III is the maximal number of the learning epochs imax
that has been set to imax = 500.

Both algorithms are stochastic procedures, therefore each
problem instance for k ∈ {1, 2, 3} has been solved 10 times
and the solution quality indicators is an average length of the

2The starting locations are (in meters): {(40, 0)} for one vehicle, {(10, 1),
(70, 1)} for two vehicles, and {(10, 1), (40, 1), (70, 1)} for three vehicles.
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Fig. 6. Average values of the length of the longest tour from 10 trials found
by the proposed SOM-based algorithm and the Memetic algorithm [11] with
the computational time restricted to 1, 5, 10, and 60 seconds. The error bars
denote standard deviations.

longest tour Lmax. The Memetic algorithm [11] improves the
solution according to the available computational time, and
therefore, we consider four variants of the algorithm for the
computational time limited to 1, 5, 10, and 60 seconds. Both
algorithms have been implemented in C++, compiled by the
same compiler, and executed within the same computational
environment using a single core of the iCore7 processor
running at 4 GHz. The average lengths of the longest tours
are depicted in Fig. 6.

TABLE I
SOLUTIONS QUALITY AND REQUIRED COMPUTATIONAL TIME

k
Memetic 1s Memetic 10s Proposed SOM
Lmax [m] Lmax [m] Lmax [m] T [s]

1 586.01 (24.22) 376.52 (27.17) 363.38 (36.56) 0.55 (0.07)
2 335.83 (10.67) 212.18 (18.73) 223.76 (40.76) 0.53 (0.01)
3 240.67 (6.63) 153.37 (12.79) 180.12 (29.49) 0.53 (0.03)

The results indicate that the proposed SOM-based approach
provides better results than the Memetic algorithm [11] with
the computational time limited to 1 and 5 seconds. In the case
of 10 seconds and k = 3, it seems the Memetic algorithm starts
providing better results. The computational time of the SOM
approach is detailed in Table I which is always less than 0.6
seconds, and thus it is below the specified requirement. The
SOM-base solver is able to provide solution with the similar
quality to the Memetic algorithm running for 10 seconds.
Therefore, the speed up is more than about one order of
magnitude. Moreover, the vehicle is capable of traveling 45
meters in 9 seconds, therefore we consider the solutions
provided by the SOM-based solver of the sufficient quality
for the real deployment on the real aerial vehicles. Selected
best-found solutions by each method are depicted in Fig. 8.

B. Real deployment

The real practical experiment with three aerial vehicles has
been conducted to demonstrate the found solution is feasible
for the real UAVs. The setup of the problem corresponds to
the test instance with k = 3 evaluated in the simulation. The

altitude of the UAVs has been set to 7 meters and the size of
the field is approximately 60 m × 80 m. The GPS has been
used for the localization and model predictive controller [4]
has been utilized for the trajectory following. The planned and
real trajectories are depicted in Fig. 7. Notice, due to noise
and trajectory following imperfections, the value of δ for the
planning is set to a shorter distance than the actual sensing
range to ensure a reliable identification of the objects.
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Fig. 7. Planned and real executed trajectories by UAVs

V. CONCLUSION

In this paper, we propose a novel unsupervised learning of
SOM-based algorithm to solve the k-DTSPN. The proposed
algorithm is based on the practical needs to find a feasible solu-
tion under time critical constraints. The SOM-based algorithm
satisfies the specified requirements and demonstrated practical
usability in field experiments. The solutions of sufficient
quality are found in less than 0.6 second and are better than
the solution provided by the Memetic algorithm. Thus, the
proposed SOM-based algorithm seems to be more suitable for
the motivational deployment.

On the other hand, the SOM-based solution does not
improve if more computational time is available, which is
not the case of the Memetic algorithm. Moreover, the results
indicate the solution quality of SOM-based approach does not
scale with the increasing number of vehicles as the Memetic
algorithm. Therefore, a combination of the proposed SOM
as a construction heuristic in the Memetic algorithm may
combine advantages of both approaches. Such a combination
is a subject of our future work.
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